Articles | Volume 20, issue 11
https://doi.org/10.5194/cp-20-2539-2024
https://doi.org/10.5194/cp-20-2539-2024
Research article
 | 
15 Nov 2024
Research article |  | 15 Nov 2024

Decoupling of δ18O from surface temperature in Antarctica in an ensemble of historical simulations

Sentia Goursaud Oger, Louise C. Sime, and Max Holloway

Related authors

The Ant-Iso dataset: a compilation of Antarctic surface snow isotopic observations
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384,https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Climate Modelling | Archive: Ice Cores | Timescale: Centennial-Decadal
Comparison of observed borehole temperatures in Antarctica with simulations using a forward model driven by climate model outputs covering the past millennium
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020,https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary
Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Anaïs Orsi, and Martin Werner
Clim. Past, 14, 923–946, https://doi.org/10.5194/cp-14-923-2018,https://doi.org/10.5194/cp-14-923-2018, 2018
Short summary

Cited articles

Abram, N. J., Mulvaney, R., Wolff, E. W., Triest, J., Kipfstuhl, S., Trusel, L. D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nat. Geosci., 6, 404–411, 2013. a, b
Berger, A.: Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978. a
Bertler, N., Mayewski, P., and Carter, L.: Cold conditions in Antarctica during the Little Ice Age – Implications for abrupt climate change mechanisms, Earth Planet. Sc. Lett., 308, 41–51, 2011. a
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses, J. Climate, 24, 4189–4209, 2011. a
Download
Short summary
Antarctic ice cores provide information about past temperatures. Here, we run new climate model simulations, including stable water isotopes for the historical period. Across one-third of Antarctica, there is no strong connection between isotopes and temperature and a weak connection for most of the rest of Antarctica. This disconnect between isotopes and temperature is largely driven by changes in Antarctic sea ice. Our results are helpful for temperature reconstructions from ice core records.