Articles | Volume 20, issue 12
https://doi.org/10.5194/cp-20-2663-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2663-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global Data Assimilation of Moisture Patterns from 21 000–0 BP (DAMP-21ka) using lake level proxy records
Christopher L. Hancock
CORRESPONDING AUTHOR
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
Michael P. Erb
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
Nicholas P. McKay
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
Sylvia G. Dee
Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
Ruza F. Ivanovic
School of Earth and Environment, University of Leeds, Leeds, UK
Related authors
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024, https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
Short summary
Ensemble simulations of the climate and ice sheets of the Last Glacial Maximum (LGM) are performed with a new coupled climate–ice sheet model. Results show a strong sensitivity of the North American ice sheet to the albedo scheme, while the Greenland ice sheet appeared more sensitive to basal sliding schemes. Our result implies a potential connection between the North American ice sheet at the LGM and the future Greenland ice sheet through the albedo scheme.
Michelle O'Donnell, Kelsey Murphy, James Doss-Gollin, Sylvia Dee, and Samuel Munoz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-153, https://doi.org/10.5194/hess-2024-153, 2024
Revised manuscript under review for HESS
Short summary
Short summary
We investigate the skill of CESM1 in simulating hydrologic processes over the Mississippi River basin. Model simulated discharge is seasonally delayed relative to observations: model biases are diagnosed using hydroclimate variables from reanalysis data and attributed primarily to precipitation and runoff related processes. We also show that the seasonality of simulated runoff in several CMIP6 models is improved relative to CESM1.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Ilkka S. O. Matero, Lauren J. Gregoire, and Ruza F. Ivanovic
Geosci. Model Dev., 13, 4555–4577, https://doi.org/10.5194/gmd-13-4555-2020, https://doi.org/10.5194/gmd-13-4555-2020, 2020
Short summary
Short summary
The Northern Hemisphere cooled by several degrees for a century 8000 years ago due to the collapse of an ice sheet in North America that released large amounts of meltwater into the North Atlantic and slowed down its circulation. We numerically model the ice sheet to understand its evolution during this event. Our results match data thanks to good ice dynamics but depend mostly on surface melt and snowfall. Further work will help us understand how past and future ice melt affects climate.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, and Laura F. Robinson
Geosci. Model Dev., 13, 3529–3552, https://doi.org/10.5194/gmd-13-3529-2020, https://doi.org/10.5194/gmd-13-3529-2020, 2020
Short summary
Short summary
We have added a new tracer (13C) into the ocean of the FAMOUS climate model to study large-scale circulation and the marine carbon cycle. The model captures the large-scale spatial pattern of observations but the simulated values are consistently higher than observed. In the first instance, our new tracer is therefore useful for recalibrating the physical and biogeochemical components of the model.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Ellie Broadman, Lorna L. Thurston, Erik Schiefer, Nicholas P. McKay, David Fortin, Jason Geck, Michael G. Loso, Matt Nolan, Stéphanie H. Arcusa, Christopher W. Benson, Rebecca A. Ellerbroek, Michael P. Erb, Cody C. Routson, Charlotte Wiman, A. Jade Wong, and Darrell S. Kaufman
Earth Syst. Sci. Data, 11, 1957–1970, https://doi.org/10.5194/essd-11-1957-2019, https://doi.org/10.5194/essd-11-1957-2019, 2019
Short summary
Short summary
Rapid climate warming is impacting physical processes in Arctic environments. Glacier–fed lakes are influenced by many of these processes, and they are impacted by the changing behavior of weather, glaciers, and rivers. We present data from weather stations, river gauging stations, lake moorings, and more, following 4 years of environmental monitoring in the watershed of Lake Peters, a glacier–fed lake in Arctic Alaska. These data can help us study the changing dynamics of this remote setting.
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, Laura F. Robinson, and Paul J. Valdes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-365, https://doi.org/10.5194/bg-2019-365, 2019
Publication in BG not foreseen
Short summary
Short summary
We have added three new tracers (a dye tracer and two representations of radiocarbon, 14C) into the ocean of the FAMOUS climate model to study large-scale circulation and the marine carbon cycle. The model performs well compared to modern 14C observations, both spatially and temporally. Proxy 14C records are interpreted in terms of water age, but comparing our dye tracer to our 14C tracer, we find that this is only valid in certain areas; elsewhere, the carbon cycle complicates the signal.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Niall Gandy, Lauren J. Gregoire, Jeremy C. Ely, Christopher D. Clark, David M. Hodgson, Victoria Lee, Tom Bradwell, and Ruza F. Ivanovic
The Cryosphere, 12, 3635–3651, https://doi.org/10.5194/tc-12-3635-2018, https://doi.org/10.5194/tc-12-3635-2018, 2018
Short summary
Short summary
We use the deglaciation of the last British–Irish Ice Sheet as a valuable case to examine the processes of contemporary ice sheet change, using an ice sheet model to simulate the Minch Ice Stream. We find that ice shelves were a control on retreat and that the Minch Ice Stream was vulnerable to the same marine mechanisms which threaten the future of the West Antarctic Ice Sheet. This demonstrates the importance of marine processes when projecting the future of our contemporary ice sheets.
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
R. F. Ivanovic, P. J. Valdes, R. Flecker, and M. Gutjahr
Clim. Past, 10, 607–622, https://doi.org/10.5194/cp-10-607-2014, https://doi.org/10.5194/cp-10-607-2014, 2014
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Holocene
New probabilistic methods for quantitative climate reconstructions applied to palynological data from Lake Kinneret
Internal climate variability and spatial temperature correlations during the past 2000 years
Mid-Holocene climate change over China: model–data discrepancy
The 4.2 ka BP event in the Levant
Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco
The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene
Proxy benchmarks for intercomparison of 8.2 ka simulations
Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene
Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
Mechanisms for European summer temperature response to solar forcing over the last millennium
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
On the importance of paleoclimate modelling for improving predictions of future climate change
Timon Netzel, Andrea Miebach, Thomas Litt, and Andreas Hense
EGUsphere, https://doi.org/10.5194/egusphere-2023-1790, https://doi.org/10.5194/egusphere-2023-1790, 2023
Short summary
Short summary
New probabilistic methods for local quantitative palaeoclimate reconstructions are presented in a Bayesian framework and applied to plant proxy data from Lake Kinneret. We use recent climate data and arboreal pollen from the sediment of this lake as predefined boundary conditions. The result shows a climate reconstruction of the mean December–February temperature and annual precipitation with the corresponding uncertainty ranges during the Holocene in this region.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah
Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, https://doi.org/10.5194/cp-9-423-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
A. Wackerbarth, P. M. Langebroek, M. Werner, G. Lohmann, S. Riechelmann, A. Borsato, and A. Mangini
Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, https://doi.org/10.5194/cp-8-1781-2012, 2012
D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot
Clim. Past, 8, 1487–1495, https://doi.org/10.5194/cp-8-1487-2012, https://doi.org/10.5194/cp-8-1487-2012, 2012
M.-J. Gaillard, S. Sugita, F. Mazier, A.-K. Trondman, A. Broström, T. Hickler, J. O. Kaplan, E. Kjellström, U. Kokfelt, P. Kuneš, C. Lemmen, P. Miller, J. Olofsson, A. Poska, M. Rundgren, B. Smith, G. Strandberg, R. Fyfe, A. B. Nielsen, T. Alenius, L. Balakauskas, L. Barnekow, H. J. B. Birks, A. Bjune, L. Björkman, T. Giesecke, K. Hjelle, L. Kalnina, M. Kangur, W. O. van der Knaap, T. Koff, P. Lagerås, M. Latałowa, M. Leydet, J. Lechterbeck, M. Lindbladh, B. Odgaard, S. Peglar, U. Segerström, H. von Stedingk, and H. Seppä
Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, https://doi.org/10.5194/cp-6-483-2010, 2010
J. C. Hargreaves and J. D. Annan
Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, https://doi.org/10.5194/cp-5-803-2009, 2009
Cited articles
Anderson, L., Abbott, M. B., Finney, B. P., and Burns, S. J.: Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada, Quatern. Res., 64, 21–35, https://doi.org/10.1016/j.yqres.2005.03.005, 2005.
Bach, E. and Ghil, M.: A multi-model ensemble Kalman filter for data assimilation and forecasting, J. Adv. Model. Earth Syst., 15, e2022MS003123, https://doi.org/10.1029/2022MS003123, 2023.
Badgeley, J. A., Steig, E. J., Hakim, G. J., and Fudge, T. J.: Greenland temperature and precipitation over the last 20 000 years using data assimilation, Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, 2020.
Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G., Overpeck, J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J. C., McGregor, G. B., Hua, Q., and McRobie, F. H.: Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation, Sci. Rep., 9, 1627, https://doi.org/10.1038/s41598-019-38626-3, 2019.
Barron, J. A. and Anderson, L.: Enhanced Late Holocene ENSO/PDO expression along the margins of the eastern North Pacific, Quatern. Int., 235, 3–12, https://doi.org/10.1016/j.quaint.2010.02.026, 2011.
Bartlein, P. J., Anderson, K. H., Anderson, P. M., Edwards, M. E., Mock, C. J., Thompson, R. S., Webb, R. S., Webb III, T., and Whitlock, C.: Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data, Quaternary Sci. Rev., 17, 549–585, 1998.
Benson, L. V., Currey, D. R., Dorn, R. I., Lajoie, K. R., Oviatt, C. G., Robinson, S. W., Smith, G. I., and Stine, S.: Chronology of expansion and contraction of four great Basin lake systems during the past 35,000 years, Palaeogeogr. Palaeoclim. Palaeoecol., 78, 241–286, https://doi.org/10.1016/0031-0182(90)90217-U, 1990.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Brady, E. C., Otto-Bliesner, B. L., Kay, J. E., and Rosenbloom, N.: Sensitivity to glacial forcing in the CCSM4, J. Climate, 26, 1901–1925, https://doi.org/10.1175/JCLI-D-11-00416.1, 2013.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Briggs, R. W., Wesnousky, S. G., and Adams, K. D.: Late Pleistocene and late Holocene lake highstands in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA, Quatern. Res., 64, 257–263, https://doi.org/10.1016/j.yqres.2005.02.011, 2005.
Broadman, E., Kaufman, D. S., Henderson, A. C. G., Malmierca-Vallet, I., Leng, M. J., and Lacey, J. H.: Coupled impacts of sea ice variability and North Pacific atmospheric circulation on Holocene hydroclimate in Arctic Alaska, P. Natl. Acad. Sci. USA, 117, 33034–33042, https://doi.org/10.1073/pnas.2016544117, 2020.
Broecker, W. S. and Orr, P. C.: Radiocarbon chronology of Lake Lahontan and Lake Bonneville, GSA Bull., 69, 1009–1032, https://doi.org/10.1130/0016-7606(1958)69[1009:RCOLLA]2.0.CO;2, 1958.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.: The global paleomonsoon as seen through speleothem records from Asia and the Americas, Clim. Dynam., 39, 1045–1062, https://doi.org/10.1007/s00382-012-1363-7, 2012.
Chevalier, M., Brewer, S., and Chase, B. M.: Qualitative assessment of PMIP3 rainfall simulations across the eastern African monsoon domains during the mid-Holocene and the Last Glacial Maximum, Quaternary Sci. Rev., 156, 107–120, https://doi.org/10.1016/j.quascirev.2016.11.028, 2017.
Clerke, L.: Hydrological regime of Australian lakes over the Late-Quaternary and Holocene, Doctoral dissertation, Macquarie University, Sydney, Australia, https://doi.org/10.25949/22662253.v1, 2023.
Coe, M. and Harrison, S.: The water balance of northern Africa during the mid-Holocene: an evaluation of the 6 ka BP PMIP simulations, Clim. Dynam., 19, 155–166, https://doi.org/10.1007/s00382-001-0219-3, 2002.
COHMAP Members: Climatic changes of the last 18,000 years: observations and model simulations, Science, 241, 1043–1052, https://doi.org/10.1126/science.241.4869.1043, 1988.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model version 3 (CCSM3), J. Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Cook, B. I., Smerdon, J. E., Cook, E. R., Williams, A. P., Anchukaitis, K. J., Mankin, J. S., Allen, K., Andreu-Hayles, L., Ault, T. R., Belmecheri, S., Coats, S., Coulthard, B., Fosu, B., Grierson, P., Griffin, D., Herrera, D. A., Ionita, M., Lehner, F., Leland, C., Marvel, K., Morales, M. S., Mishra, V., Ngoma, J., Nguyen, H. T. T., O'Donnell, A., Palmer, J., Rao, M. P., Rodriguez-Caton, M., Seager, R., Stahle, D. W., Stevenson, S., Thapa, U. K., Varuolo-Clarke, A. M., and Wise, E. K.: Megadroughts in the Common Era and the Anthropocene, Nat. Rev. Earth Environ., 3, 741–757, https://doi.org/10.1038/s43017-022-00329-1, 2022.
Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and Herzschuh, U.: Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2, Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, 2021.
Davis, B. A. S. and Brewer, S.: Orbital forcing and role of the latitudinal insolation/temperature gradient, Clim. Dynam., 32, 143–165, https://doi.org/10.1007/s00382-008-0480-9, 2009.
Dawson, A.: eofs: A library for EOF Analysis of meteorological, oceanographic, and climate data, J. Open Res. Softw., 4, e14, https://doi.org/10.5334/jors.122, 2016.
Dayem, K. E., Molnar, P., Battisti, D. S., and Roe, G. H.: Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia, Earth Planet. Sc. Lett., 295, 219–230, https://doi.org/10.1016/j.epsl.2010.04.003, 2010.
De Cort, G., Chevalier, M., Burrough, S. L., Chen, C. Y., and Harrison, S. P.: An uncertainty-focused database approach to extract spatiotemporal trends from qualitative and discontinuous lake-status histories, Quaternary Sci. Rev., 258, 106870, hthttps://doi.org/10.1016/j.quascirev.2021.106870, 2021.
De Deckker, P.: The Holocene hypsithermal in the Australian region, Quatern. Sci. Adv., 7, 100061, https://doi.org/10.1016/j.qsa.2022.100061, 2022.
Dee, S. G., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D. M.: PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems, J. Adv. Model. Earth Syst., 7, 1220–1247, https://doi.org/10.1002/2015MS000447, 2015a.
Dee, S. G., Noone, D., Buenning, N., Emile-Geay, J., and Zhou, Y.: SPEEDY-IER: A fast atmospheric GCM with water isotope physics, J. Geophys. Res.-Atmos., 120, 73–91, https://doi.org/10.1002/2014JD022194, 2015b.
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility of proxy system models for estimating climate states over the common era, J. Adv. Model. Earth Syst., 8, 1164–1179, https://doi.org/10.1002/2016MS000677, 2016.
Deininger, M., McDermott, F., Cruz, F. W., Bernal, J. P., Mudelsee, M., Vonhof, H., Millo, C., Spötl, C., Treble, P. C., Pickering, R., and Scholz, D.: Inter-hemispheric synchroneity of Holocene precipitation anomalies controlled by Earth's latitudinal insolation gradients, Nat. Commun., 11, 5447, https://doi.org/10.1038/s41467-020-19021-3, 2020.
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:, Quaternary Sci. Rev., 19, 347–361, https://doi.org/10.1016/S0277-3791(99)00081-5, 2000.
de Wet, C. B., Ibarra, D. E., Belanger, B. K., and Oster, J. L.: North American hydroclimate during past warms states: a proxy compilation-model comparison for the last interglacial and the mid-Holocene, Paleoceanogr. Paleoclimatol., 38, e2022PA004528, https://doi.org/10.1029/2022PA004528, 2023.
Erb, M.: Holocene-Reconstruction/Holocene-code: DAMP-21ka code, Zenodo [code], https://doi.org/10.5281/zenodo.14207504, 2024.
Erb, M. P., McKay, N. P., Steiger, N., Dee, S., Hancock, C., Ivanovic, R. F., Gregoire, L. J., and Valdes, P.: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation, Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, 2022.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Fu, M.: Revisiting Western United States Hydroclimate During the Last Deglaciation, Geophys. Res. Lett., 50, e2022GL101997, https://doi.org/10.1029/2022GL101997, 2023.
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteorol. Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999.
Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J., and Williamson, D.: Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data, Quaternary Sci. Rev., 27, 2316–2340, https://doi.org/10.1016/j.quascirev.2008.08.027, 2008.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Gregoire, L. J., Ivanovic, R. F., Maycock, A. C., Valdes, P. J., and Stevenson, S.: Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate, Clim. Dynam., 51, 3797–3813, https://doi.org/10.1007/s00382-018-4111-9, 2018.
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif, R., Steiger, N., and Perkins, W. A.: The last millennium climate reanalysis project: Framework and first results, J. Geophys. Res.-Atmos., 121, 6745–6764, https://doi.org/10.1002/2016JD024751, 2016.
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2, 2001.
Hancock, C., Erb, M., McKay, N. P., Ivanovic, R., and Dee, S.: clhancock/DAMP21ka: DAMP21ka, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13874018, 2024.
Hancock, C. L., McKay, N. P., Erb, M. P., Kaufman, D. S., Routson, C. R., Ivanovic, R. F., Gregoire, L. J., and Valdes, P.: Global synthesis of regional Holocene hydroclimate variability using proxy and model data, Paleoceanogr. Paleoclimatol., 38, e2022PA004597, https://doi.org/10.1029/2022PA004597, 2023.
Harrison, S. P., Kutzbach, J. E., Liu, Z., Bartlein, P. J., Otto-Bliesner, B., Muhs, D., Prentice, I. C., and Thompson, R. S.: Mid-Holocene climates of the Americas: a dynamical response to changed seasonality, Clim. Dynam., 20, 663–688, https://doi.org/10.1007/s00382-002-0300-6, 2003.
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43, 671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014.
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to improve climate projections, Nat. Clim. Change, 5, 735–743, https://doi.org/10.1038/nclimate2649, 2015.
He, C., Liu, Z., Otto-Bliesner, B. L., Brady, E. C., Zhu, C., Tomas, R., Clark, P. U., Zhu, J., Jahn, A., Gu, S., Zhang, J., Nusbaumer, J., Noone, D., Cheng, H., Wang, Y., Yan, M., and Bao, Y.: Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation, Sci. Adv., 7, eabe2611, https://doi.org/10.1126/sciadv.abe2611, 2021.
Hermann, N. W., Oster, J. L., and Ibarra, D. E.: Spatial patterns and driving mechanisms of mid-Holocene hydroclimate in western North America, J. Quaternary Sci., 33, 421–434, https://doi.org/10.1002/jqs.3023, 2018.
Herzschuh, U., Böhmer, T., Li, C., Cao, X., Hébert, R., Dallmeyer, A., Telford, R. J., and Kruse, S.: Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics During the Holocene, Geophys. Res. Lett., 49, e2022GL099730, https://doi.org/10.1029/2022GL099730, 2022.
Herzschuh, U., Böhmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N. H., Nazarova, L., Novenko, E. Y., Park, J., Peyron, O., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.: LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond, Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, 2023.
Heusser, C. J., Heusser, L. E., and Peteet, D. M.: Late-Quaternary climatic change on the American North Pacific coast, Nature, 315, 485–487, https://doi.org/10.1038/315485a0, 1985.
Jiang, M., Han, Z., Li, X., Wang, Y., Stevens, T., Cheng, J., Lv, C., Zhou, Y., Yang, Q., Xu, Z., Yi, S., and Lu, H.: Beach ridges of Dali Lake in Inner Mongolia reveal precipitation variation during the Holocene, J. Quaternary Sci., 35, 716–725, https://doi.org/10.1002/jqs.3195, 2020.
Jolly, D., Harrison, S. P., Damnati, B., and Bonnefille, R.: Simulated climate and biomes of Africa during the late quaternary: comparison with pollen and lake status data, Quaternary Sci. Rev., 17, 629–657, https://doi.org/10.1016/S0277-3791(98)00015-8, 1998.
Jones, M. C., Wooller, M., and Peteet, D. M.: A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat, Quaternary Sci. Rev., 87, 1–11, https://doi.org/10.1016/j.quascirev.2013.12.025, 2014.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Katsuki, K., Khim, B.-K., Itaki, T., Harada, N., Sakai, H., Ikeda, T., Takahashi, K., Okazaki, Y., and Asahi, H.: Land–sea linkage of Holocene paleoclimate on the Southern Bering Continental Shelf, Holocene, 19, 747–756, https://doi.org/10.1177/0959683609105298, 2009.
King, J., Anchukaitis, K. J., Allen, K., Vance, T., and Hessl, A.: Trends and variability in the Southern Annular Mode over the Common Era, Nat. Commun., 14, 2324, https://doi.org/10.1038/s41467-023-37643-1, 2023.
Lézine, A.-M., Hély, C., Grenier, C., Braconnot, P., and Krinner, G.: Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data, Quaternary Sci. Rev., 30, 3001–3012, https://doi.org/10.1016/j.quascirev.2011.07.006, 2011.
Li, Y. and Morrill, C.: Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments, Clim. Dynam., 35, 1119–1132, https://doi.org/10.1007/s00382-010-0861-8, 2010.
Li, Y. and Zhang, Y.: Synergy of the westerly winds and monsoons in the lake evolution of global closed basins since the Last Glacial Maximum and implications for hydrological change in central Asia, Clim. Past, 16, 2239–2254, hhttps://doi.org/10.5194/cp-16-2239-2020, 2020.
Liefert, D. T. and Shuman, B. N.: Pervasive desiccation of North American lakes during the Late Quaternary, Geophys. Res. Lett., 47, e2019GL086412, https://doi.org/10.1029/2019GL086412, 2020.
LiPDverse: LakeStatus21k – 0_1_0, LiPDverse [data set], https://lipdverse.org/LakeStatus21k/0_1_0/ (last access: 22 November 2024), 2024.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Loomis, S. E., Russell, J. M., and Lamb, H. F.: Northeast African temperature variability since the Late Pleistocene, Palaeogeogr. Palaeocl. Palaeoecol., 423, 80–90, https://doi.org/10.1016/j.palaeo.2015.02.005, 2015.
Lowry, D. P. and Morrill, C.: Is the Last Glacial Maximum a reverse analog for future hydroclimate changes in the Americas?, Clim. Dynam., 52, 4407–4427, https://doi.org/10.1007/s00382-018-4385-y, 2019.
Lu, F., Ma, C., Zhu, C., Lu, H., Zhang, X., Huang, K., Guo, T., Li, K., Li, L., Li, B., and Zhang, W.: Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms, Clim. Dynam., 52, 969–989, https://doi.org/10.1007/s00382-018-4175-6, 2019.
Lu, Z., Miller, P. A., Zhang, Q., Zhang, Q., Wårlind, D., Nieradzik, L., Sjolte, J., and Smith, B.: Dynamic vegetation simulations of the mid-Holocene green Sahara, Geophys. Res. Lett., 45, 8294–8303, https://doi.org/10.1029/2018GL079195, 2018.
Luo, X., Dee, S., Stevenson, S., Okumura, Y., Steiger, N., and Parsons, L.: Last Millennium ENSO diversity and North American teleconnections: new insights from paleoclimate data assimilation, Paleoceanogr. Paleoclimatol., 37, e2021PA004283, https://doi.org/10.1029/2021PA004283, 2022.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation, Quaternary Sci. Rev., 112, 109–127, https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
McGee, D., Moreno-Chamarro, E., Marshall, J., and Galbraith, E. D.: Western U.S. lake expansions during Heinrich stadials linked to Pacific Hadley circulation, Sci. Adv., 4, eaav0118, https://doi.org/10.1126/sciadv.aav0118, 2018.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L., Serreze, M. C., and White, J. W. C.: Arctic amplification: can the past constrain the future?, Quaternary Sci. Rev., 29, 1779–1790, https://doi.org/10.1016/j.quascirev.2010.02.008, 2010.
Morrill, C.: The influence of Asian summer monsoon variability on the water balance of a Tibetan lake, J. Paleolimnol., 32, 273–286, https://doi.org/10.1023/B:JOPL.0000042918.18798.cb, 2004.
Morrill, C., Meador, E., Livneh, B., Liefert, D. T., and Shuman, B. N.: Quantitative model-data comparison of mid-Holocene lake-level change in the central Rocky Mountains, Clim. Dynam., 53, 1077–1094, https://doi.org/10.1007/s00382-019-04633-3, 2019.
Nagashima, K., Addison, J., Irino, T., Omori, T., Yoshimura, K., and Harada, N.: Aleutian Low variability for the last 7500 years and its relation to the Westerly Jet, Quatern. Res., 108, 161–179, https://doi.org/10.1017/qua.2020.116, 2022.
Nazarova, L., Sachse, D., Fuchs, H. G. E., Dirksen, V., Dirksen, O., Syrykh, L., Razjigaeva, N. G., Rach, O., and Diekmann, B.: Holocene evolution of a proglacial lake in southern Kamchatka, Russian Far East, Boreas, 50, 1011–1026, https://doi.org/10.1111/bor.12554, 2021.
North, G. R., Wang, J., and Genton, M. G.: Xorrelation models for temperature fields, J. Climate, 24, 5850–5862, https://doi.org/10.1175/2011JCLI4199.1, 2011.
Okazaki, A. and Yoshimura, K.: Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction, Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, 2017.
Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J., and Poulsen, C. J.: Globally resolved surface temperatures since the Last Glacial Maximum, Nature, 599, 239–244, https://doi.org/10.1038/s41586-021-03984-4, 2021.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.: Steering of westerly storms over western North America at the Last Glacial Maximum, Nat. Geosci., 8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Parsons, L. A., Amrhein, D. E., Sanchez, S. C., Tardif, R., Brennan, M. K., and Hakim, G. J.: Do multi-model ensembles improve reconstruction skill in paleoclimate data assimilation?, Earth Space Sci., 8, e2020EA001467, https://doi.org/10.1029/2020EA001467, 2021.
Pausata, F. S. R., Messori, G., and Zhang, Q.: Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period, Earth Planet. Sc. Lett., 434, 298–307, https://doi.org/10.1016/j.epsl.2015.11.049, 2016.
Pausata, F. S. R., Gaetani, M., Messori, G., Berg, A., Maia de Souza, D., Sage, R. F., and deMenocal, P. B.: The greening of the Sahara: past changes and future implications, One Earth, 2, 235–250, https://doi.org/10.1016/j.oneear.2020.03.002, 2020.
Placzek, C., Quade, J., and Patchett, P. J.: Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change, Geol. Soc. Am. Bull., 118, 515–532, https://doi.org/10.1130/b25770.1, 2006.
Prentice, I. C. and Jolly, D.: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, https://doi.org/10.1046/j.1365-2699.2000.00425.x, 2000.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Qin, B. and Yu, G.: Implications of lake level variations at 6 ka and 18 ka in mainland Asia, Global Planet. Change, 18, 59–72, https://doi.org/10.1016/S0921-8181(98)00036-8, 1998.
Qin, B. J., Harrison S. P., and Kutzback, J. E.: Evaluation of modelled regional water balance using lake status data: a comparison of 6ka simulations with the NCAR CCM, Quaternary Sci. Rev., 17, 535-548, https://doi.org/10.1016/S0277-3791(98)00011-0, 1998.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 1–10, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H., Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation decreased with Arctic warming during the Holocene, Nature, 568, 83–87, https://doi.org/10.1038/s41586-019-1060-3, 2019.
Routson, C. C., Erb, M. P., and McKay, N. P.: High latitude modulation of the holocene North American monsoon, Geophys. Res. Lett., 49, e2022GL099772, https://doi.org/10.1029/2022GL099772, 2022.
Russell, J. M. and Johnson, T. C.: Late Holocene climate change in the North Atlantic and equatorial Africa: Millennial-scale ITCZ migration, Geophys. Res. Lett., 32, L17705, https://doi.org/10.1029/2005GL023295, 2005.
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., Oudar, T., McCusker, K. E., and Sun, L.: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models, Nat. Geosci., 11, 155–163, https://doi.org/10.1038/s41561-018-0059-y, 2018.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shanahan, T. M., Overpeck, J. T., Wheeler, C. W., Beck, J. W., Pigati, J. S., Talbot, M. R., Scholz, C. A., Peck, J., and King, J. W.: Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana, Palaeogeogr. Palaeoclim. Palaeoecol., 242, 287–302, https://doi.org/10.1016/j.palaeo.2006.06.007, 2006.
Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The time-transgressive termination of the African Humid Period, Nat. Geosci., 8, 140–144, https://doi.org/10.1038/NGEO2329, 2015.
Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y.-T., Li, C., O'Gorman, P. A., Rivière, G., Simpson, I. R., and Voigt, A.: Storm track processes and the opposing influences of climate change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016.
Shuman, B. N., Routson, C., McKay, N., Fritz, S., Kaufman, D., Kirby, M. E., Nolan, C., Pederson, G. T., and St-Jacques, J.-M.: Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years, Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, 2018.
Snoll, B., Ivanovic, R. F., Valdes, P. J., Maycock, A. C., and Gregoire, L. J.: Effect of orographic gravity wave drag on Northern Hemisphere climate in transient simulations of the last deglaciation, Clim. Dynam., 59, 2067–2079, https://doi.org/10.1007/s00382-022-06196-2, 2022.
Specht, N. F., Claussen, M., and Kleinen, T.: Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa, Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, 2022.
Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., and Roe, G. H.: Assimilation of time-averaged pseudoproxies for climate reconstruction, J. Climate, 27, 426–441, https://doi.org/10.1175/JCLI-D-12-00693.1, 2014.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A reconstruction of global hydroclimate and dynamical variables over the Common Era, Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Street-Perrott, F. A., Marchand, D. S., Roberts, N., and Harrison, S. P.: Global lake-level variations from 18,000 to 0 years ago: A palaeoclimate analysis, Geography School, Oxford Univ., UK, https://doi.org/10.2172/5609291, 1989.
Sun, Y., Xiao, W., Wang, R., Wu, L., and Wu, Y.: Changes in sediment provenance and ocean circulation on the northern slope of the Bering Sea since the last deglaciation, Mar. Geol., 436, 106492, https://doi.org/10.1016/j.margeo.2021.106492, 2021a.
Sun, Y., Wu, H., Kageyama, M., Ramstein, G., Li, L. Z. X., Tan, N., Lin, Y., Liu, B., Zheng, W., Zhang, W., Zou, L., and Zhou, T.: The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison, Clim. Dynam., 56, 1303–1316, https://doi.org/10.1007/s00382-020-05533-7, 2021b.
Tarasov, P. E., Harrison, S. P., Saarse, L., Pushenko, M. Y., Andreev, A. A., Aleshinskaya, Z. V., Davydova, N. N., Dorofeyuk, N. I., Efremov, Yu. V., Khomutova, V. I., Sevastyanov, D. V., Tamosaitis, J., Uspenskaya, O. N., Yakushko, O. F., Tarasova, I. V., Ya, M., Elina, G. A., Elovicheva, Y. K., Filimonova, L. V., Gunova, V. S., Kvavadze, E. V., Nuestrueva, I. Y., Pisareva, V. V., Shelekhova, T. S., Subetto, D. A., Zernitskaya, V. P.: Lake status records from the Former Soviet Union and Mongolia: documentation of the second version of the database, Paleoclimatology Publications Series Report #5, National Centers For Environmental Information, https://doi.org/10.25921/49ag-ck94, 1996.
Tarasov, P. E., Webb III, T., Andreev, A. A., Afanas'eva, N. B., Berezina, N. A., Bezusko, L. G., Blyakharchuk, T. A., Bolikhovskaya, N. S., Cheddadi, R., Chernavskaya, M. M., Chernova, G. M., Dorofeyuk, N. I., Dirksen, V. G., Elina, G. A., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Harrison, S. P., Jolly, D., Khomutova, V. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., Prentice, I. C., Saarse, L., Sevastyanov, D. V., Volkova, V. S., and Zernitskaya, V. P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia, J. Biogeogr., 25, 1029–1053, https://doi.org/10.1046/j.1365-2699.1998.00236.x, 1998.
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.
Thomas, E. K., Castañeda, I. S., McKay, N. P., Briner, J. P., Salacup, J. M., Nguyen, K. Q., and Schweinsberg, A. D.: A wetter arctic coincident with hemispheric warming 8,000 years ago, Geophys. Res. Lett., 45, 10637–10647, https://doi.org/10.1029/2018GL079517, 2018.
Tierney, J. E. and deMenocal, P. B.: Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum, Science, 342, 843–846, https://doi.org/10.1126/science.1240411, 2013.
Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N., and Schmidt, G. A.: Model, proxy and isotopic perspectives on the East African Humid Period, Earth Planet. Sc. Lett., 307, 103–112, https://doi.org/10.1016/j.epsl.2011.04.038, 2011.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
Tierney, J. E., Zhu, J., Li, M., Ridgwell, A., Hakim, G. J., Poulsen, C. J., Whiteford, R. D. M., Rae, J. W. B., and Kump, L. R.: Spatial patterns of climate change across the Paleocene–Eocene Thermal Maximum, P. Natl. Acad. Sci. USA, 119, e2205326119, https://doi.org/10.1073/pnas.2205326119, 2022.
Turney, C. S. M., Jones, R. T., McKay, N. P., van Sebille, E., Thomas, Z. A., Hillenbrand, C.-D., and Fogwill, C. J.: A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change, Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, 2020.
Valler, V., Franke, J., and Brönnimann, S.: Impact of different estimations of the background-error covariance matrix on climate reconstructions based on data assimilation, Clim. Past, 15, 1427–1441, https://doi.org/10.5194/cp-15-1427-2019, 2019.
Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., and Liu, Z.: No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models, Global Change Biol., 18, 1698–1713, https://doi.org/10.1111/j.1365-2486.2011.02635.x, 2012.
Vremec, M. and Collenteur, R.: PyEt: A Python package for estimating evaporation, Zenodo [code], https://doi.org/10.5281/zenodo.5896800, 2022.
Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C.-P., Cook, K., Fu, R., Grimm, A. M., Ha, K.-J., Hendon, H., Kitoh, A., Krishnan, R., Lee, J.-Y., Li, J., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A., Sui, C.-H., Turner, A., Yang, S., Yun, K.-S., Zhang, L., and Zhou, T.: Monsoons climate change assessment, B. Am. Meteorol. Soc., 102, E1–E19, https://doi.org/10.1175/BAMS-D-19-0335.1, 2021.
Wang, T., Wang, N., and Jiang, D.: Last Glacial Maximum ITCZ changes from pmip3/4 simulations, J. Geophys. Res.-Atmos., 128, e2022JD038103, https://doi.org/10.1029/2022JD038103, 2023.
Williams, J. W. and Shuman, B.: Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset, Quaternary Sci. Rev., 27, 669–687, https://doi.org/10.1016/j.quascirev.2008.01.004, 2008.
Xu, C., Yan, M., Ning, L., and Liu, J.: Summer westerly jet in Northern Hemisphere during the mid-Holocene: a multi-model study, Atmosphere, 11, 1193, https://doi.org/10.3390/atmos11111193, 2020.
Xu, H., Goldsmith, Y., Lan, J., Tan, L., Wang, X., Zhou, X., Cheng, J., Lang, Y., and Liu, C.: Juxtaposition of Western Pacific subtropical high on Asian summer monsoon shapes subtropical East Asian precipitation, Geophys. Res. Lett., 47, e2019GL084705, https://doi.org/10.1029/2019GL084705, 2020.
Yu, G.: Lake status records from Europe: data base documentation, Publications Series Report #3, National Centers For Environmental Information, https://doi.org/10.25921/p5aq-0931, 1995.
Yu, G., Harrison, S. P., and Xue, B.: Lake status records from China: data base documentation, MPI-BGC Tech Rep. 4, MPI, https://www.bgc-jena.mpg.de/5362440/tech_report04.pdf (last access: 3 July 2024), 2001.
Yung, Y. L., Lee, T., Wang, C.-H., and Shieh, Y.-T.: Dust: A diagnostic of the hydrologic cycle during the Last Glacial Maximum, Science, 271, 962–963, https://doi.org/10.1126/science.271.5251.962, 1996.
Zhao, Y. and Harrison, S. P.: Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks, Clim. Dynam., 39, 1457–1487, https://doi.org/10.1007/s00382-011-1193-z, 2012.
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation...