
Supplement of Clim. Past, 20, 1919–1938, 2024
https://doi.org/10.5194/cp-20-1919-2024-supplement
© Author(s) 2024. CC BY 4.0 License.

Supplement of

Antarctic tipping points triggered by the mid-Pliocene warm climate
Javier Blasco et al.

Correspondence to: Javier Blasco (javier.blasco.navarro@ulb.be)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1. Map of the Bedrock AIS regions. Navy blue: Antarctic Peninsula. Dark-blue: Filchner-Ronne. Light-blue: North-EAIS. Turkish:
Amery. Green: Totten. Orange: Wilkes. Red: Ross. Dark-Red: Amundsen. Gray colors represent bedrock regions above sea level.

1



Figure S2. Scatter plot of the Antarctic PD simulations. x-axis represents the grounded ice volume difference between the simulated state
and the observations. y-axis represents the grounded ice extent difference between the simulation and the observations. Blue points represent
simulations that differ less than 2% from observed values (ice volume and extension) for the AIS and WAIS.
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Figure S3. Mean PD state of all the PD simulations. (a) surface elevation (grey colors) and ice shelf thickness (orange); (b) surface velocity;
(c) ice thickness (d) surface velocity anomalies with PD observations and its respective RMSE. Bar chart of the simulated PD RMSE in (e)
ice thickness and (f) surface velocity for every simulation.
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Figure S4. Lowest and best fit of our chosen ensemble parameters. Value zero represents the same mask value between the simulated and
the observed ice mask. 1/-1 represent advanced/retreated grounded points with respect to the observations.
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Figure S5. Time evolution of the (a)/(c) AIS/WAIS sea-level content; (b)/(d) AIS/WAIS grounded ice area for the whole ensemble.
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Figure S6. AIS reconstruction/simulations from other studies with surface elevation (gray), floating ice thickness (orange) and bedrock
elevation for ice-free points (brown/blue). DeConto et al. (2021) with (a) and without (b) MICI mechanism. (c) Berends et al., (2019) and the
(d) PRISM4 boundary conditions for PlioMIP2 (Dowsett et al., 2016). (e)/(f) maximum retreated AIS in our study starting from PD/PRISM4
conditions. (g)/(h) minimum retreated AIS in our study starting from PD/PRISM4 conditions.
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Figure S7. Scatter plot of (a)/(d)/(g) enhancement factor; (b)/(e)/(h) Friction law exponent; (c)/(f)/(i) friction coefficient with respect to
the Wilkes, Totten and Amundsen basin ice area. Top/Center and Lower row shows the CESM1.0.5/MIROC4m models. Red/Blue colors
represent collapsed/non-collapsed states.
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AOGCM CMIP6 Ocean AIS contribution to sea-level riseQ3
Q1

(m) Reference

CCSM4-UofT No No 4.7+0.3
−0.1 Chandan and Peltier (2017)

CESM1.0.5 No Yes 6.0+1.8
−1.3 Baatsen et al. (2022)

COSMOS No Yes 4.6+0.2
−0.1 Stepanek et al. (2020)

EC-Earth3.3 Yes Yes 8.9+0.2
−0.3 Zhang et al. (2021)

HadCM3 No Yes 5.9+0.1
−0.2 Hunter et al. (2019)

HadGEM3 Yes Yes 2.7+0.1
−0.4 Williams et al. (2021)

IPSLCM5A No No 3.4+0.4
−0.3 Tan et al. (2020)

IPSLCM5A2 No No 2.9+0.1
−0.1 Tan et al. (2020)

MIROC4m No Yes -1.9+0.3
−0.4 Chan and Abe-Ouchi (2020)

MRI-CGCM2.3 No No 7.0+0.3
−0.1 Kamae et al. (2016)

NorESM1-F No Yes 4.0+0.3
−0.1 Li et al. (2020)

NorESM-L No Yes 6.8+0.1
−0.1 Li et al. (2020)

Table S1. Table summarizing the AOGCMs, its contributon to CMIP6, if ocean files are available and the contribution in this study to sea-
level rise and its range between the 3rd and 1st quartile.
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