Articles | Volume 20, issue 12
https://doi.org/10.5194/cp-20-2685-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2685-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations in the biological pump throughout the Miocene: evidence from organic carbon burial in Pacific Ocean sediments
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg, Corvallis, Oregon 97333, USA
Annette Olivarez Lyle
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg, Corvallis, Oregon 97333, USA
Related authors
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Precise dating of deglacial Laptev Sea sediments via 14C and authigenic 10Be∕9Be – assessing local 14C reservoir ages
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Behrenfeld, M. J., Boss, E. S., Siegel, D. A., and Shea, D. M.: Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005.
Berelson, W. M.: Particle settling rates increase with depth in the ocean, Deep-Sea Res. Pt. II, 49, 237–251, 2001.
Berger, W. H.: Cenozoic sedimentation in the eastern tropical Pacific, Geol. Soc. Am. Bull., 84, 1941–1954, 1973.
Boscolo-Galazzo, F., Crichton, K. A., Barker, S., and Pearson, P. N.: Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?, Global Planet. Change, 170, 201–212, https://doi.org/10.1016/j.gloplacha.2018.08.017, 2018.
Boscolo-Galazzo, F., Crichton, K. A., Ridgwell, A., Mawbey, E. M., Wade, B. S., and Pearson, P. N.: Temperature controls carbon cycling and biological evolution in the ocean twilight zone, Science, 371, 1148–1152, 2021.
Boyd, P. W.: Toward quantifying the response of the oceans biological pump to climate change, Front. Mar. Sci., 2, 77, https://doi.org/10.3389/fmars.2015.00077, 2015.
Bralower, T. J., Premoli Silva, I., Malone, M. J., Arthur, M. A., Averyt, K., Brassell, S. C., Bown, P. R., Channell, J. E. T., Clarke, L. J., Dutton, A., Eleson, J. W., Frank, T. D., Gylesjö, S., Hancock, H., Kana, H., Leckie, R. M., Marsaglia, K. M., McGuire, J., Petrizzo, M. R., Robinson, S., Röhl, U., Sager, W. W., Takeda, K., Thomas, D., Zachos, J.C., Williams, T., and Moe, K. T.: Proceedings of the Ocean Drilling Program, Initial Reports, Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/odp.proc.ir.198.2002, 2002.
Broecker, W., Klas, M., Clark, E., Bonani, G., Ivy, S., and Wolfli, W.: The influence of CaCO3 dissolution on core top radiocarbon ages for deep-sea sediments, Paleoceanography, 6, 593–608, 1991.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.: Toward a metabolic theory of ecology, Ecology, 85, 1771–1789, 2004.
Chaisson, W. P. and Leckie, R. M.: High-Resolution Neogene Planktonic Foraminifer Biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific), in: Proceedings ODP, Scientific Results, leg 130, Ocean Drilling Program, College Station, TX, 137–178, https://doi.org/10.2973/odp.proc.sr.130.010.1993, 1993.
Chavez, F. P. and Barber, R. T.: An estimate of new production in the equatorial Pacific, Deep-Sea Res., 34, 1229–1243, 1987.
CODD: Code for Ocean Drilling Data, https://www.codd-home.net/ (last access: 8 August 2023), 2023.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett., 49, 528–550, 1980.
Dickens, G. R. and Owen, R. M.: The latest Miocene-early Pliocene biogenic bloom: a revised Indian Ocean perspective, Mar. Geol., 161, 75–91, 1999.
Diester-Haass, L., Billups, K., and Emeis, K.-C.: In search of the late Miocene–early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088), Paleoceanography, 20, PA4001, https://doi.org/10.1029/2005PA001139, 2005.
Drury, A. J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R., Channell, J. E. T., Evans, H., John, C. M., Lyle, M., and Röhl, U.: Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective, Earth Planet. Sc. Lett., 475, 254–266, https://doi.org/10.1016/j.epsl.2017.07.038, 2017.
Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell, A. E., and John, C. M.: Deciphering the state of the late Miocene to early Pliocene equatorial Pacific, Paleoceanogr. Paleoclimatol., 33, 246–263, https://doi.org/10.1002/2017PA003245, 2018.
Dugdale, R. C., Wilkerson, F. P., Barber, R. T., and Chavez, F. P.: Estimating new production in the equatorial Pacific Ocean at 150° W, J. Geophys. Res., 97, 681–687, 1992.
Dymond, J. and Collier, R.: Particulate barium fluxes and their relationships to biological productivity, Deep-Sea Res. Pt. II, 43, 1283–1308, 1996.
Dymond, J. and Lyle, M.: Particle fluxes in the ocean and implications for sources and preservation of ocean sediments, in: Material Fluxes on the Surface of the Earth, edited by: Hay, W. W., Andrews, J. T., Baker, V. R., Dymond, J., Kump, L. R., Lerman, A., Martin, W. R., Meybeck, M., Milliman, J. D., Rea, D. K., and Sayles, F. L., National Academy Press, Washington, D.C., 125–143, https://doi.org/10.17226/1992, 1994.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181, 1992.
Evans, H. F.: Magnetic Stratigraphy and Environmental Magnetism of Oceanic Sediments, Geology, PhD thesis, University of Florida, 204 pp., https://ufdc.ufl.edu/UFE0017566/00001 (last access: 6 December 2024), 2006.
Expedition 320/321 Scientists: Methods, in: Proc. IODP, 332/321, edited by: Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo, https://doi.org/10.2204/iodp.proc.320321.102.2010, 2010a.
Expedition 320/321 Scientists: Site U1337, in: Proc. IODP, 332/321, edited by: Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo, https://doi.org/10.2204/iodp.proc.320321.109.2010, 2010b.
Ganeshram, R. S., Francois, R., Commeau, J., and Brown-Leger, S. L.: An experimental investigation of barite formation in seawater, Geochim. Cosmochim. Ac., 67, 2599–2605, 2003.
Gastaldello, M. E., Agnini, C., Westerhold, T., Drury, A. J., Sutherland, R., Drake, M. K., Lam, A. R., Dickens, G. R., Dallanave, E., Burns, S., and Alegret, L.: The Late Miocene-Early Pliocene Biogenic Bloom: An Integrated Study in the Tasman Sea, Paleoceanogr. Paleoclimatol., 38, e2022PA004565, https://doi.org/10.1029/2022PA004565, 2023.
Guillermic, M., Misra, S., Eagle, R., and Tripati, A. K.: Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific, Clim. Past, 18, 183–207, https://doi.org/10.5194/cp-18-183-2022, 2022.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N.: Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling, Geology, 42, 19–22, https://doi.org/10.1130/G34890.1, 2014.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., and Meier, K. J. S.: Global perturbation of the carbon cycle at the onset of the Miocene Climate Optimum, Geology, 43, 123–126, https://doi.org/10.1130/G36317.1, 2015.
Honjo, S., Manganini, S. J., and Poppe, L. J.: Sedimentation of Lithogenic Particles in the Deep Ocean, Mar. Geol., 50, 199–220, 1982.
Honjo, S., Dymond, J., Collier, R., and Manganini, S. J.: Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment, Deep-Sea Res., 42, 831–870, 1995.
John, E. H., Wilson, J. D., Pearson, P. N., and Ridgwell, A.: Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans, Palaeogeogr. Palaeocl. Palaeoecol., 413, 158–166, https://doi.org/10.1016/j.palaeo.2014.05.019, 2014.
Kadko, D. and Heath, G. R.: Models of Depth-Dependent Bioturbation at Manop Site H in the Eastern Equatorial Pacific, J. Geophys. Res.-Oceans, 89, 6567–6570, 1984.
Karatsolis, B.-T., Lougheed, B. C., De Vleeschouwer, D., and Henderiks, J.: Abrupt conclusion of the late Miocene-early Pliocene biogenic bloom at 4.6–4.4 Ma, Nat. Commun., 13, 353, https://doi.org/10.1038/s41467-021-27784-6, 2022.
Kochann, K. G. D., Holbourn, A., Kuhnt, W., and Xu, J.: Eastern equatorial Pacific benthic foraminiferal distribution and deep water temperature changes during the early to middle Miocene, Mar. Micropaleontol., 133, 28–39, https://doi.org/10.1016/j.marmicro.2017.05.002, 2017.
Kroenke, L. W., Berger, W. H., Janecek, T. R., Backman, J., Bassinot, F., Corfield, R. M., Delaney, M. L., Hagen, R., Jansen, E., Krissek, L. A., Lange, C., Leckie, R. M., Linde, I. L., Lyle, M. W., Mahoney, J. J., Marsters, J. C., Mayer, L., Mosher, D. C., Musgrave, R., Prentice, M. L., Resig, J. M., Schmidt, H., Stax, R., Storey, M., Takahashi, K., Takayama, T., Tarduno, J. A., Wilkens, R. H., and Wu, G.: Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 130, Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/odp.proc.ir.130.1991, 1991.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437–1454, https://doi.org/10.1002/2015PA002833, 2015.
Li, Z., Zhang, Y. G., Torres, M., and Mills, B. J. W.: Neogene burial of organic carbon in the global ocean, Nature, 613, 90–95, https://doi.org/10.1038/s41586-022-05413-6, 2023.
Lyle, M.: Neogene carbonate burial in the Pacific Ocean, Paleoceanography, 18, 1059–1078, https://doi.org/10.1029/2002PA000777, 2003.
Lyle, M. and Baldauf, J.: Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: Burial, production, and diatom community, Palaeogeogr. Palaeocl. Palaeoecol., 433, 106–128, https://doi.org/10.1016/j.palaeo.2015.04.001, 2015.
Lyle, M., Olivarez Lyle, A., Gorgas, T., Holbourn, A., Westerhold, T., Hathorne, E. C., Kimoto, K., and Yamamoto, S.: Data report: raw and normalized elemental data along the U1338 splice from X-ray Fluorescence scanning, Proceedings of the Integrated Ocean Drilling Program, 320/321, US Implementing Organization Science Services, Texas A&M University, https://doi.org/10.2204/iodp.proc.320321.2010, 2012.
Lyle, M., Mix, A., Ravelo, C., Andreasen, D., Heusser, L., and Olivarez, A.: Millennial-scale CaCO3 and C-org events along the northern and central California margin: stratigraphy and origins, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Lyle, M., Koizumi, I., Moore Jr., T. C., and Richter, C., Ocean Drilling Program, College Station, TX, 163–182, 2000.
Lyle, M., Drury, A. J., Tian, J., Wilkens, R., and Westerhold, T.: Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity, Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, 2019.
Lyle, M. W. and Olivarez Lyle, A.: Data to reconstruct biogenic sedimentary component time series from the Miocene Pacific to study the biological pump [dataset bundled publication], PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.974057, 2024.
Lyle, M. W., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic sedimentation in the Eocene equatorial Pacific: the stuttering greenhouse and Eocene carbonate compensation depth, in: Proceedings of the Ocean Drilling Program, Scientific Results, Leg 199, edited by: Lyle, M., Wilson, P., Janecek, T. R., and Firth, J., Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/odp.proc.sr.199.219.2005, 2005.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267–285, 1987.
Mayer, L. A.: Extraction of high-resolution carbonate data for palaeoclimate reconstruction, Nature, 352, 148–150, 1991.
Mayer, L. A., Theyer, F., Barron, J., Dunn, D. A., Handyside, T., Hills, S., Jarvis, I., Nigrini, C. A., Pisias, N., Pujos, A., Saito, T., Stout, P., Thomas, E., Weinrich, N., and Wilkens, R. H.: Initial Reports of the Deep Sea Drilling Program, Leg 85, US Government Printing Office, Washington, 1021 pp., https://doi.org/10.2973/dsdp.proc.85.1985, 1985.
Mayer, L. M.: Sedimentary organic matter preservation: an assessment and speculative synthesis-a comment, Mar. Chem., 49, 123–126, 1995.
McDonnell, A. M. P. and Buessler, K. O.: Variability in the average sinking velocity of marine particles, Limnol. Oceanogr., 55, 2085–2096, 2010.
Moore Jr., T. C., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Palike, H., and Lyle, M.: The Paleogene tropical Pacific: Clues to circulation, productivity, and plate motion, Paleoceanography, 19, PA3013, https://doi.org/10.1029/2003PA000998, 2004.
Moore Jr., T. C., Mitchell, N. C., Lyle, M., Backman, J., and Pälike, H.: Hydrothermal pits in the biogenic sediments of the equaotrial Pacific Ocean, Geochem. Geophy. Geosy., 8, Q03015, https://doi.org/10.1029/2006GC001501, 2007.
Muller, P. J. and Suess, E.: Productivity, sedimentation rate, and sedimentary organic matter in the oceans – I. Organic carbon preservation, Deep-Sea Res., 26A, 1347–1362, 1979.
Murray, R. W. and Leinen, M.: Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135° W: tracking sedimentary major, trace, and rare earth element fluxes at the equator and the Intertropical Convergence Zone, Geochim. Cosmochim. Ac., 57, 4141–4163, 1993.
Olivarez Lyle, A. and Lyle, M.: Organic carbon and barium in Eocene sediments: Possible controls on nutrient recycling in the Eocene equatorial Pacific Ocean, in: Proceedings of the Ocean Drilling Program, Scientific Reports Volume 199, edited by: Wilson, P. A., Lyle, M., and Firth, J. V., Ocean Drilling Program, College Station, TX, 1–33, http://www-odp.tamu.edu/publications/199_IR/chap_106/chap_106.htm (last access: 8 December 2024), 2005.
Olivarez Lyle, A. and Lyle, M.: Organic carbon and barium in Eocene sediments: Is metabolism the biological feedback that maintains end-member climates?, Paleoceanography, 21, 1–13, https://doi.org/10.1029/2005PA001230, 2006.
Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists: Proceedings of the Integrated Ocean Drilling Program (IODP), v. 320/321, Integrated Ocean Drilling Program Management International, Inc., Tokyo, https://doi.org/10.2204/iodp.proc.320321.2010, 2010.
Piela, C., Lyle, M., Marcantonio, F., Baldauf, J., and Olivarez Lyle, A.: Biogenic sedimentation in the equatorial Pacific: Carbon cycling and paleoproduction, 12–24 Ma, Paleoceanography, 27, PA2204, https://doi.org/10.1029/2011PA002236, 2012.
Prahl, F. G., Muehlhausen, L. A., and Lyle, M.: An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years, Paleoceanography, 4, 495–510, 1989.
Rea, D. K., Basov, L. A., Janecek, T. R., Palmer-Julson, A., Arnold, E., Barron, J. A., Beaufort, L., Bristow, J. F., deMenocal, P., Dubuisson, Q. J., Qiadenokov, A. Y., Hamilton, T., Ingram, L., Keigwin Jr., L. D., Keller, R. A., Kotilainen, A., Krissek, L. A., McKelvey, B., Morley, J. J., Okada, M., Olafsson, Q., Owen, R. M., Pak, D. Pedersen, T. F., Roberts, J. A., Rutledge, A. K., Shilov, V. V., Snoeckx, H., Stax, R., Tiedemann, R., and Weeks, R.: Proceedings of the Ocean Drilling Program, Initial Reports, 145, Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/odp.proc.ir.145.1993, 1993.
Rousseaux, C. S. and Gregg, W. W.: Forecasting ocean chlorophyll in the equatorial Pacific, Front. Mar. Sci., 4, 236, https://doi.org/10.3389/fmars.2017.00236, 2017.
Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography (GMRT) synthesis data set, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.: Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, Earth Planet. Sc. Lett., 498, 362–376, https://doi.org/10.1016/j.epsl.2018.06.017, 2018.
Stax, R. and Stein, R.: 34. Long-Term Changes In The Accumulation Of Organic Carbon In Neogene Sediments, Ontong Java Plateau, Proceedings of the Ocean Drilling Program, Scientific Results, 130, 573–584, 1993.
Stephens, M. P., Kadko, D. C., Smith, C. R., and Latasa, M.: Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor, Geochem. Cosmochim. Ac., 61, 4605–4619, 1997.
Suess, E.: Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Takayama, T.: Notes on Neogene calcareous nannofossil biostratigraphy of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths, in: Proceedings ODP, Scientific Results, Leg 130, Ocean Drilling Program, College Station, TX, 179–230, https://doi.org/10.2973/odp.proc.sr.130.020.1993, 1993.
Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J. K., and Wilkens, R.: Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337, Earth Planet. Sc. Lett., 499, 185–196, https://doi.org/10.1016/j.epsl.2018.07.025, 2018.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, 2020.
Wilson, J. K.: Early Miocene carbonate dissolution in the eastern equatorial Pacific, PhD thesis, Oceanography, Texas A and M University, 155 pp., https://hdl.handle.net/1969.1/153962 (last access: 8 December 2024), 2014.
Wyrtki, K.: An estimate of equatorial upwelling in the Pacific, J. Phys. Oceanogr., 11, 1205–1214, 1981.
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to...