Articles | Volume 20, issue 7
https://doi.org/10.5194/cp-20-1615-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1615-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of coastal California hydroclimate to the Paleocene–Eocene Thermal Maximum
Xiaodong Zhang
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
Brett J. Tipple
FloraTrace Inc., Salt Lake City, UT 84103, USA
Jiang Zhu
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
William D. Rush
Department of Environmental Studies and Sciences, Santa Clara University, Santa Clara, CA 95053, USA
Christian A. Shields
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
Joseph B. Novak
Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
James C. Zachos
Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
Related authors
No articles found.
John T. Fasullo, Jean-Christophe Golaz, Julie M. Caron, Nan Rosenbloom, Gerald A. Meehl, Warren Strand, Sasha Glanville, Samantha Stevenson, Maria Molina, Christine A. Shields, Chengzhu Zhang, James Benedict, Hailong Wang, and Tony Bartoletti
Earth Syst. Dynam., 15, 367–386, https://doi.org/10.5194/esd-15-367-2024, https://doi.org/10.5194/esd-15-367-2024, 2024
Short summary
Short summary
Climate model large ensembles provide a unique and invaluable means for estimating the climate response to external forcing agents and quantify contrasts in model structure. Here, an overview of the Energy Exascale Earth System Model (E3SM) version 2 large ensemble is given along with comparisons to large ensembles from E3SM version 1 and versions 1 and 2 of the Community Earth System Model. The paper provides broad and important context for users of these ensembles.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Martin Renoult, Navjit Sagoo, Jiang Zhu, and Thorsten Mauritsen
Clim. Past, 19, 323–356, https://doi.org/10.5194/cp-19-323-2023, https://doi.org/10.5194/cp-19-323-2023, 2023
Short summary
Short summary
The relationship between the Last Glacial Maximum and the sensitivity of climate models to a doubling of CO2 can be used to estimate the true sensitivity of the Earth. However, this relationship has varied in successive model generations. In this study, we assess multiple processes at the Last Glacial Maximum which weaken this relationship. For example, how models respond to the presence of ice sheets is a large contributor of uncertainty.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Jiang Zhu and Christopher J. Poulsen
Clim. Past, 17, 253–267, https://doi.org/10.5194/cp-17-253-2021, https://doi.org/10.5194/cp-17-253-2021, 2021
Short summary
Short summary
Climate sensitivity has been directly calculated from paleoclimate data. This approach relies on good understandings of climate forcings and interactions within the Earth system. We conduct Last Glacial Maximum simulations using a climate model to quantify the forcing and efficacy of ice sheets and greenhouse gases and to directly estimate climate sensitivity in the model. Results suggest that the direct calculation overestimates the truth by 25 % due to neglecting ocean dynamical feedback.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Yusuf Jameel, Simon Brewer, Richard P. Fiorella, Brett J. Tipple, Shazelle Terry, and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 22, 6109–6125, https://doi.org/10.5194/hess-22-6109-2018, https://doi.org/10.5194/hess-22-6109-2018, 2018
Short summary
Short summary
Public water supply systems (PWSSs) are important infrastructure susceptible to contamination and physical disruption. In general, PWSSs are analyzed using hydrodynamic models, which requires detailed supply infrastructure information. In this paper, we have shown that stable isotope mixing models can also provide useful information on PWSSs. The method developed here can be useful in studying decentralized PWSSs, validating hydrodynamic models and solving water right issues.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Christine A. Shields and Jeffrey T. Kiehl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-42, https://doi.org/10.5194/cp-2017-42, 2017
Manuscript not accepted for further review
Short summary
Short summary
The megamonsoon is analyzed for the late Permian (~251Ma) period in Earth's deep climatic past using a sophisticated global climate model that simulates interactions between the atmosphere, ocean, land, and sea ice. We show the location of the megamonsoon is dependent on the location of the warmest sea surface temperatures in tropical and subtropical regions and not the land-sea temperature gradient by performing experiments with geography that impact both atmospheric and oceanic simulations.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
Cited articles
Abell, J. T., Winckler, G., Anderson, R. F., and Herbert, T. D.: Poleward and weakened westerlies during Pliocene warmth, Nature, 589, 70–75, https://doi.org/10.1038/s41586-020-03062-1, 2021.
Blott, S. J., Croft, D. J., Pye, K., Saye, S. E., and Wilson, H. E.: Particle size analysis by laser diffraction, Geological Society, London, Special Publications, 232, 63–73, 2004.
Brabb, E. E.: Studies in Tertiary stratigraphy of the California Coast Ranges, US Geological Survey Professional Paper series no. 1213, US Geological Survey, https://doi.org/10.3133/pp1213, 1983.
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J. Adv. Model. Earth Sy., 11, 2547–2566, https://doi.org/10.1029/2019MS001663, 2019.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Campbell, J., Poulsen, C. J., Zhu, J., Tierney, J. E., and Keeler, J.: CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene, Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, 2024.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A., Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A., Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.: Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change, 157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Cramwinckel, M. J., Burls, N. J., Fahad, A. A., Knapp, S., West, C. K., Reichgelt, T., Greenwood, D. R., Chan, W. L., Donnadieu, Y., Hutchinson, D. K., De Boer, A. M., Ladant, J., Morozova, P. A., Niezgodzki, I., Knorr, G., Steinig, S., Zhang, Z., Zhu, J., Feng, R., Lunt, D. J., Abe-Ouchi, A., and Inglis, G. N.: Global and zonal-mean hydrological response to early Eocene warmth, Paleoceanography and Paleoclimatology, 38, e2022PA004542, https://doi.org/10.1029/2022PA004542, 2023.
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte, T., Honegger, L., Perret, M., Sluijs, A., and Castelltort, S.: Estimating regional flood discharge during Palaeocene-Eocene global warming, Sci. Rep., 8, 1–8, https://doi.org/10.1038/s41598-018-31076-3, 2018.
Cui, Y., Diefendorf, A. F., Kump, L. R., Jiang, S., and Freeman, K. H.: Synchronous marine and terrestrial carbon cycle perturbation in the high arctic during the PETM, Paleoceanography and Paleoclimatology, 36, e2020PA003942, https://doi.org/10.1029/2020PA003942, 2021.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K. H.: Global patterns in leaf 13C discrimination and implications for studies of past and future climate, P. Natl. Acad. Sci. USA, 107, 5738–5743, https://doi.org/10.1073/pnas.0910513107, 2010.
Douville, H., Raghavan, K., Renwick, J., and Allan, R.: Water Cycle Changes, Intergovernmental Panel on Climate Change 2021 – The Physical Science Basis, 1055–1210, https://doi.org/10.1017/9781009157896.010, 2021.
Foreman, B. Z.: Climate-driven generation of a fluvial sheet sand body at the Paleocene–Eocene boundary in north-west Wyoming (USA), Basin Res., 26, 225–241, https://doi.org/10.1111/BRE.12027, 2014.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary, Nature, 491, 92–95, https://doi.org/10.1038/nature11513, 2012.
Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., and Le Milbeau, C.: Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene-Eocene boundary (Normandy, France), Palaeogeogr. Palaeocl., 376, 184–199, https://doi.org/10.1016/j.palaeo.2013.02.035, 2013.
Gibson, T. G., Bybell, L. M., and Mason, D. B.: Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin, Sediment. Geol., 134, 65–92, https://doi.org/10.1016/S0037-0738(00)00014-2, 2000.
Handley, L., Pearson, P. N., McMillan, I. K., and Pancost, R. D.: Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania, Earth Planet. Sc. Lett., 275, 17–25, https://doi.org/10.1016/j.epsl.2008.07.030, 2008.
Handley, L., Crouch, E. M., and Pancost, R. D.: A New Zealand record of sea level rise and environmental change during the Paleocene-Eocene Thermal Maximum, Palaeogeogr. Palaeocl., 305, 185–200, https://doi.org/10.1016/j.palaeo.2011.03.001, 2011.
Handley, L., O'Halloran, A., Pearson, P. N., Hawkins, E., Nicholas, C. J., Schouten, S., McMillan, I. K., and Pancost, R. D.: Changes in the hydrological cycle in tropical East Africa during the Paleocene-Eocene Thermal Maximum, Palaeogeogr. Palaeocl., 329–330, 10–21, https://doi.org/10.1016/j.palaeo.2012.02.002, 2012.
Hasegawa, T., Yamamoto, S., and Pratt, L. M.: Data report: Stable carbon isotope fluctuation of long-chain n-alkanes from Leg 208 Hole 1263A across the Paleocene/Eocene boundary, in: Proceedings of the Ocean Drilling Program: Scientific Results 208, edited by: Kroon, D., Zachos, J. C., and Richter, C., Ocean Drilling Program, 11 pp., https://doi.org/10.2973/odp.proc.sr.208.202.2006, 2006.
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hollingsworth, E. H., Elling, F. J., Badger, M. P. S., Pancost, R. D., Dickson, A. J., Rees-Owen, R. L., Papadomanolaki, N. M., Pearson, A., Sluijs, A., Freeman, K. H., Baczynski, A. A., Foster, G. L., Whiteside, J. H., and Inglis, G. N.: Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilization During the Paleocene-Eocene Thermal Maximum, Paleoceanography and Paleoclimatology, 39, e2023PA004773, https://doi.org/10.1029/2023PA004773, 2024.
Hou, J., D'Andrea, W. J., and Huang, Y.: Can sedimentary leaf waxes record ratios of continental precipitation? Field, model, and experimental assessments, Geochim. Cosmochim. Ac., 72, 3503–3517, https://doi.org/10.1016/j.gca.2008.04.030, 2008.
Hu, H. and Dominguez, F.: Evaluation of Oceanic and Terrestrial Sources of Moisture for the North American Monsoon Using Numerical Models and Precipitation Stable Isotopes, J. Hydrometeorol., 16, 19–35, https://doi.org/10.1175/JHM-D-14-0073.1, 2015.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M. J., De La Parra, F., Morón, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., Navarrete, R., Parra, F., Alvarán, M., Osorno, J., Crowley, J. L., Valencia, V., and Vervoort, J.: Effects of rapid global warming at the paleocene-eocene boundary on neotropical vegetation, Science, 330, 957–961, https://doi.org/10.1126/science.1193833, 2010.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T. J.: North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling, Paleoceanography, 23, PA2217, https://doi.org/10.1029/2007PA001465, 2008.
Kemp, S. J., Ellis, M. A., Mounteney, I., and Kender, S.: Palaeoclimatic implications of high-resolution clay mineral assemblages preceding and across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin, Clay Miner., 51, 793–813, https://doi.org/10.1180/CLAYMIN.2016.051.5.08, 2016.
Kiehl, J. T. and Shields, C. A.: Sensitivity of the palaeocene-eocene thermal maximum climate to cloud properties, Philos. T. R. Soc. A, 371, 20130093, https://doi.org/10.1098/rsta.2013.0093, 2013.
Kiehl, J. T., Shields, C. A., Snyder, M. A., Zachos, J. C., and Rothstein, M.: Greenhouse- and orbital-forced climate extremes during the early Eocene, Philos. T. R. Soc. A, 376, 2130, https://doi.org/10.1098/RSTA.2017.0085, 2018.
Kiehl, J. T., Zarzycki, C. M., Shields, C. A., and Rothstein, M. V.: Simulated changes to tropical cyclones across the Paleocene-Eocene Thermal Maximum (PETM) boundary, Palaeogeogr. Palaeocl., 572, 110421, https://doi.org/10.1016/J.PALAEO.2021.110421, 2021.
Korasidis, V. A., Wing, S. L., Shields, C. A., and Kiehl, J. T.: Global Changes in Terrestrial Vegetation and Continental Climate During the Paleocene-Eocene Thermal Maximum, Paleoceanogr. Paleocl., 37, e2021PA004325, https://doi.org/10.1029/2021PA004325, 2022.
Kozdon, R., Penman, D. E., Kelly, D. C., Zachos, J. C., Fournelle, J. H., and Valley, J. W.: Enhanced Poleward Flux of Atmospheric Moisture to the Weddell Sea Region (ODP Site 690) During the Paleocene-Eocene Thermal Maximum, Paleoceanogr. Paleocl., 35, 1–14, https://doi.org/10.1029/2019pa003811, 2020.
Kraus, M. J. and Riggins, S.: Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming, Palaeogeogr. Palaeocl., 245, 444–461, https://doi.org/10.1016/j.palaeo.2006.09.011, 2007.
Krishnan, S., Pagani, M., Huber, M., and Sluijs, A.: High latitude hydrological changes during the Eocene Thermal Maximum 2, Earth Planet. Sc. Lett., 404, 167–177, https://doi.org/10.1016/j.epsl.2014.07.029, 2014.
Liu, B., Yan, Y., Zhu, C., Ma, S., and Li, J.: Record-Breaking Meiyu Rainfall Around the Yangtze River in 2020 Regulated by the Subseasonal Phase Transition of the North Atlantic Oscillation, Geophy.s Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342, 2020.
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017.
Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E. A., Kump, L. R., Polites, E. G., Self-Trail, J. M., Trampush, S. M., Vornlocher, J. R., Zachos, J. C., and Freeman, K. H.: Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation, Nat. Geosci., 12, 54–60, 2019.
Massoud, E. C., Espinoza, V., Guan, B., and Waliser, D. E.: Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers, Earths Future, 7, 1136–1151, https://doi.org/10.1029/2019EF001249, 2019.
Nicolo, M. J., Dickens, G. R., and Hollis, C. J.: South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum as depicted in New Zealand margin sections, Paleoceanography, 25, 1–12, https://doi.org/10.1029/2009PA001904, 2010.
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Damsté, J. S. S., Dickens, G. R., Backman, J., Clemens, S., Cronin, T., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Martinez, N. C., McInroy, D., Moore, T. C., O'Regan, M., Onodera, J., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., St John, K. E. K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., and Yamamoto, M.: Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum, Nature, 442, 671–675, https://doi.org/10.1038/nature05043, 2006.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide: II Biomarkers and Isotopes in Petroleum Systems and Earth History, 2nd Edn., Cambridge University Press, Cambridge, ISBN 9781107326040, https://doi.org/10.1017/CBO9781107326040, 2005.
Risser, M. D. and Wehner, M. F.: Attributable Human-Induced Changes in the Likelihood and Magnitude of the Observed Extreme Precipitation during Hurricane Harvey, Geophys. Res. Lett., 44, 12457–12464, https://doi.org/10.1002/2017GL075888, 2017.
Rush, W. D., Kiehl, J. T., Shields, C. A., and Zachos, J. C.: Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory, Palaeogeogr. Palaeocl., 568, 110289, https://doi.org/10.1016/j.palaeo.2021.110289, 2021.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Schmitz, B. and Pujalte, V.: Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain, Geology, 31, 689–692, https://doi.org/10.1130/G19527.1, 2003.
Self-Trail, J. M., Robinson, M. M., Bralower, T. J., Sessa, J. A., Hajek, E. A., Kump, L. R., Trampush, S. M., Willard, D. A., Edwards, L. E., Powars, D. S., and Wandless, G. A.: Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA, Paleoceanography, 32, 710–728, https://doi.org/10.1002/2017PA003096, 2017.
Shields, C. A., Kiehl, J. T., Rush, W., Rothstein, M., and Snyder, M. A.: Atmospheric rivers in high-resolution simulations of the Paleocene Eocene Thermal Maximum (PETM), Palaeogeogr. Palaeocl., 567, 110293, https://doi.org/10.1016/j.palaeo.2021.110293, 2021.
Simon Wang, S. Y., Yoon, J. H., Becker, E., and Gillies, R.: California from drought to deluge, Nat. Clim. Change, 7, 465–468, https://doi.org/10.1038/nclimate3330, 2017.
Slotnick, B. S., Dickens, G. R., Nicolo, M. J., Hollis, C. J., Crampton, J. S., Zachos, J. C., and Sluijs, A.: Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: The record at Mead Stream, New Zealand, J. Geol., 120, 487–505, https://doi.org/10.1086/666743, 2012.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26, GB4005, https://doi.org/10.1029/2011GB004224, 2012.
Smith, F. A., Wing, S. L., and Freeman, K. H.: Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change, Earth Planet. Sc. Lett., 262, 50–65, https://doi.org/10.1016/j.epsl.2007.07.021, 2007.
Stassen, P., Thomas, E., and Speijer, R. P.: The progression of environmental changes during the onset of the Paleocene-Eocene thermal maximum (New Jersey coastal plain), Austrian J. Earth Sc., 105, 169–178, 2012.
Stevenson, S., Coats, S., Touma, D., Cole, J., Lehner, F., Fasullo, J., and Otto-Bliesner, B.: Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes, P. Natl. Acad. Sci. USA, 119, e2108124119, https://doi.org/10.1073/pnas.2108124119, 2022.
Swain, D. L., Langenbrunner, B., Neelin, J. D., and Hall, A.: Increasing precipitation volatility in twenty-first-century California, Nat. Clim. Change, 8, 427–433, https://doi.org/10.1038/s41558-018-0140-y, 2018.
Tateo, F.: Clay minerals at the paleocene–eocene thermal maximum: Interpretations, limits, and perspectives, Minerals, 10, 1–16, https://doi.org/10.3390/min10121073, 2020.
Tipple, B. J., Pagani, M., Krishnan, S., Dirghangi, S. S., Galeotti, S., Agnini, C., Giusberti, L., and Rio, D.: Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene – Eocene Thermal Maximum (PETM), Earth Planet. Sc. Lett., 311, 82–92, https://doi.org/10.1016/j.epsl.2011.08.045, 2011.
Tipple, B. J., Berke, M. A., Doman, C. E., Khachaturyan, S., and Ehleringer, J. R.: Leaf-wax n-alkanes record the plant-water environment at leaf flush, P. Natl. Acad. Sci. USA, 110, 2659–2664, https://doi.org/10.1073/pnas.1213875110, 2013.
Tipple, B. J., Berke, M. A., Hambach, B., Roden, J. S., and Ehleringer, J. R.: Predicting leaf wax n-alkane ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig–Gordon model, Plant Cell Environ., 38, 1035–1047, https://doi.org/10.1111/PCE.12457, 2015.
Vogel, M. M., Hauser, M., and Seneviratne, S. I.: Projected changes in hot, dry and wet extreme events' clusters in CMIP6 multi-model ensemble, Environ. Res. Lett., 15, 094021, https://doi.org/10.1088/1748-9326/ab90a7, 2020.
Wakeham, S. G. and Pease, T. K.: Lipid Analysis in Marine Particle and Sediment Samples A Laboratory Handbook, Skidaway Institute of Oceanography, University of Georgia, https://www.skio.uga.edu/research/technical-reports/ (last access: 3 October 2023), 2004.
Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., and Livneh, B.: Large contribution from anthropogenic warming to an emerging North American megadrought, Science, 368, 314–318, 2020.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H.: Transient Floral Change and rapid global warming at the P/E boundary, Science, 310, 993–996, https://doi.org/10.1126/science.1116913, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., and Noone, D. C.: Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction, Earth Planet. Sc. Lett., 537, 116164, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Zscheischler, J. and Lehner, F.: Attributing Compound Events to Anthropogenic Climate Change, B. Am. Meteorol. Soc., 103, E936–E953, https://doi.org/10.1175/BAMS-D-21-0116.1, 2022.
Short summary
This study is motivated by the current anthropogenic-warming-forced transition in regional hydroclimate. We use observations and model simulations during the Paleocene–Eocene Thermal Maximum (PETM) to constrain the regional/local hydroclimate response. Our findings, based on multiple observational evidence within the context of model output, suggest a transition toward greater aridity and precipitation extremes in central California during the PETM.
This study is motivated by the current anthropogenic-warming-forced transition in regional...