Articles | Volume 20, issue 7
https://doi.org/10.5194/cp-20-1659-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1659-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Orbitally forced environmental changes during the accumulation of a Pliensbachian (Lower Jurassic) black shale in northern Iberia
Naroa Martinez-Braceras
CORRESPONDING AUTHOR
Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, Edificio I+D+I, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
Aitor Payros
Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
Jaume Dinarès-Turell
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00142 Rome, Italy
Idoia Rosales
Centro Nacional Instituto Geológico y Minero de España (IGME, CSIC), La Calera 1, Tres Cantos, 28760 Madrid, Spain
Javier Arostegi
Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
Roi Silva-Casal
Dpto. Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028 Barcelona, Spain
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Milankovitch
Distinct seasonal changes and precession forcing of surface and subsurface temperatures in the mid-latitudinal North Atlantic during the onset of the Late Pliocene
A 300 000-year record of cold-water coral mound build-up at the East Melilla Coral Province (SE Alboran Sea, western Mediterranean)
Secular and orbital-scale variability of equatorial Indian Ocean summer monsoon winds during the late Miocene
Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes
Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series
The East Asian winter monsoon variability in response to precession during the past 150 000 yr
Paleo Agulhas rings enter the subtropical gyre during the penultimate deglaciation
A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept
Xiaolei Pang, Antje Helga Luise Voelker, Sihua Lu, and Xuan Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-603, https://doi.org/10.5194/egusphere-2024-603, 2024
Short summary
Short summary
Our research discovered significant seasonal temperature variations in the North Atlantic's mid-latitudes during the early Late Pliocene. This highlights the necessity of using multiple methods to get a full picture of past climates, thus avoiding a biased understanding of the climate system. Moreover, our study reveals that the precession signal, which previously dominate surface temperature records, disappeared with the increased influence of the ice sheets in the Northern Hemisphere.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Anastasia Zhuravleva and Henning A. Bauch
Clim. Past, 14, 1361–1375, https://doi.org/10.5194/cp-14-1361-2018, https://doi.org/10.5194/cp-14-1361-2018, 2018
Short summary
Short summary
New foraminiferal data from the Bahama region are used to investigate the mechanisms regulating subtropical climate. Our results suggest that the sensitivity of the low-latitude climate increased at times of enhanced sea-surface freshening in the subpolar North Atlantic. This has further implications for future climate development, given the ongoing melting of the Greenland ice sheet.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
M. Yamamoto, H. Sai, M.-T. Chen, and M. Zhao
Clim. Past, 9, 2777–2788, https://doi.org/10.5194/cp-9-2777-2013, https://doi.org/10.5194/cp-9-2777-2013, 2013
P. Scussolini, E. van Sebille, and J. V. Durgadoo
Clim. Past, 9, 2631–2639, https://doi.org/10.5194/cp-9-2631-2013, https://doi.org/10.5194/cp-9-2631-2013, 2013
J. Frigola, M. Canals, I. Cacho, A. Moreno, F. J. Sierro, J. A. Flores, S. Berné, G. Jouet, B. Dennielou, G. Herrera, C. Pasqual, J. O. Grimalt, M. Galavazi, and R. Schneider
Clim. Past, 8, 1067–1077, https://doi.org/10.5194/cp-8-1067-2012, https://doi.org/10.5194/cp-8-1067-2012, 2012
L. Beaufort, S. van der Kaars, F. C. Bassinot, and V. Moron
Clim. Past, 6, 695–706, https://doi.org/10.5194/cp-6-695-2010, https://doi.org/10.5194/cp-6-695-2010, 2010
Cited articles
Algeo, T. J. and Liu, J.: A re-assessment of elemental proxies for paleoredox analysis, Chem. Geol., 540, 119549, https://doi.org/10.1016/j.chemgeo.2020.119549, 2020.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.: Climate-related variations in denitrification in the Arabian Sea from sediment 15N 14N ratios, Nature, 373, 506–509, https://doi.org/10.1038/373506a0, 1995.
Aristilde, L., Xu, Y., and Morel, F. M.: Weak organic ligands enhance zinc uptake in marine phytoplankton, Environ. Sci. Technol., 46, 5438–5445, https://doi.org/10.1021/es300335u, 2012.
Armendáriz, M., Rosales, I., Bádenas, B., Aurell, M., García-Ramos, J. C., and Piñuela, L.: High-resolution chemostratigraphic records from Lower Pliensbachian belemnites: Palaeoclimatic perturbations, organic facies and water mass exchange (Asturian basin, northern Spain), Palaeogeogr. Palaeocl., 333, 178–191, https://doi.org/10.1016/j.palaeo.2012.03.029, 2012.
Arthur, M. A. and Dean, W. E.: A holistic geochemical approach to cyclomania: examples from Cretaceous pelagic limestone sequences, in: Cycles and events in stratigraphy, edited by: Einsele, E., Ricken, W., and Seilacher A., Springer-Verlag, New York, 126–166, ISBN 0-387-52784-2, 1991.
Aurell, M., Meléndez, G., Olóriz, F.,Bádenas, B., Caracuel, J., García-Ramos, J. C., Goy, A., Linares, A., Quesada, S., Robles, S., Rodríguez-Tovar, F. J., Rosales, I., Sandoval, J., Suárez de Centi, C., Tavera, J. M., and Valenzuela, M.: Jurassic, in: The Geology of Spain, edited by Gibbons, W., and Moreno, M. T, The Geological Society, London, 213–253, https://doi.org/10.1144/GOSPP.11, 2002.
Bádenas, B., Aurell, M., Armendáriz, M., Rosales, I., García-Ramos, J. C., and Piñuela, L.: Sedimentary and chemostratigraphic record of climatic cycles in Lower Pliensbachian marl–limestone platform successions of Asturias (North Spain), Sediment. Geol., 281, 119–138, https://doi.org/10.1016/j.sedgeo.2012.08.010, 2012.
Bádenas, B., Armendáriz, M., Rosales, I., Aurell, M., Piñuela, L., and García-Ramos, J. C.: Origen de los black shales del Pliensbachiense inferior de la Cuenca Asturiana (España), Rev. de la Soc. Geol. de Espana, 26, 41–54, 2013.
Banner, J. L. and Hanson, G. N.: Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 54, 3123–3137, https://doi.org/10.1016/0016-7037(90)90128-8, 1990.
Bayon, G., German, C. R., Burton, K. W., Nesbitt, R. W., and Rogers, N.: Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE, Earth Planet. Sci. Lett., 224, 477-4, https://doi.org/10.1016/j.epsl.2004.05.033, 2004.
Beckmann, B., Wagner, T., and Hofmann, P.: Linking Coniacian–Santonian (OAE3) black-shale deposition to African climate variability: A reference section from the eastern tropical Atlantic at orbital time scales (ODP Site 959, off Ivory Coast and Ghana), in: Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences, edited by: Harris, N. B., SEPM Spec. P., 82, 125–143, https://doi.org/10.29/2001PA00073, 2005
Benamara, A., Charbonnier, G., Adatte, T., Spangenberg, J. E., and Föllmi, K. B.: Precession-driven monsoonal activity controlled the development of the early Albian Paquier oceanic anoxic event (OAE1b): Evidence from the Vocontian Basin, SE France, Palaeogeogr. Palaeocl., 537, 109406, https://doi.org/10.1016/j.palaeo.2019.109406, 2020.
Berger, A. and Loutre, M. F.: Precession, eccentricity, obliquity, insolation and paleoclimates, in: Long-term Climatic Variations, NATO ASI Series, edited by: Duplessy, J. C. and Spyridakis, M. T., Springer, Berlin, 22, 107–151, https://doi.org/10.1007/978-3-642-79066-9_5, 1994.
Berner, Z. A., Puchelt, H., Noeltner, T., and Kramar, U. T. Z.: Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites, Sedimentology, 60, 548–573, https://doi.org/10.1111/j.1365-3091.2012.01350.x, 2013.
Bjerrum, C. J., Surlyk, F., Callomon, J. H., and Slingerland, R. L.: Numerical paleoceanographic study of the Early Jurassic transcontinental Laurasian Seaway, Paleoceanography, 16, 390–404, https://doi.org/10.1029/2000PA000512, 2001.
Bohacs, K. M., Grabowski, G. J., Carroll, A. R., Mankiewicz, P. J., Miskell, K. J., and Schwalbach, J. R.: Production, destruction, and dilution – the many paths to source-rock development, in: Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences, edited by: Harris, N. B., SEPM Spec. P., 82, 61–101, https://doi.org/10.2110/pec.05.82.0061, 2005.
Borrego, A. G., Hagemann, H. W., Blanco, C. G., Valenzuela, M., and De Centi, C. S.: The Pliensbachian (Early Jurassic) “anoxic” event in Asturias, northern Spain: Santa Mera Member, Rodiles Formation, Org. Geochem., 25, 295–309, https://doi.org/10.1016/S0146-6380(96)00121-0, 1996.
Bougeault, C., Pellenard, P., Deconinck, J. F., Hesselbo, S. P., Dommergues, J. L., Bruneau, L., Cocquerez, T., Laffont, R., Huret, E., and Thibault, N.: Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (CO) geochemistry (NW Europe), Global Planet. Change., 149, 139–152, https://doi.org/10.1016/j.gloplacha.2017.01.005, 2017.
Boulila, S. and Hinnov, L. A.: A review of tempo and scale of the early Jurassic Toarcian OAE: implications for carbon cycle and sea level variations, Newsl. Stratigr., 50, 363–389, https://doi.org/10.1127/nos/2017/0374, 2017.
Boulila, S., Galbrun, B., Sadki, D., Gardin, S., and Bartolini, A.: Constraints on the duration of the early Toarcian T-OAE and evidence for carbon-reservoir change from the High Atlas (Morocco), Global Planet. Change., 175, 113–128, https://doi.org/10.1016/j.gloplacha.2019.02.005, 2019.
Braga, J. C., Comas-Rengifo, M. J., Goy, A., Rivas, P., and Yébenes, A.: El Lías inferior y medio en la zona central de la Cuenca Vasco-Cantábrica (Camino,Santander), in: III Coloquio de Estratigrafía y Paleogeografía del Jurásico de España, Logroño, Spain, 10–19 September 1988, Instituto de Estudios Riojanos, Ciencias de la Tierra, Geología, 11, 17–45, ISBN 84-00-06877-7, 1988.
Brumsack, H. J.: The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California, Geol. Soc. Spec. Publ., 21, 447–462, https://doi.org/10.1144/GSL.SP.1986.021.01.3, 1986.
Calvert, S. E. and Pedersen, T. F.: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretations and applications, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and De Vernal, A., Developments in Marine Geology, Vol. 1, Elsevier, Oxford, UK, 567–644, https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Capet, A., Beckers, J.-M., and Grégoire, M.: Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?, Biogeosciences, 10, 3943–3962, https://doi.org/10.5194/bg-10-3943-2013, 2013.
Cecil, C. B. and Dulong, F. B.: Precipitation models for sediment supply in warm climates. In: Climate Controls on Stratigraphy, edited by: Cecil, C. B. and Edgar, N. T., SEPM Spec. Publ., 77, 21–27, https://doi.org/10.2110/pec.03.77.0021, 2003.
Charbonnier, G., Boulila, S., Galbrun, B., Laskar, J., Gardin, S., and Rouget, I.: A 20-million-year Early Jurassic cyclostratigraphic record and its implications for the chaotic inner Solar System and sea-level changes, Basin Res., 35, 1288–1307, https://doi.org/10.1111/bre.12754, 2023.
Chroustová, M., Holcová, K., Laurin, J., Uličný, D., Hradecká, L., Hrnková, M., Čech, S., Hrouda, F., and Jarvis, I.: Response of foraminiferal assemblages to precession-paced environmental variation in a mid-latitude seaway: Late Turonian greenhouse of Central Europe, Mar. Micropaleontol., 167, 102025, https://doi.org/10.1016/j.marmicro.2021.102025, 2021.
Conrad, C. P.: The solid Earth's influence on sea level, Geol. Soc. Am. Bull., 125, 1027–1052, https://doi.org/10.1130/B30764.1, 2013.
Cramer, B. D. and Jarvis, I.: Carbon isotope stratigraphy, in: Geologic time scale 2020, edited by: Gradstein, F. M., Ogg, J., Schmitz, M., and Ogg, G. M., Elsevier, Oxford, UK, 309–343, https://doi.org/10.1016/B978-0-12-824360-2.00011-5, 2020.
Deconinck, J. F., Gómez, J. J., Baudin, F., Biscay, H., Bruneau, L., Cocquerez, T., Mathieu, O., Pellenard, P., and Santoni, A. L.: Diagenetic and environmental control of the clay mineralogy, organic matter and stable isotopes (C, O) of Jurassic (Pliensbachian-lowermost Toarcian) sediments of the Rodiles section (Asturian Basin, Northern Spain), Mar. Pet. Geol., 115, 104286, https://doi.org/10.1016/j.marpetgeo.2020.104286, 2020.
Dera, G., Pellenard, P., Neige, P., Deconinck, J.-F., Pucéat, E., and Dommergues, J.-L.: Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons, Palaeogeogr. Palaeoecol., 271, 39–51, https://doi.org/10.1016/j.palaeo.2008.09.010, 2009.
Dickson, J. A. D., Wood, R. A., Al Rougha, H. B., and Shebl, H.: Sulphate reduction associated with hardgrounds: Lithification afterburn!, Sed. Geol., 205, 34–39, https://doi.org/10.1016/j.sedgeo.2008.01.005, 2008.
Dinarès-Turell, J., Martínez-Braceras, N., and Payros, A.: High-Resolution Integrated Cyclostratigraphy From the Oyambre Section (Cantabria, N Iberian Peninsula): Constraints for Orbital Tuning and Correlation of Middle Eocene Atlantic Deep-Sea Records, Geochem. Geophys., 19, 787–806, https://doi.org/10.1002/2017GC007367, 2018.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181, https://doi.org/10.1029/92PA00181, 1992.
Einsele, G. and Ricken, W.: Limestone-marl alternation-an overview. Cycles and events in stratigraphy, in: Cycles and events in stratigraphy, edited by: Einsele, E., Ricken, W., and Seilacher A., Springer-Verlag, New York, 23–47, ISBN 0-387-52784-2, 1991.
Fraguas, A., Comas-Rengifo, M. J., and Perillo, N.: Calcareous nannofossil biostratigraphy of the Lower Jurassic in the Cantabrian Range (Northern Spain), Newslett. Stratig., 48, 179–199, https://doi.org/10.1127/nos/2015/0059, 2015.
Giorgioni, M., Keller, C. E., Weissert, H., Hochuli, P. A., and Bernasconi, S. M.: Black shales–from coolhouse to greenhouse (early Aptian), Cretac. Res., 56, 716–731, https://doi.org/10.1016/j.cretres.2014.12.003, 2015.
Gómez, J. J., Comas-Rengifo, M. J., and Goy, A.: Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain), Clim. Past, 12, 1199–1214, https://doi.org/10.5194/cp-12-1199-2016, 2016.
Grossman, E. L. and Joachimski, M. M.: Oxygen isotope stratigraphy, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J., Schmitz, M., and Ogg, G. M., Elsevier, Oxford, UK, 279–307, https://doi.org/10.1016/B978-0-12-824360-2.00010-3, 2020.
Hallam, A.: Origin of minor limestone-shale cycles – climatically induced or diagenetic, Geology, 14, 609–612, https://doi.org/10.1130/0091-7613(1986)14<609:OOMLCC>2.0.CO;2, 1986.
Haq, B. U.: Cretaceous eustasy revisited, Global Planet. Change, 113, 44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007, 2014.
Henrich, R. and Hüneke, H.: Hemipelagic advection and periplatform sedimentation, Developments in sedimentology, 63, 353–396, https://doi.org/10.1016/B978-0-444-53000-4.00005-6, 2011.
Higginson, M. J., Maxwell, J. R., and Altabet, M. A.: Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial-and orbital-scale variability, Mar. Geol., 201, 223–250, https://doi.org/10.1016/S0025-3227(03)00218-4, 2003.
Hinnov, L. A.: Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences, Geol. Soc. Am. Bull., 125, 1703–1734, https://doi.org/10.1130/B30934.1, 2013.
Hinnov, L. A. and Park, J. J.: Strategies for assessing Early-Middle (Pliensbachian-Aalenian) Jurassic cyclochronologies, Philos. T. R. Soc. Lond. A., 357, 1831–1859, https://doi.org/10.1098/rsta.1999.0403, 1999.
Hollaar, T. P., Baker, S. J., Hesselbo, S. P., Deconinck, J. F., Mander, L., Ruhl, M., and Belcher, C. M.: Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic, Commun. Earth Environ., 2, 1–12, https://doi.org/10.1038/s43247-021-00307-3, 2021.
Hollaar, T. P., Hesselbo, S. P., Deconinck, J.-F., Damaschke, M., Ullmann, C. V., Jiang, M., and Belcher, C. M.: Environmental changes during the onset of the Late Pliensbachian Event (Early Jurassic) in the Cardigan Bay Basin, Wales, Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, 2023.
Holloway, J. M. and Dahlgren, R. A.: Nitrogen in rock: occurrences and biogeochemical implications, Global Biogeochem. Cy., 16, 65-1, https://doi.org/10.1029/2002GB001862, 2002.
Huang, C. and Hesselbo, S. P.: Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections, Gondwana Res., 25, 1348–1356, https://doi.org/10.1016/j.gr.2013.06.023, 2014.
Hüsing, S. K., Beniest, A., van der Boon, A., Abels, H. A., Deenen, M. H. L., Ruhl, M., and Krijgsman, W.: Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK), Palaeogeogr. Palaeoecol., 403, 43–56, https://doi.org/10.1016/j.palaeo.2014.03.022, 2014.
Ikeda, M., Bôle, M., and Baumgartner, P. O.: Orbital-scale changes in redox condition and biogenic silica/detrital fluxes of the Middle Jurassic Radiolarite in Tethys (Sogno, Lombardy, N-Italy): Possible link with glaciation?, Palaeogeogr. Palaeoecol., 457, 247–257, https://doi.org/10.1016/j.palaeo.2016.06.009, 2016.
Jenkyns, H. C. and Clayton, C. J.: Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic, Sedimentology, 33, 87–106, https://doi.org/10.1111/j.1365-3091.1986.tb00746.x, 1986.
Jones, B. and Manning, D. A.: Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 111, 111–129, https://doi.org/10.1016/0009-2541(94)90085-X, 1994.
Kodama, K. P. and Hinnov, L. A.: Rock Magnetic Cylostratigraphy, New Analytical Methods in Earth and Environmental Science Series, John Wiley & Sons, Ltd., Hoboken, New Jersey, USA, https://doi.org/10.1002/9781118561294, 2014.
Lewan, M. D.: Factors controlling the proportionality of vanadium to nickel in crude oils, Geochim. Cosmochim. Acta, 48, 2231–2238, https://doi.org/10.1016/0016-7037(84)90219-9, 1984.
Li, M., Hinnov, L., and Kump, L.: Acycle: Time-series analysis software for paleoclimate research and education, Comput. Geosci., 127, 12–22, https://doi.org/10.1016/j.cageo.2019.02.011, 2019.
Li, Y. H. and Schoonmaker, J. E.: Chemical composition and mineralogy of marine sediments, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, UK, 1-35, ISBN 0-08-044342-7, 2003.
Lin, Z., Sun, X., Roberts, A. P., Strauss, H., Lu, Y., Yang, X., Gong, J., Li, G., Brunner, B., and Peckmann, J.: A novel authigenic magnetite source for sedimentary magnetization, Geology, 49, 360–365, https://doi.org/10.1130/G48069.1, 2021.
Luo, G., Algeo, T. J., Huang, J., Zhou, W., Wang, Y., Yang, H., Richoz, S., and Xie, S.: Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction, Palaeogeogr. Palaeoecol., 396, 119–131, https://doi.org/10.1016/j.palaeo.2014.01.006, 2014.
Mackensen, A. and Schmiedl, G.: Stable carbon isotopes in paleoceanography: atmosphere, oceans, and sediments, Earth Sci. Rev., 197, 102893, https://doi.org/10.1016/j.earscirev.2019.102893, 2019.
Mann, M. E. and Lees, J. M.: Robust estimation of background noise and signal detection in climatic time series, Climatic Change, 33, 409–445, https://doi.org/10.1007/BF00142586, 1996.
Marshall, J.: Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation, Geol. Mag., 129, 143–160, https://doi.org/10.1017/S0016756800008244, 1992.
Martinez, M. and Dera, G.: Orbital pacing of carbon fluxes by a 9-My eccentricity cycle during the Mesozoic, P. Natl. Acad. Sci. USA, 112, 12604–12609, https://doi.org/10.1073/pnas.1419946112, 2015.
Martínez-Braceras, N., Payros, A., Miniati, F., Arostegi, J., and Franceschetti, G.: Contrasting environmental effects of astronomically driven climate change on three Eocene hemipelagic successions from the Basque–Cantabrian Basin, Sedimentology, 64, 960–986, https://doi.org/10.1111/sed.12334, 2017.
Martínez-Braceras, N., Franceschetti, G., Payros, A., Monechi, S., and Dinarès Turell, J.: High-resolution cyclochronology of the lowermost Ypresian Arnakatxa section (Basque-Cantabrian Basin, western Pyrenees), Newsl. Stratigr., 54, 53–74, https://doi.org/10.1127/nos/2022/0706, 2023.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Magnetic susceptibility of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967720, 2024a.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Color values of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967723, 2024b.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Calcium carbonate of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967730, 2024c.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Elemental geochemistry of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.968044, 2024d.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Organic geochemistry of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967947, 2024e.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Whole-rock mineralogy of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967852, 2024f.
Martínez-Braceras, N., Payros, A., Dinarès-Turell, J., Rosales, I., Arostegi, J., and Silva-Casal, R.: Inorganic isotopes of the lower Pliensbachian Santiurde section (Basque-Cantabrian basin, northern Spain), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967761, 2024g.
McGee, D., Broecker, W. S., and Winckler, G.: Gustiness: The driver of glacial dustiness?, Quat. Sci. Rev., 29, 2340–2350, https://doi.org/10.1016/j.quascirev.2010.06.009, 2010.
Meyers, P. A.: Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales, Palaeogeogr. Palaeoecol., 235, 305–320, https://doi.org/10.1016/j.palaeo.2005.10.025, 2006.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, https://CRAN.R-project.org/package=astrochron (last access: 13 March 2023), 2014.
Meyers, S. R., Sageman, B. B., and Hinnov, L. A.: Integrated quantitative stratigraphy of the Cenomanian–Turonian bridge Creek Limestone member using evolutive harmonic analysis and stratigraphic modelling, J. Sediment. Res, 71, 628–644, https://doi.org/10.1306/012401710628, 2001.
Munnecke, A., Westphal, H., Elrick, M., and Reijmer, J.: The mineralogical composition of precursor sediments of calcareous rhythmites: a new approach, Int. J. Earth Sci., 90, 795–812, https://doi.org/10.1007/s005310000137, 2001.
Nijenhuis, I. A. and de Lange, G. J.: Geochemical constraints on Pliocene sapropel formation in the eastern Mediterranean, Mar. Geol., 163, 41–63, https://doi.org/10.1016/S0025-3227(99)00093-6, 2000.
Nohl, T., Steinbauer, M. J., Sinnesael, M., and Jarochowska, E.: Detecting initial aragonite and calcite variations in limestone–marl alternations, Sedimentology, 68, 3102–3115, https://doi.org/10.1111/sed.12885, 2021.
Olde, K., Jarvis, I., Uličný, D., Pearce, M. A., Trabucho-Alexandre, J., Čech, S., Gröcke, D. R., Laurin, J., Švábenická, L., and Tocher, B. A.: Geochemical and palynological sea-level proxies in hemipelagic sediments: a critical assessment from the Upper Cretaceous of the Czech Republic, Palaeogeogr. Palaeoecol., 435, 222–243, https://doi.org/10.1016/j.palaeo.2015.06.018, 2015.
Osete, M. L., Gómez, J. J., Pavón-Carrasco, F. J., Villalaín, J. J., Palencia-Ortas, A., Ruiz-Martínez, V. C., and Heller, F.: The evolution of Iberia during the Jurassic from palaeomagnetic data, Tectonophysics, 502, 105–120, 2011.
Permanyer, A., Márquez, G., and Gallego, J. R.: Compositional variability in oils and formation waters from the Ayoluengo and Hontomín fields (Burgos, Spain). Implications for assessing biodegradation and reservoir compartmentalization, Org. Geochem., 54, 125–139, https://doi.org/10.1016/j.orggeochem.2012.10.007, 2013.
Pieńkowski, G., Schudack, M. E., Bosák, P., Enay, R., Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W., Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalík, J., Mönnig, E., Noe-Nygaard, N., Pálfy, J., Pint, A., Rasser, M. W., Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A., and Wong, T. E.: Jurassic, in: The Geology of Central Europe Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geological Society of London, London, 823–922, https://doi.org/10.1144/CEV2P.2, 2008.
Pieńkowski, G., Uchman, A., Ninard, K., and Hesselbo, S. P.: Ichnology, sedimentology, and orbital cycles in the hemipelagic Early Jurassic Laurasian Seaway (Pliensbachian, Cardigan Bay Basin, UK), Global Planet. Change, 207, 103648, https://doi.org/10.1016/j.gloplacha.2021.103648, 2021.
Quan, T. M. and Adeboye, O. O.: Interpretation of nitrogen isotope profiles in petroleum systems: a review, Front. Earth Sci., 9, 705691, https://doi.org/10.3389/feart.2021.705691, 2021.
Quesada, S. and Robles, S.: Características y origen del petróleo de Hontomín, Cuenca Vascocantábrica (Norte de España), Geogaceta, 52, 169–172, 2012.
Quesada, S., Dorronsoro, C. Robles, S., Chaler, R., and Grimalt, J.O.: Geochemical correlation of oil from the Ayoluengo field to Liassic “black shale” units in the southwestern Basque-Cantabrian Basin (northern Spain), Org. Geochem., 27, 25–40, https://doi.org/10.1016/S0146-6380(97)00045-4, 1997.
Quesada, S., Robles, S., and Rosales, I.: Depositional architecture and transgressive-regressive cycles within Liassic backstepping carbonate ramps in the Basque-Cantabrian Basin, northern Spain, J. Geol. Soc., 162, 531–548, https://doi.org/10.1144/0016-764903-041, 2005.
Rachold, V. and Brumsack, H. J.: Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: palaeoenvironmental constraints and orbital cycles, Palaeogeogr. Palaeoecol., 174, 121–143, https://doi.org/10.1016/S0031-0182(01)00290-5, 2001.
Reuning, L., Reijmer, J. J., and Betzler, C.: Sedimentation cycles and their diagenesis on the slope of a Miocene carbonate ramp (Bahamas, ODP Leg 166), Mar. Geol., 185, 121–142, https://doi.org/10.1016/S0025-3227(01)00293-6, 2002.
Robinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J., Pedersen, T., Quan, T.M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J.-Y.: A review of nitrogen isotopic alteration in marine sediments, Paleoceanography, 27, PA4203, https://doi.org/10.1029/2012PA002321, 2012.
Rosales, I., Quesada, S., and Robles, S.: Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain, Sedimentology, 48, 1149–1169, https://doi.org/10.1046/j.1365-3091.2001.00412.x, 2001.
Rosales, I., Quesada, S., and Robles, S.: Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain, Palaeogeogr. Palaeoecol., 203, 253–275, https://doi.org/10.1016/S0031-0182(03)00686-2, 2004.
Rosales, I., Quesada, S., and Robles, S.: Geochemical arguments for identifying second-order sea-level changes in hemipelagic carbonate ramp deposits, Terra Nova, 18, 233–240, https://doi.org/10.1111/j.1365-3121.2006.00684.x, 2006.
Ruhl, M., Hesselbo, S. P., Hinnov, L., Jenkyns, H. C., Xu, W., Riding, J. B., Storm, M., Minisinie, D., Ullmann, C. V., and Leng, M. J.: Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations, Earth Planet. Sc. Lett., 455, 149–165, https://doi.org/10.1016/j.epsl.2016.08.038, 2016.
Sames, B., Wagreich, M., Conrad, C. P., and Iqbal, S.: Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases, Geol. Society, London, Sp. Publ., 498, 9–38, https://doi.org/10.1144/SP498-2019-105, 2020.
Sarr, A. C., Donnadieu, Y., Laugié, M., Ladant, J. B., Suchéras-Marx, B., and Raisson, F.: Ventilation Changes Drive Orbital-Scale Deoxygenation Trends in the Late Cretaceous Ocean, Geophys. Res. Lett., 49, e2022GL099830, https://doi.org/10.1029/2022GL099830, 2022.
Schneider-Mor, A., Alsenz, H., Ashckenazi-Polivoda, S., Illner, P., Abramovich, S., Feinstein, S., Almogi-Labin, A., Berner, Z., and Püttmann, W.: Paleoceanographic reconstruction of the late Cretaceous oil shale of the Negev, Israel: Integration of geochemical, and stable isotope records of the organic matter, Palaeogeogr. Palaeoecol., 319, 46–57, https://doi.org/10.1016/j.palaeo.2012.01.003, 2012.
Sequero, C., Bádenas, B., and Muñoz, A.: Sedimentología y cicloestratigrafía de las calizas fangosas de plataforma abierta de la Fm. Río Palomar (Pliensbachiense inferior; Cuenca Ibérica), Rev. de la Soc. Geol. de Espana, 30, 71–84, 2017.
Silva, R. L., Duarte, L. V., Comas-Rengifo, M. J., Mendonça Filho, J. G., and Azerêdo, A. C.: Update of the carbon and oxygen isotopic records of the Early–Late Pliensbachian (Early Jurassic, ∼187 Ma): Insights from the organic-rich hemipelagic series of the Lusitanian Basin (Portugal), Chem. Geol., 283, 177–184, https://doi.org/10.1016/j.chemgeo.2011.01.010, 2011.
Steffen, K., Thomas, R. H., Rignot, E., Cogley, J. G., Dyurgerov, M. B., Raper, S. C. B., Huybrechts, P., and Hanna, E.: Cryospheric contributions to sea level rise and variability, in: Understanding sea level rise and variability, edited by: Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, Chichester, 177–225, https://doi.org/10.1002/9781444323276.ch7, 2010.
Storm, M. S., Hesselbo, S. P., Jenkyns, H. C., Ruhl, M., Ullmann, C. V., Xu, W., Leng, M. J., Riding, J. B., and Gorbanenko, O.: Orbital pacing and secular evolution of the Early Jurassic carbon cycle, P. Natl. Acad. Sci. USA, 117, 3974–3982, https://doi.org/10.1073/pnas.1912094117, 2020.
Suan, G., Van De Schootbrugge, B., Adatte, T., Fiebig, J., and Oschmann, W.: Calibrating the magnitude of the Toarcian carbon cycle perturbation, Paleoceanography, 30, 495–509, https://doi.org/10.1002/2014PA002758, 2015.
Suárez Ruiz, I. and Prado, J. G.: Estudio microscópico de la materia orgánica en las pizarras bituminosas del Lías en el litoral de Cantabria, Acta Geológica Hispánica, 21–22, 585–591, 1987.
Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present and future, Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205, 2015.
Swart, P. K., Blättler, C. L., Nakakuni, M., Mackenzie, G. J., Betzler, C., Eberli, G. P., Reolid, J., Alonso-Garcia, M., Slagle, A.L., Wright, J. D., Kroon, D., Reijmer, J. J. G., Mee, A. L. H., Young, J. R., Alvarez-Zarikian, C. A., Bialik, O. M., Guo, J. A., and Haffe, S.: Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late Oligocene-early Miocene Maldives, Earth Planet. Sci. Lett., 521, 1–13, https://doi.org/10.1016/j.epsl.2019.05.019, 2019.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meterol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Tucker, M. E., Gallagher, J., and Leng, M. J.: Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England, Sediment Geol., 214, 19–34, https://doi.org/10.1016/j.sedgeo.2008.03.011, 2009.
Tyson, R.V.: The “productivity versus preservation” controversy; cause, flaws, and resolution, in: Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences, edited by: Harris, N. B., SEPM Spec. P., 82, 17–33, https://doi.org/10.2110/pec.05.82.0017, 2005.
Ullmann, C. V., Szücs, D., Jiang, M., Hudson, A. J. and Hesselbo, S. P.: Geochemistry of macrofossil, bulk rock and secondary calcite in the Early Jurassic strata of the Llanbedr (Mochras Farm) drill core, Cardigan Bay Basin, Wales, UK, J. Geol. Soc., 179, jgs2021-018, https://doi.org/10.1144/jgs2021-018, 2022.
Val, J., Bádenas, B., Aurell, M., and Rosales, I.: Cyclostratigraphy and chemostratigraphy of a bioclastic storm-dominated carbonate ramp (late Pliensbachian, Iberian Basin), Sediment. Geol., 355, 93–113, https://doi.org/10.1016/j.sedgeo.2017.04.007, 2017.
Van Mooy, B. A., Keil, R. G., and Devol, A. H.: Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim. Acta, 66, 457–465, https://doi.org/10.1016/S0016-7037(01)00787-6, 2002.
Von Eynatten, H., Barcelo-Vidal, C., and Pawlowsky-Glahn, V.: Modelling compositional change: the example of chemical weathering of granitoid rocks, Math. Geol., 35, 231–251, https://doi.org/10.1023/A:1023835513705, 2003.
Wang, P.: Global monsoon in a geological perspective, Chin. Sci. Bull., 54, 1113–1136, https://doi.org/10.1007/s11434-009-0169-4, 2009.
Wendler, J. E. and Wendler, I.: What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate?, Palaeogeogr. Palaeoecol., 441, 412–419, https://doi.org/10.1016/j.palaeo.2015.08.029, 2016.
Westphal, H.: Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review, Int. J. Earth Sci., 95, 947–961, DOI 10.1007/s00531-006-0084-8, 2006.
Wignall, P. B.: Model for transgressive black shales?, Geology, 19, 167–170, https://doi.org/10.1130/0091-7613, 1991.
Woodard, S. C., Thomas, D. J., Hovan, S., Röhl, U., and Westerhold, T.: Evidence for orbital forcing of dust accumulation duringthe early Paleogene greenhouse, Geochem. Geophy. Geosy., 12, Q02007, https://doi.org/10.1029/2010GC003394, 2011.
Zhang, R., Jin, Z., Li, M., Gillman, M., Chen, S., Liu, Q., Wei, R., and Shi, J.: Long-term periodicity of sedimentary basins in response to astronomical forcing: Review and perspective, Earth Sci. Rev., 244, 104533, https://doi.org/10.1016/j.earscirev.2023.104533, 2023.
Zhao, M. Y. and Zheng, Y. F.: Marine carbonate records of terrigenous input into Paleotethyan seawater: geochemical constraints from Carboniferous limestones, Geochim. Cosmochim. Acta, 141, 508–531, https://doi.org/10.1016/j.gca.2014.07.001, 2014.
Short summary
Although significant progress in Early Jurassic cyclostratigraphy has been made in the last few decades, fewer studies have focused on the climatic and environmental impact of orbital cycles on the sedimentary record. This study presents an original orbitally modulated depositional model, which provides new insight into the formation of orbitally modulated organic-rich calcareous hemipelagic rhythmites accumulated in early Pliensbachian times in the northern Iberian palaeomargin.
Although significant progress in Early Jurassic cyclostratigraphy has been made in the last few...