Articles | Volume 20, issue 1
https://doi.org/10.5194/cp-20-237-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-20-237-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus
Vladimir Mikhalenko
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Pavel Toropov
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russia
Michel Legrand
Université Paris Cité and Univ. Paris Est Creteil, CNRS, LISA, 75013 Paris, France
Université Grenoble Alpes, CNRS, Institut des Géosciences de l'Environnement (IGE), 38402, Grenoble, France
Sergey Sokratov
Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russia
Gleb Chernyakov
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Ivan Lavrentiev
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Susanne Preunkert
Université Grenoble Alpes, CNRS, Institut des Géosciences de l'Environnement (IGE), 38402, Grenoble, France
Anna Kozachek
Arctic and Antarctic Research Institute, St. Petersburg, 199397, Russia
Mstislav Vorobiev
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Aleksandra Khairedinova
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Vladimir Lipenkov
Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
Arctic and Antarctic Research Institute, St. Petersburg, 199397, Russia
Related authors
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Susanne Preunkert, Michel Legrand, Stanislav Kutuzov, Patrick Ginot, Vladimir Mikhalenko, and Ronny Friedrich
Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, https://doi.org/10.5194/acp-19-14119-2019, 2019
Short summary
Short summary
This paper reports on an ice core drilled to bedrock at Mt Elbrus (5115 m a.s.l., Russia) to reconstruct the atmospheric pollution since the 19th century in south-eastern Europe. The annual dust-free sulfate record indicates a 7-fold increase from prior to 1900 to 1980–1995. Consistent with past SO2 emission inventories, a much earlier onset and a more pronounced decrease in the sulfur pollution over the last 3 decades are observed in western Europe than in south-eastern and eastern Europe.
Anna Kozachek, Vladimir Mikhalenko, Valérie Masson-Delmotte, Alexey Ekaykin, Patrick Ginot, Stanislav Kutuzov, Michel Legrand, Vladimir Lipenkov, and Susanne Preunkert
Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, https://doi.org/10.5194/cp-13-473-2017, 2017
Saehee Lim, Xavier Faïn, Patrick Ginot, Vladimir Mikhalenko, Stanislav Kutuzov, Jean-Daniel Paris, Anna Kozachek, and Paolo Laj
Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, https://doi.org/10.5194/acp-17-3489-2017, 2017
Short summary
Short summary
A record of light-absorbing refractory black carbon (rBC), emitted by fossil fuel combustion and biomass burning, was reconstructed from the ice cores drilled at a high-altitude eastern European site in Mt. Elbrus. This record reports for the first time the high-resolution rBC mass concentrations in the European outflows over the past 189 years. Our study suggests that the past changes in BC emissions of eastern Europe need to be considered in assessing ongoing air quality regulations.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
V. Mikhalenko, S. Sokratov, S. Kutuzov, P. Ginot, M. Legrand, S. Preunkert, I. Lavrentiev, A. Kozachek, A. Ekaykin, X. Faïn, S. Lim, U. Schotterer, V. Lipenkov, and P. Toropov
The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015, https://doi.org/10.5194/tc-9-2253-2015, 2015
Short summary
Short summary
For the first time an ice core unaffected by melting was recovered from the western Elbrus plateau in the Caucasus. The preserved chemical and isotopic data are considered a source of paleo-climate information for southern/eastern Europe. Considerable snow accumulation (about 1500mm w.e.) and high sampling resolution allowed seasonal variability to be obtained in climate signals, covering a time period of about 200 years. Ice flow models suggest that the basal ice age can be more than 600 years.
S. Kutuzov, M. Shahgedanova, V. Mikhalenko, P. Ginot, I. Lavrentiev, and S. Kemp
The Cryosphere, 7, 1481–1498, https://doi.org/10.5194/tc-7-1481-2013, https://doi.org/10.5194/tc-7-1481-2013, 2013
Ann-Kristin Kunz, Lars Borchardt, Andreas Christen, Julian Della Coletta, Markus Eritt, Xochilt Gutiérrez, Josh Hashemi, Rainer Hilland, Armin Jordan, Richard Kneißl, Virgile Legendre, Ingeborg Levin, Susanne Preunkert, Pascal Rubli, Stavros Stagakis, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3175, https://doi.org/10.5194/egusphere-2024-3175, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present, to our knowledge, the first relaxed eddy accumulation system explicitly tailored to a radiocarbon (14C)-based partitioning of fossil and non-fossil urban CO2 fluxes. Laboratory tests and in-depth quality and performance checks prove that the system meets the technical requirements. A pilot application on a tall-tower in the city of Zurich, Switzerland, demonstrates the ability to separate fossil and non-fossil CO2 fluxes within the typical precision of 14C measurements.
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1381, https://doi.org/10.5194/egusphere-2024-1381, 2024
Short summary
Short summary
A record of ammonium covering the years 1750 to 2008 was extracted from a 182-meter-long ice core drilled in 2009 at Mt. Elbrus in the Caucasus, Russia. Changes in ammonia emissions in southeastern Europe during the pre-industrial and industrial periods were investigated. The level of ammonium in 1750 indicates a significant contribution of natural sources to the ammonia budget, contrasting with present-day conditions, where agricultural emissions outweigh those from biogenic sources in Europe.
Dominique Raynaud, Qiuzhen Yin, Emilie Capron, Zhipeng Wu, Frédéric Parrenin, André Berger, and Vladimir Lipenkov
Clim. Past, 20, 1269–1282, https://doi.org/10.5194/cp-20-1269-2024, https://doi.org/10.5194/cp-20-1269-2024, 2024
Short summary
Short summary
There is a lack of reconstructions from Antarctic ice cores of the temperature during the summer, a critical season in terms of solar energy received, preventing a good understanding of the link between Antarctic past climate and astronomically induced insolation changes. Here, the variations in total air content in an Antarctic ice core are found to be correlated to local summer temperatures simulated with a climate model. This tracer can be used to reconstruct past local summer temperatures.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Short summary
A new federative chronology for five deep polar ice cores retrieves 800 000 years of past climate variations with improved accuracy. Precise ice core timescales are key to studying the mechanisms linking changes in the Earth’s orbit to the diverse climatic responses (temperature and atmospheric greenhouse gas concentrations). To construct the chronology, new measurements from the oldest continuous ice core as well as glaciological modeling estimates were combined in a statistical model.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Julia Chizhova, Maria Kireeva, Ekaterina Rets, Alexey Ekaykin, Anna Kozachek, Arina Veres, Olga Zolina, Natalia Varentsova, Artem Gorbarenko, Nikita Povalyaev, Valentina Plotnikova, Timofey Samsonov, and Maxim Kharlamov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-377, https://doi.org/10.5194/essd-2022-377, 2022
Manuscript not accepted for further review
Short summary
Short summary
Empirical study of the isotopic features of river runoff were conducted at three hydrological posts in three different river basins: the Zakza river in the center of East European Plane (southwest of Moscow), the Dubna river (north of Moscow) and the Sosna Bystraya river in the south of central region.
Julia Chizhova, Maria Kireeva, Ekaterina Rets, Alexey Ekaykin, Anna Kozachek, Arina Veres, Olga Zolina, Natalia Varentsova, Artem Gorbarenko, Nikita Povalyaev, Valentina Plotnikova, Timofey Samsonov, and Maxim Kharlamov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-145, https://doi.org/10.5194/essd-2022-145, 2022
Revised manuscript not accepted
Short summary
Short summary
Empirical study of the isotopic features of river runoff were carried out at three hydrological posts in 3 different river basins Eastern Europe. Samples of river water, groundwater and precipitation for the October 2019–October 2021 were collected at weekly intervals. A significant supply of melted snow during spring freshet was the key factor influencing water regimes for these three river basins; varying degrees of anthropogenic flow regulation are also presented.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020, https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Short summary
Measurements of the porosity of three polar firns were conducted in the 1990s by Jean-Marc Barnola using the method of gas pycnometry. From these data, a parametrization of firn pore closure was produced and used in different published articles. However, the data have not been published in their own right yet. We have made the data publicly accessible on the PANGAEA database and here propose describing how they were obtained and used to produce the pore closure parametrization.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020, https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary
Short summary
We quantify how the greenhouse gas records of East Antarctic ice cores (which are the oldest ice cores) might differ from the actual atmosphere history. It is required to properly interpret ice core data. For this, we measured the methane of five new East Antarctic ice core sections using a high-resolution technique. We found that in these very old ice cores, one can retrieve concentration variations occurring in only a few centuries, allowing climatologists to study climate's fast dynamics.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Susanne Preunkert, Michel Legrand, Stanislav Kutuzov, Patrick Ginot, Vladimir Mikhalenko, and Ronny Friedrich
Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, https://doi.org/10.5194/acp-19-14119-2019, 2019
Short summary
Short summary
This paper reports on an ice core drilled to bedrock at Mt Elbrus (5115 m a.s.l., Russia) to reconstruct the atmospheric pollution since the 19th century in south-eastern Europe. The annual dust-free sulfate record indicates a 7-fold increase from prior to 1900 to 1980–1995. Consistent with past SO2 emission inventories, a much earlier onset and a more pronounced decrease in the sulfur pollution over the last 3 decades are observed in western Europe than in south-eastern and eastern Europe.
Stanislav Kutuzov, Michel Legrand, Susanne Preunkert, Patrick Ginot, Vladimir Mikhalenko, Karim Shukurov, Aleksei Poliukhov, and Pavel Toropov
Atmos. Chem. Phys., 19, 14133–14148, https://doi.org/10.5194/acp-19-14133-2019, https://doi.org/10.5194/acp-19-14133-2019, 2019
Short summary
Short summary
Ice cores are one of the most valuable paleo-archives. Here we present analysis of the concentrations of calcium, recorded in ice core from the Caucasus over the past 240 years. We found a correlation between dust in ice and precipitation and soil moisture content in the Middle East and North Africa. The prominent increase in dust concentration in the ice core confirms that the recent droughts in the Fertile Crescent were most severe at least for the past two centuries.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Rolf Weller, Michel Legrand, and Susanne Preunkert
Atmos. Chem. Phys., 18, 2413–2430, https://doi.org/10.5194/acp-18-2413-2018, https://doi.org/10.5194/acp-18-2413-2018, 2018
Short summary
Short summary
We measured aerosol size distributions and the composition of summer aerosol at the continental Antarctic station Kohnen. Two different weather conditions mediated the transport of aerosol: (1) the intermittent impact of cyclones associated with outstanding marine aerosol concentrations and new particle formation and (2) steady long-range transport under prevailing clear sky conditions. The latter air masses were characterized by aged aerosol and less aerosol load.
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017, https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
Short summary
We measured methane concentrations from a polar ice core to quantify the differences between the ice record and the past true atmospheric conditions. Two effects were investigated by combining data analysis and modeling: the stratification of polar snow before gas enclosure driving chronological hiatuses in the record and the gradual formation of bubbles in the ice attenuating fast atmospheric variations. This study will contribute to improving future climatic interpretations from ice archives.
Michel Legrand, Susanne Preunkert, Eric Wolff, Rolf Weller, Bruno Jourdain, and Dietmar Wagenbach
Atmos. Chem. Phys., 17, 14039–14054, https://doi.org/10.5194/acp-17-14039-2017, https://doi.org/10.5194/acp-17-14039-2017, 2017
Short summary
Short summary
Multiple year-round records of bulk and size-segregated composition of sea-salt aerosol and acidic gases (HCl and HNO3) were obtained at inland Antarctica. Both acidic sulfur particles and nitric acid are involved in the observed sea-salt dechlorination in spring/summer. The observed sulfate to sodium mass ratio of sea-salt aerosol in winter (0.16 ± 0.05) suggests on average a similar contribution of sea-ice and open-ocean emissions to the sea-salt load over inland Antarctica at that season.
Michel Legrand, Susanne Preunkert, Rolf Weller, Lars Zipf, Christoph Elsässer, Silke Merchel, Georg Rugel, and Dietmar Wagenbach
Atmos. Chem. Phys., 17, 14055–14073, https://doi.org/10.5194/acp-17-14055-2017, https://doi.org/10.5194/acp-17-14055-2017, 2017
Short summary
Short summary
Levels of MSA and sulfate at inland Antarctica are documented from multiple year-round records of bulk and size-segregated aerosol samplings. A striking difference in the seasonality of sulfur aerosol composition, characterized by a MSA to nssSO4 ratio reaching a minimum in summer over the Antarctic plateau (0.05) and a maximum at the coast (up to 0.40), is clearly established. An efficient chemical destruction of MSA is suggested to take place over the Antarctic plateau in summer.
Levan G. Tielidze, Roger D. Wheate, Stanislav S. Kutuzov, Kate Doyle, and Ivan I. Lavrentiev
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-96, https://doi.org/10.5194/essd-2017-96, 2017
Revised manuscript has not been submitted
Short summary
Short summary
It is true, that research is being conducting in hard conditions in Georgia than other mountain countries of Europe. In addition, there was huge generation gap in glaciology field after the USSR colaps (1990s). But gradually we try to develop glaciology research in Georgia and in the Caucasus, as it is vitally important such a mountain region with > 2000 glaciers.
Anna Kozachek, Vladimir Mikhalenko, Valérie Masson-Delmotte, Alexey Ekaykin, Patrick Ginot, Stanislav Kutuzov, Michel Legrand, Vladimir Lipenkov, and Susanne Preunkert
Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, https://doi.org/10.5194/cp-13-473-2017, 2017
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Saehee Lim, Xavier Faïn, Patrick Ginot, Vladimir Mikhalenko, Stanislav Kutuzov, Jean-Daniel Paris, Anna Kozachek, and Paolo Laj
Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, https://doi.org/10.5194/acp-17-3489-2017, 2017
Short summary
Short summary
A record of light-absorbing refractory black carbon (rBC), emitted by fossil fuel combustion and biomass burning, was reconstructed from the ice cores drilled at a high-altitude eastern European site in Mt. Elbrus. This record reports for the first time the high-resolution rBC mass concentrations in the European outflows over the past 189 years. Our study suggests that the past changes in BC emissions of eastern Europe need to be considered in assessing ongoing air quality regulations.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Susanne Preunkert, Michel Fily, Hubert Gallée, Bruno Jourdain, Michel Legrand, Olivier Magand, Bénédicte Minster, and Martin Werner
The Cryosphere, 11, 343–362, https://doi.org/10.5194/tc-11-343-2017, https://doi.org/10.5194/tc-11-343-2017, 2017
Short summary
Short summary
Uncertainty of sea level changes is a challenge. As Antarctica is the biggest water reservoir, it is necessary to know how it will contribute. To be able to simulate it, an understanding of past climate is to be achieved, for instance, by studying the ice cores. As climate change is different in different regions, observations are needed all over the continent. Studying an ice core in Adélie Land, we can conclude that there are no changes there at decadal scale over the period 1947–2007.
Alexey A. Ekaykin, Diana O. Vladimirova, Vladimir Y. Lipenkov, and Valérie Masson-Delmotte
Clim. Past, 13, 61–71, https://doi.org/10.5194/cp-13-61-2017, https://doi.org/10.5194/cp-13-61-2017, 2017
Short summary
Short summary
Understanding the Antarctic climate system is crucial in the context of the present-day global environmental changes, but key gaps arise from limited observations. We present a new reconstructed stacked climate record for Princess Elizabeth Land, East Antarctica. Records show 1 °C warming over the last 350 years, with a particularly cold period from the mid-18th to mid-19th century. Temperature variability with a period > 27 years is mainly related to the anomalies of the Indian Ocean Dipole mode.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Michel Legrand, Joseph McConnell, Hubertus Fischer, Eric W. Wolff, Susanne Preunkert, Monica Arienzo, Nathan Chellman, Daiana Leuenberger, Olivia Maselli, Philip Place, Michael Sigl, Simon Schüpbach, and Mike Flannigan
Clim. Past, 12, 2033–2059, https://doi.org/10.5194/cp-12-2033-2016, https://doi.org/10.5194/cp-12-2033-2016, 2016
Short summary
Short summary
Here, we review previous attempts made to reconstruct past forest fire using chemical signals recorded in Greenland ice. We showed that the Greenland ice records of ammonium, found to be a good fire proxy, consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred since the last 15 000 years, including the Little Ice Age and the last large climatic transition.
Hélène Angot, Iris Dion, Nicolas Vogel, Michel Legrand, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8265–8279, https://doi.org/10.5194/acp-16-8265-2016, https://doi.org/10.5194/acp-16-8265-2016, 2016
Short summary
Short summary
This paper presents a multi-year record of atmospheric gaseous elemental mercury (Hg(0)) at Dumont d’Urville (DDU) on the East Antarctic coast. This record reveals particularities that are not seen at other coastal Antarctic sites, likely due to the more frequent arrival of inland air masses at DDU than at other coastal sites, and to the influence of oceanic air masses. This study confirms the influence of processes observed inland on the cycle of atmospheric mercury at a continental scale.
Michel Legrand, Susanne Preunkert, Joël Savarino, Markus M. Frey, Alexandre Kukui, Detlev Helmig, Bruno Jourdain, Anna E. Jones, Rolf Weller, Neil Brough, and Hubert Gallée
Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, https://doi.org/10.5194/acp-16-8053-2016, 2016
Short summary
Short summary
Surface ozone, the most abundant atmospheric oxidant, has been measured since 2004 at the coastal East Antarctic site of Dumont d’Urville, and since 2007 at the Concordia station located on the high East Antarctic plateau. Long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites are discussed. Influences like sea ice extent and outflow from inland Antarctica are discussed.
Nikolay Alexeevsky, Dmitry V. Magritsky, Klaus Peter Koltermann, Inna Krylenko, and Pavel Toropov
Nat. Hazards Earth Syst. Sci., 16, 1289–1308, https://doi.org/10.5194/nhess-16-1289-2016, https://doi.org/10.5194/nhess-16-1289-2016, 2016
Short summary
Short summary
Inundations on the Black Sea coast of the Krasnodar territory of the Russian Federation were analysed for 1945 to 2013. Risks, hazards and damage from inundations here are some of the highest in the country. The large quantity and the extremeness of rainfall, and the intense flood regimes of the rivers are the main contributors. Additionally, anthropogenic impact such as badly planned economic activities in channels, floodplains and on river watersheds strongly enhance the effects.
Alexey Ekaykin, Lutz Eberlein, Vladimir Lipenkov, Sergey Popov, Mirko Scheinert, Ludwig Schröder, and Alexey Turkeev
The Cryosphere, 10, 1217–1227, https://doi.org/10.5194/tc-10-1217-2016, https://doi.org/10.5194/tc-10-1217-2016, 2016
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
N. Zannoni, V. Gros, M. Lanza, R. Sarda, B. Bonsang, C. Kalogridis, S. Preunkert, M. Legrand, C. Jambert, C. Boissard, and J. Lathiere
Atmos. Chem. Phys., 16, 1619–1636, https://doi.org/10.5194/acp-16-1619-2016, https://doi.org/10.5194/acp-16-1619-2016, 2016
Short summary
Short summary
Our manuscript shows results of OH reactivity and Biogenic Volatile Organic Compounds (BVOCs) concentration during a field experiment conducted in late spring 2014 at the Observatoire de Haute Provence (OHP) site. We found that OH reactivity is among the highest measured in forests globally (69 s−1) and it is mainly due to isoprene. No missing reactivity was present during daytime inside or above the canopy, while 50 % missing reactivity was found by night at both heights.
V. Mikhalenko, S. Sokratov, S. Kutuzov, P. Ginot, M. Legrand, S. Preunkert, I. Lavrentiev, A. Kozachek, A. Ekaykin, X. Faïn, S. Lim, U. Schotterer, V. Lipenkov, and P. Toropov
The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015, https://doi.org/10.5194/tc-9-2253-2015, 2015
Short summary
Short summary
For the first time an ice core unaffected by melting was recovered from the western Elbrus plateau in the Caucasus. The preserved chemical and isotopic data are considered a source of paleo-climate information for southern/eastern Europe. Considerable snow accumulation (about 1500mm w.e.) and high sampling resolution allowed seasonal variability to be obtained in climate signals, covering a time period of about 200 years. Ice flow models suggest that the basal ice age can be more than 600 years.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. M. Frey, H. K. Roscoe, A. Kukui, J. Savarino, J. L. France, M. D. King, M. Legrand, and S. Preunkert
Atmos. Chem. Phys., 15, 7859–7875, https://doi.org/10.5194/acp-15-7859-2015, https://doi.org/10.5194/acp-15-7859-2015, 2015
Short summary
Short summary
Surprisingly large concentrations and flux of atmospheric nitrogen oxides were measured at Dome C, East Antarctica. It was found that the surface snow holds a significant reservoir of photochemically produced NOx and is a sink of gas-phase ozone. Main drivers of NOx snow emissions were large snow nitrate concentrations, with contributions of increased UV from decreases in stratospheric ozone. Observed halogen and hydroxyl radical concentrations were too low to explain large NO2:NO ratios.
S. Preunkert, M. Legrand, M. M. Frey, A. Kukui, J. Savarino, H. Gallée, M. King, B. Jourdain, W. Vicars, and D. Helmig
Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, https://doi.org/10.5194/acp-15-6689-2015, 2015
Short summary
Short summary
During two austral summers HCHO was investigated in air, snow, and interstitial air at the Concordia site located on the East Antarctic Plateau. Snow emission fluxes were estimated to be around 1 to 2 and 3 to 5 x 10^12 molecules m-2 s-1 at night and at noon, respectively. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible. The mean HCHO level of 130pptv observed at 1m above the surface is quite well reproduced by 1-D simulations.
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova
The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014, https://doi.org/10.5194/tc-8-2367-2014, 2014
Short summary
Short summary
The paper investigates changes in the area of 498 glaciers in the main Caucasus ridge and on Mt. Elbrus (the highest summit in geographical Europe), Russia/Georgia in the late 20th and 21st centuries using ASTER and Landsat imagery with 15 m resolution from 1999-2001 and 2010-2012 and aerial photography from 1987-2001. The glacier area decreased by 4.7±2.1% or 19.2±8.7 km2 from 1999-2001 to 2010/12. The recession rates of glacier terminus more than doubled between 1987-2000/01 and 2000/01–2010.
A. Kukui, M. Legrand, S. Preunkert, M. M. Frey, R. Loisil, J. Gil Roca, B. Jourdain, M. D. King, J. L. France, and G. Ancellet
Atmos. Chem. Phys., 14, 12373–12392, https://doi.org/10.5194/acp-14-12373-2014, https://doi.org/10.5194/acp-14-12373-2014, 2014
Short summary
Short summary
Concentrations of OH radicals and the sum of peroxy radicals, RO2, were measured in the boundary layer for the first time on the East Antarctic Plateau at the Concordia Station during the austral summer 2011/2012. The concentrations of radicals were comparable to those observed at the South Pole, confirming that the elevated oxidative capacity of the Antarctic atmospheric boundary layer found at the South Pole is not restricted to the South Pole but common over the high Antarctic plateau.
M. Legrand, S. Preunkert, M. Frey, Th. Bartels-Rausch, A. Kukui, M. D. King, J. Savarino, M. Kerbrat, and B. Jourdain
Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, https://doi.org/10.5194/acp-14-9963-2014, 2014
X. Faïn, J. Chappellaz, R. H. Rhodes, C. Stowasser, T. Blunier, J. R. McConnell, E. J. Brook, S. Preunkert, M. Legrand, T. Debois, and D. Romanini
Clim. Past, 10, 987–1000, https://doi.org/10.5194/cp-10-987-2014, https://doi.org/10.5194/cp-10-987-2014, 2014
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
S. Kutuzov, M. Shahgedanova, V. Mikhalenko, P. Ginot, I. Lavrentiev, and S. Kemp
The Cryosphere, 7, 1481–1498, https://doi.org/10.5194/tc-7-1481-2013, https://doi.org/10.5194/tc-7-1481-2013, 2013
M. Legrand, S. Preunkert, B. Jourdain, J. Guilhermet, X. Fa{ï}n, I. Alekhina, and J. R. Petit
Clim. Past, 9, 2195–2211, https://doi.org/10.5194/cp-9-2195-2013, https://doi.org/10.5194/cp-9-2195-2013, 2013
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
S. Preunkert and M. Legrand
Clim. Past, 9, 1403–1416, https://doi.org/10.5194/cp-9-1403-2013, https://doi.org/10.5194/cp-9-1403-2013, 2013
M. Shahgedanova, S. Kutuzov, K. H. White, and G. Nosenko
Atmos. Chem. Phys., 13, 1797–1808, https://doi.org/10.5194/acp-13-1797-2013, https://doi.org/10.5194/acp-13-1797-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Ice Cores | Timescale: Centennial-Decadal
A 2000-year temperature reconstruction on the East Antarctic plateau from argon–nitrogen and water stable isotopes in the Aurora Basin North ice core
Non-spherical microparticle shape in Antarctica during the last glacial period affects dust volume-related metrics
Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction
Regional Antarctic snow accumulation over the past 1000 years
On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr
Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Jesper Sjolte, Christophe Sturm, Florian Adolphi, Bo M. Vinther, Martin Werner, Gerrit Lohmann, and Raimund Muscheler
Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, https://doi.org/10.5194/cp-14-1179-2018, 2018
Short summary
Short summary
Tropical volcanic eruptions and variations in solar activity have been suggested to influence the strength of westerly winds across the North Atlantic. We use Greenland ice core records together with a climate model simulation, and find stronger westerly winds for five winters following tropical volcanic eruptions. We see a delayed response to solar activity of 5 years, and the response to solar minima corresponds well to the cooling pattern during the period known as the Little Ice Age.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
T. Kobashi, D. T. Shindell, K. Kodera, J. E. Box, T. Nakaegawa, and K. Kawamura
Clim. Past, 9, 583–596, https://doi.org/10.5194/cp-9-583-2013, https://doi.org/10.5194/cp-9-583-2013, 2013
S. L. Buchardt, H. B. Clausen, B. M. Vinther, and D. Dahl-Jensen
Clim. Past, 8, 2053–2059, https://doi.org/10.5194/cp-8-2053-2012, https://doi.org/10.5194/cp-8-2053-2012, 2012
Cited articles
Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large-Data Visualization, in: Visualization Handbook, Elsevier, 717–731, https://doi.org/10.1016/B978-012387582-2/50038-1, 2005.
Aleshina, M. A., Toropov, P. A., and Semenov, V. A.: Temperature and Humidity Regime Changes on the Black Sea Coast in 1982–2014, Russ. Meteorol. Hydrol., 43, 235–244, https://doi.org/10.3103/S1068373918040040, 2018.
Barber, K., Zolitschka, B., Tarasov, P., and Lotter, A. F.: Atlantic to Urals – the Holocene climatic record of Mid-Latitude Europe, in: Past Climate Variability through Europe and Africa, Springer Netherlands, Dordrecht, 417–442, ISBN 978-1402021206, 2004.
Bardin, M. Y., Platova, T. V., and Samokhina, O. F.: Variability Of Anti-Cyclonic Activity In The Northern Extratropics, Fundam. Appl. Climatol., 3, 32–58, https://doi.org/10.21513/0207-2564-2019-3-32-58, 2019.
Bintanja, R.: The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259, https://doi.org/10.3189/1998AoG27-1-251-259, 1998.
Bohleber, P., Wagenbach, D., Schöner, W., and Böhm, R.: To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series?, Tellus B, 65, 1–17, https://doi.org/10.3402/tellusb.v65i0.20148, 2013.
Borisova, O.: Environmental and climatic conditions of human occupation in the central East European Plain during the Middle Holocene: Reconstruction from palaeofloristic data, Quatern. Int., 516, 42–57, https://doi.org/10.1016/j.quaint.2018.05.025, 2019.
Bunde, A., Büntgen, U., Ludescher, J., Luterbacher, J., and von Storch, H.: Is there memory in precipitation?, Nat. Clim. Change, 3, 174–175, https://doi.org/10.1038/nclimate1830, 2013.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
CDS – Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, CDS – Copernicus Climate Change Service Climate Data Store, https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 23 January 2024), 2024.
Chen, J., Del Genio, A. D., Carlson, B. E., and Bosilovich, M. G.: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend, J. Climate, 21, 2611–2633, https://doi.org/10.1175/2007JCLI2011.1, 2008.
Chernokulsky, A., Kozlov, F., Zolina, O., Bulygina, O., Mokhov, I. I., and Semenov, V. A.: Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades, Environ. Res. Lett., 14, 045001, https://doi.org/10.1088/1748-9326/aafb82, 2019.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Bu ntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Cufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Gu nther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Ko se, N., Kyncl, T., Levanic, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Wazny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561–e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
Cook, E. R., Solomina, O., Matskovsky, V., Cook, B. I., Agafonov, L., Berdnikova, A., Dolgova, E., Karpukhin, A., Knysh, N., Kulakova, M., Kuznetsova, V., Kyncl, T., Kyncl, J., Maximova, O., Panyushkina, I., Seim, A., Tishin, D., Ważny, T., and Yermokhin, M.: The European Russia Drought Atlas (1400–2016 CE), Clim. Dynam., 54, 2317–2335, https://doi.org/10.1007/s00382-019-05115-2, 2020.
Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B., and Jouzel, J.: Past Accumulation rates derived from observed annual layers in the GRIP ice core from Summit, Central Greenland, in: Ice in the Climate System, Springer, Berlin, Heidelberg, 517–532, https://doi.org/10.1007/978-3-642-85016-5_29, 1993.
Dansgaard, W. and Johnsen, S. J.: A Flow Model and a Time Scale for the Ice Core from Camp Century, Greenland, J. Glaciol., 8, 215–223, https://doi.org/10.3189/S0022143000031208, 1969.
Deser, C., Hurrell, J. W., and Phillips, A. S.: The role of the North Atlantic Oscillation in European climate projections, Clim. Dynam., 49, 3141–3157, https://doi.org/10.1007/s00382-016-3502-z, 2017.
Dolgova, E.: June–September temperature reconstruction in the Northern Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23, https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Franke, J., Valler, V., Brugnara, Y., and Brönnimann, S.: Ensemble Kalman Fitting Paleo-Reanalysis Version 2 (EKF400_v2), World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/EKF400_v2.0, 2020.
Fuentes-Franco, R., Docquier, D., Koenigk, T., Zimmermann, K., and Giorgi, F.: Winter heavy precipitation events over Northern Europe modulated by a weaker NAO variability by the end of the 21st century, npj Clim. Atmos. Sci., 6, 72, https://doi.org/10.1038/s41612-023-00396-1, 2023.
Gagliardini, O. and Meyssonnier, J.: Flow simulation of a firn-covered cold glacier, Ann. Glaciol., 24, 242–248, https://doi.org/10.3189/S0260305500012246, 1997.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Goodwin, B. P., Mosley-Thompson, E., Wilson, A. B., Porter, S. E., and Roxana Sierra-Hernandez, M.: Accumulation variability in the Antarctic Peninsula: The role of large-scale atmospheric oscillations and their interactions, J. Climate, 29, 2579–2596, https://doi.org/10.1175/JCLI-D-15-0354.1, 2016.
Henderson, K., Laube, A., Gäggeler, H. W., Olivier, S., Papina, T., and Schwikowski, M.: Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai, J. Geophys. Res., 111, D03104, https://doi.org/10.1029/2005JD005819, 2006.
Herren, P.-A., Eichler, A., Machguth, H., Papina, T., Tobler, L., Zapf, A., and Schwikowski, M.: The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range, Quaternary Sci. Rev., 69, 59–68, https://doi.org/10.1016/j.quascirev.2013.02.025, 2013.
Hörhold, M. W., Kipfstuhl, S., Wilhelms, F., Freitag, J., and Frenzel, A.: The densification of layered polar firn, J. Geophys. Res.-Earth, 116, F01001, https://doi.org/10.1029/2009JF001630, 2011.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Marine Syst., 78, 28–41, https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
Ionita, M.: The Impact of the East Atlantic/Western Russia Pattern on the Hydroclimatology of Europe from Mid-Winter to Late Spring, Climate, 2, 296–309, https://doi.org/10.3390/cli2040296, 2014.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.., Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2014.
Kozachek, A., Mikhalenko, V., Masson-Delmotte, V., Ekaykin, A., Ginot, P., Kutuzov, S., Legrand, M., Lipenkov, V., and Preunkert, S.: Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores, Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, 2017.
Kutuzov, S., Legrand, M., Preunkert, S., Ginot, P., Mikhalenko, V., Shukurov, K., Poliukhov, A., and Toropov, P.: The Elbrus (Caucasus, Russia) ice core record – Part 2: history of desert dust deposition, Atmos. Chem. Phys., 19, 14133–14148, https://doi.org/10.5194/acp-19-14133-2019, 2019.
Lavrentiev, I. I., Mikhalenko, V. N., and Kutuzov, S. S.: Ice thickness and subglacial relief of the Western ice plateau of Elbrus, Ice Snow, 2, 2–18, 2010.
Lavrentiev, I. I., Kutuzov, S. S., Mikhalenko, V. N., Sudakova, M. S., and Kozachek, A. V.: Spatial and Temporal Variations of Snow Accumulation on the Western Elbrus Plateau, the Central Caucasus, Water Resour., 49, S1–S11, https://doi.org/10.1134/S0097807822070090, 2022.
Licciulli, C., Bohleber, P., Lier, J., Gagliardini, O., Hoelzle, M., and Eisen, O.: A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps, J. Glaciol., 66, 35–48, https://doi.org/10.1017/jog.2019.82, 2019.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
Lim, S., Faïn, X., Ginot, P., Mikhalenko, V., Kutuzov, S., Paris, J.-D., Kozachek, A., and Laj, P.: Black carbon variability since preindustrial times in the eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, ice cores, Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, 2017.
Loader, N. J., Young, G. H. F., McCarroll, D., Davies, D., Miles, D., and Bronk Ramsey, C.: Summer precipitation for the England and Wales region, 1201–2000 CE, from stable oxygen isotopes in oak tree rings, J. Quaternary Sci., 35, 731–736, https://doi.org/10.1002/jqs.3226, 2020.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M.: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century, Global Planet. Change, 77, 62–76, https://doi.org/10.1016/j.gloplacha.2011.03.003, 2011.
Maeno, N. and Ebinuma, T.: Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets, J. Phys. Chem., 87, 4103–4110, https://doi.org/10.1021/j100244a023, 1983.
Mariani, I., Eichler, A., Jenk, T. M., Brönnimann, S., Auchmann, R., Leuenberger, M. C., and Schwikowski, M.: Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001, Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, 2014.
Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, Wiley, https://doi.org/10.1002/9780470682104, 2010.
Martin-Benito, D., Ummenhofer, C. C., Köse, N., Güner, H. T., and Pederson, N.: Tree-ring reconstructed May–June precipitation in the Caucasus since 1752 CE, Clim. Dynam., 47, 3011–3027, https://doi.org/10.1007/s00382-016-3010-1, 2016.
Meredith, E. P., Semenov, V. A., Maraun, D., Park, W., and Chernokulsky, A. V.: Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme, Nat. Geosci., 8, 615–619, https://doi.org/10.1038/ngeo2483, 2015.
Mikhalenko, V., Sokratov, S., Kutuzov, S., Ginot, P., Legrand, M., Preunkert, S., Lavrentiev, I., Kozachek, A., Ekaykin, A., Faïn, X., Lim, S., Schotterer, U., Lipenkov, V., and Toropov, P.: Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia, The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015, 2015.
Mikhalenko, V. N. (Ed.): Elbrus Glaciers and Climate, Nestor-Historia Publications, Moscow-St. Petersburg, Russia, ISBN 978-5-4469-1671-9, 2020.
Mikhalenko, V. N., Kutuzov, S. S., Lavrentiev, I. I., Toropov, P. A., Vladimirova, D. O., Abramov, A. A., and Matskovsky, V. V.: Glacioclimatological investigations of the Institute of Geography, RAS, in the crater of Eastern Summit of Mt. Elbrus in 2020, Ice Snow, 61, 149–160, https://doi.org/10.31857/S2076673421010078, 2021.
Nagavciuc, V., Ionita, M., Kern, Z., McCarroll, D., and Popa, I.: A ∼ 700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose, Commun. Earth Environ., 3, 277, https://doi.org/10.1038/s43247-022-00605-4, 2022.
NCEI environmental Data Center: Elbrus Ice Core, Caucasus Accumulation Rate Data from 1750–2009 CE, NCEI environmental Data Center [data set], https://www.ncei.noaa.gov/access/paleo-search/study/38761 (last access: 23 January 2024), 2024.
NOAA: Global Precipitation Climatology Centre (GPCC), https://psl.noaa.gov/data/gridded/data.gpcc.html (last access: 25 January 2024), 2024.
Nye, J. F.: Correction Factor for Accumulation Measured by the Thickness of the Annual Layers in an Ice Sheet, J. Glaciol., 4, 785–788, https://doi.org/10.3189/S0022143000028367, 1963.
Palm, S. P., Kayetha, V., Yang, Y., and Pauly, R.: Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations, The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, 2017.
Paterson, W. S. B. and Waddington, E. D.: Past precipitation rates derived from ice core measurements: Methods and data analysis, Rev. Geophys., 22, 123–130, https://doi.org/10.1029/RG022i002p00123, 1984.
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H.: Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation, Clim. Dynam., 26, 387–405, https://doi.org/10.1007/s00382-005-0090-8, 2006.
Pohjola, V. A., Martma, T. A., Meijer, H. A. J., Moore, J. C., Isaksson, E., Vaikmäe, R., and van de Wal, R. S. W.: Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard, Ann. Glaciol., 35, 57–62, https://doi.org/10.3189/172756402781816753, 2002.
Pomeroy, J. W. and Gray, D. M.: Snowcover accumulation, relocation and management, National Hydrology Research Institute, Saskatoon, Saskatchewan, 1995.
Preunkert, S. and Legrand, M.: Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores, Clim. Past, 9, 1403–1416, https://doi.org/10.5194/cp-9-1403-2013, 2013.
Preunkert, S., Legrand, M., Kutuzov, S., Ginot, P., Mikhalenko, V., and Friedrich, R.: The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe, Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, 2019.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Schwerzmann, A., Funk, M., Blatter, H., Lüthi, M., Schwikowski, M. and Palmer, A.: A method to reconstruct past accumulation rates in alpine firn regions: A study on Fiescherhorn, Swiss Alps, J. Geophys. Res., 111, F01014, https://doi.org/10.1029/2005JF000283, 2006.
Simkin, T., and Siebert, L.: Volcanoes of the World, Geoscience Press, Inc., Tucson, Arizona, ISBN 9780520268777, 1994.
Solomina, O., Davi, N., D'Arrigo, R., and Jacoby, G.: Tree-ring reconstruction of Crimean drought and lake chronology correction, Geophys. Res. Lett., 32, L19704, https://doi.org/10.1029/2005GL023335, 2005.
Solomina, O., Bushueva, I., Dolgova, E., Jomelli, V., Alexandrin, M., Mikhalenko, V., and Matskovsky, V.: Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium, Global Planet. Change, 140, 28–58, https://doi.org/10.1016/j.gloplacha.2016.02.008, 2016.
Solomina, O. N., Bushueva, I. S., Dolgova, E. A., Zolotokrylin, A. N., Kuznetsova, V. V., Kuznetsova, T. O., Kukhta, A. E., Lazukova, L. I., Lomakin, N. A., Matskovsky, V. V., Matveev, S. M., Mikhailov, A. Y., Mikhalenko, V. N., Pozhidaeva, L. S., Rumyantsev, D. E., Sakulina, G. A., Semenov, V. A., Khasanov, B. F., Cherenkova, E. A., and Chernokulsky, A. V.: Droughts of the East European Plain according to hydrometeorological and tree-ring data, Nestor-Historia Publications, Moscow-St. Petersburg, Russia, ISBN 978-5-4469-1126-4, 2017.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Tashilova, A., Ashabokov, B., Kesheva, L., and Teunova, N.: Analysis of Climate Change in the Caucasus Region: End of the 20th–Beginning of the 21st Century, Climate, 7, 11, https://doi.org/10.3390/cli7010011, 2019.
Tielidze, L. G., Nosenko, G. A., Khromova, T. E., and Paul, F.: Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020, The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022, 2022.
Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik, Ü., and Stephan, J.: Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation, Clim. Dynam., 25, 75–98, https://doi.org/10.1007/s00382-005-0016-5, 2005.
Touchan, R., Akkemik, Ü., Hughes, M. K., and Erkan, N.: May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings, Quaternary Res., 68, 196–202, https://doi.org/10.1016/j.yqres.2007.07.001, 2007.
Trigo, R. M., Osborn, T. J. and Corte-Real, J. M.: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms, Clim. Res., 20, 9–17, https://doi.org/10.3354/cr020009, 2002.
Türkeş, M. and Erlat, E.: Climatological responses of winter precipitation in Turkey to variability of the North Atlantic Oscillation during the period 1930–2001, Theor. Appl. Climatol., 81, 45–69, https://doi.org/10.1007/s00704-004-0084-1, 2005.
Valler, V., Franke, J., Brugnara, Y., and Brönnimann, S.: An updated global atmospheric paleo-reanalysis covering the last 400 years, Geosci. Data J., 9, 89–107, https://doi.org/10.1002/gdj3.121, 2022.
Verhaegen, Y., Huybrechts, P., Rybak, O., and Popovnin, V. V.: Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE, The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020, 2020.
Vicente-Serrano, S. M. and López-Moreno, J. I.: Nonstationary influence of the North Atlantic Oscillation on European precipitation, J. Geophys. Res., 113, D20120, https://doi.org/10.1029/2008JD010382, 2008.
Winski, D., Osterberg, E., Ferris, D., Kreutz, K., Wake, C., Campbell, S., Hawley, R., Roy, S., Birkel, S., Introne, D., and Handley, M.: Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean warming, Sci. Rep.-UK, 7, 17869, https://doi.org/10.1038/s41598-017-18022-5, 2017.
Winstrup, M., Vallelonga, P., Kjær, H. A., Fudge, T. J., Lee, J. E., Riis, M. H., Edwards, R., Bertler, N. A. N., Blunier, T., Brook, E. J., Buizert, C., Ciobanu, G., Conway, H., Dahl-Jensen, D., Ellis, A., Emanuelsson, B. D., Hindmarsh, R. C. A., Keller, E. D., Kurbatov, A. V., Mayewski, P. A., Neff, P. D., Pyne, R. L., Simonsen, M. F., Svensson, A., Tuohy, A., Waddington, E. D., and Wheatley, S.: A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica, Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, 2019.
Yao, T., Duan, K., Xu, B., Wang, N., Guo, X., and Yang, X.: Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau, Clim. Past, 4, 175–180, https://doi.org/10.5194/cp-4-175-2008, 2008.
Zhang, R., Shang, H., Yu, S., He, Q., Yuan, Y., Bolatov, K., and Mambetov, B. T.: Tree-ring-based precipitation reconstruction in southern Kazakhstan, reveals drought variability since A. D. 1770, Int. J. Climatol., 37, 741–750, https://doi.org/10.1002/joc.4736, 2017.
Zhang, W., Hou, S., Wu, S.-Y., Pang, H., Sneed, S. B., Korotkikh, E. V., Mayewski, P. A., Jenk, T. M., and Schwikowski, M.: A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores, The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, 2022.
Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., and Lyly, M.: A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 29–37, https://doi.org/10.3189/172756407782282543, 2007.
Short summary
In this paper, we present a reconstruction of snow accumulation for both summer and winter over the past 260 years using ice-core records obtained from Mt. Elbrus in the Caucasus region. The accumulation record represents the historical precipitation patterns in a vast region encompassing the northern Caucasus, Black Sea, and southeastern Europe. Our findings show that the North Atlantic plays a crucial role in determining precipitation levels in this region.
In this paper, we present a reconstruction of snow accumulation for both summer and winter over...