Articles | Volume 20, issue 9
https://doi.org/10.5194/cp-20-1919-2024
https://doi.org/10.5194/cp-20-1919-2024
Research article
 | 
06 Sep 2024
Research article |  | 06 Sep 2024

Antarctic tipping points triggered by the mid-Pliocene warm climate

Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya

Related authors

Damage strength increases ice mass loss from Thwaites Glacier, Antarctica
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-2916,https://doi.org/10.5194/egusphere-2024-2916, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Antarctic sensitivity to oceanic melting parameterizations
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024,https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023,https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions
Javier Blasco, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
The Cryosphere, 15, 215–231, https://doi.org/10.5194/tc-15-215-2021,https://doi.org/10.5194/tc-15-215-2021, 2021
Short summary
The Antarctic Ice Sheet response to glacial millennial-scale variability
Javier Blasco, Ilaria Tabone, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 121–133, https://doi.org/10.5194/cp-15-121-2019,https://doi.org/10.5194/cp-15-121-2019, 2019
Short summary

Related subject area

Subject: Ice Dynamics | Archive: Modelling only | Timescale: Cenozoic
Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596,https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023,https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
How changing the height of the Antarctic ice sheet affects global climate: a mid-Pliocene case study
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023,https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Modelling ice sheet evolution and atmospheric CO2 during the Late Pliocene
Constantijn J. Berends, Bas de Boer, Aisling M. Dolan, Daniel J. Hill, and Roderik S. W. van de Wal
Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019,https://doi.org/10.5194/cp-15-1603-2019, 2019
Short summary
Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017,https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing, The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, 2020. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a
Bassis, J., Berg, B., Crawford, A., and Benn, D.: Transition to marine ice cliff instability controlled by ice thickness gradients and velocity, Science, 372, 1342–1344, https://doi.org/10.1126/science.abf6271, 2021. a
Berends, C. J., de Boer, B., Dolan, A. M., Hill, D. J., and van de Wal, R. S. W.: Modelling ice sheet evolution and atmospheric CO2 during the Late Pliocene, Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019, 2019. a, b, c, d, e, f, g, h
Download
Short summary
In this study, we assess Antarctic tipping points which may had been crossed during the mid-Pliocene Warm Period. For this, we use data from the PlioMIP2 ensemble. Additionally, we investigate various sources of uncertainty, like ice dynamics and bedrock configuration. Our research significantly enhances our comprehension of Antarctica's response to a warming climate, shedding light on potential future tipping points that may be surpassed.