Articles | Volume 19, issue 5
https://doi.org/10.5194/cp-19-915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dansgaard–Oeschger events in climate models: review and baseline Marine Isotope Stage 3 (MIS3) protocol
Irene Malmierca-Vallet
CORRESPONDING AUTHOR
British Antarctic Survey, Cambridge, UK
Louise C. Sime
British Antarctic Survey, Cambridge, UK
A full list of authors appears at the end of the paper.
Related authors
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Sentia Goursaud Oger, Louise C. Sime, and Max Holloway
Clim. Past, 20, 2539–2560, https://doi.org/10.5194/cp-20-2539-2024, https://doi.org/10.5194/cp-20-2539-2024, 2024
Short summary
Short summary
Antarctic ice cores provide information about past temperatures. Here, we run new climate model simulations, including stable water isotopes for the historical period. Across one-third of Antarctica, there is no strong connection between isotopes and temperature and a weak connection for most of the rest of Antarctica. This disconnect between isotopes and temperature is largely driven by changes in Antarctic sea ice. Our results are helpful for temperature reconstructions from ice core records.
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Qinggang Gao, Emilie Capron, Louise C. Sime, Rachael H. Rhodes, Rahul Sivankutty, Xu Zhang, Bette L. Otto-Bliesner, and Martin Werner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1261, https://doi.org/10.5194/egusphere-2024-1261, 2024
Short summary
Short summary
Marine sediment and ice core records suggest a warmer Southern Ocean and Antarctica at the early last interglacial, ~127 thousand years ago. However, when only forced by orbital parameters and greenhouse gas concentrations during that period, state-of-the-art climate models do not reproduce the magnitude of warming. Here we show that much of the warming at southern mid-to-high latitudes can be reproduced by a UK climate model HadCM3 with a 3000-year freshwater forcing over the North Atlantic.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Maria-Vittoria Guarino, Louise C. Sime, David Schroeder, Grenville M. S. Lister, and Rosalyn Hatcher
Geosci. Model Dev., 13, 139–154, https://doi.org/10.5194/gmd-13-139-2020, https://doi.org/10.5194/gmd-13-139-2020, 2020
Short summary
Short summary
When the same weather or climate simulation is run on different high-performance computing (HPC) platforms, model outputs may not be identical for a given initial condition. Here, we investigate the behaviour of the Preindustrial simulation prepared by the UK Met Office for the forthcoming CMIP6 under different computing environments. Discrepancies between the means of key climate variables were analysed at different timescales, from decadal to centennial.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
Related subject area
Subject: Climate Modelling | Archive: Ice Cores | Timescale: Millenial/D-O
Advances in conceptual modelling of the variable nature of Dansgaard-Oeschger events
Sea ice feedbacks influence the isotopic signature of Greenland ice sheet elevation changes: last interglacial HadCM3 simulations
Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments
Random and externally controlled occurrences of Dansgaard–Oeschger events
Quantifying molecular oxygen isotope variations during a Heinrich stadial
Natural periodicities and Northern Hemisphere–Southern Hemisphere connection of fast temperature changes during the last glacial period: EPICA and NGRIP revisited
Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core
Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP
TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica
Jonathan Ortved Melcher, Sune Halkjær, Peter Ditlevsen, Peter L. Langen, Guido Vettoretti, and Sune Olander Rasmussen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2156, https://doi.org/10.5194/egusphere-2024-2156, 2024
Short summary
Short summary
We introduce a new model that simulates Dansgaard-Oeschger events, dramatic and irregular climate shifts within past ice ages. The model consists of simplified equations inspired by ocean-current dynamics. We fine-tune this model to capture the Dansgaard-Oeschger events with unprecedented accuracy, providing deeper insights into past climate patterns. This helps us understand and predict complex climate changes, aiding future climate-change resilience efforts.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Johannes Lohmann and Peter D. Ditlevsen
Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, https://doi.org/10.5194/cp-14-609-2018, 2018
Short summary
Short summary
The climate of the last glacial period was frequently interrupted by rapid warming events, the cause of which is still unknown. One open question is whether the occurrence of events is random or externally controlled. We studied the temporal characteristics of warm and cold phases using statistical null models and find that they are well described as random processes modulated by two different external climate factors. This may help distinguish physical mechanisms for rapid climate change.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
T. Alberti, F. Lepreti, A. Vecchio, E. Bevacqua, V. Capparelli, and V. Carbone
Clim. Past, 10, 1751–1762, https://doi.org/10.5194/cp-10-1751-2014, https://doi.org/10.5194/cp-10-1751-2014, 2014
P. Kindler, M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, and M. Leuenberger
Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, https://doi.org/10.5194/cp-10-887-2014, 2014
M. Severi, R. Udisti, S. Becagli, B. Stenni, and R. Traversi
Clim. Past, 8, 509–517, https://doi.org/10.5194/cp-8-509-2012, https://doi.org/10.5194/cp-8-509-2012, 2012
D. Buiron, J. Chappellaz, B. Stenni, M. Frezzotti, M. Baumgartner, E. Capron, A. Landais, B. Lemieux-Dudon, V. Masson-Delmotte, M. Montagnat, F. Parrenin, and A. Schilt
Clim. Past, 7, 1–16, https://doi.org/10.5194/cp-7-1-2011, https://doi.org/10.5194/cp-7-1-2011, 2011
Cited articles
Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, 2015. a
Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M., Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.: Connecting the Greenland ice-core and U Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018. a
Alley, R., Clark, P., Keigwin, L., and Webb, R.: Making sense of
millennial-scale climate change, Geophysical Monograph, American Geophysical
Union, 112, 385–394, https://doi.org/10.1029/GM112p0385, 1999. a
Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, Th., Watanabe, O., Wilhelms, F., and White, J. W. C.:
High-resolution record of the Northern Hemisphere climate extending into the
last interglacial period, Nature, 431, 147–151, 2004. a
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M.,
Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J. P.,
Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland ice core chronology 2005, 15–42 ka.
Part 1: constructing the time scale, Quaternary Sci. Rev., 25,
3246–3257, 2006. a
Andrews, J. T. and Voelker, A. H.: “Heinrich events” (& sediments): A
history of terminology and recommendations for future usage, Quaternary
Sci. Rev., 187, 31–40, 2018. a
Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.:
Quantifying the influence of Atlantic heat on Barents Sea ice variability and
retreat, J. Climate, 25, 4736–4743, 2012. a
Asmerom, Y., Polyak, V. J., and Burns, S. J.: Variable winter moisture in the
southwestern United States linked to rapid glacial climate shifts,
Nat. Geosci., 3, 114–117, 2010. a
Barker, S. and Knorr, G.: Millennial scale feedbacks determine the shape and
rapidity of glacial termination, Nat. Commun., 12, 1–12, 2021. a
Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., and
Broecker, W. S.: Interhemispheric Atlantic seesaw response during the last
deglaciation, Nature, 457, 1097–1102, 2009. a
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner,
L. C., Wolff, E., and Ziegler, M.: 800,000 years of abrupt climate
variability, Science, 334, 347–351, 2011. a
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the
Barents Sea causes the Polar Front to limit the expansion of winter sea ice,
J. Phys. Oceanogr., 48, 1849–1866, 2018. a
Baumgartner, M., Kindler, P., Eicher, O., Floch, G., Schilt, A., Schwander, J., Spahni, R., Capron, E., Chappellaz, J., Leuenberger, M., Fischer, H., and Stocker, T. F.: NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core, Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, 2014. a
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J.,
Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S.: Evidence for massive
discharges of icebergs into the North Atlantic ocean during the last glacial
period, Nature, 360, 245–249, 1992. a
Bristol Research Initiative for the Dynamic Global Environment (BRIDGE): Earth Systems Modelling within Bridge. A Database of Model Simulations, https://www.paleo.bristol.ac.uk/resources/simulations/, last access: 12 April 2023. a
Broecker, W. and Peteet, D.: Does the ocean-atmosphere system have more than
one stable mode of operation?, Nature, 315, 21–26, https://doi.org/10.1038/315021a0,
1985. a
Broecker, W. S.: Massive iceberg discharges as triggers for global climate
change, Nature, 372, 421–424, 1994. a
Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton,
M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., Praetorius, S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M., Gallopín, G., Iglesias, V., Kaufman, D. S., Kleinen, T., Lambert, F., van der Leeuw, S., Liddy, H., Loutre, M., McGee, D., Rehfeld, K., Rhodes, R., Seddon, A. W. R., Trauth, M. H., Vanderveken, L., and Yu, Z.: Past
abrupt changes, tipping points and cascading impacts in the Earth system,
Nat. Geosci., 14, 550–558, 2021. a, b, c
Brugger, J., Hofmann, M., Petri, S., and Feulner, G.: On the sensitivity of the
Devonian climate to continental configuration, vegetation cover, orbital
configuration, CO2 concentration, and insolation,
Paleoceanography and Paleoclimatology, 34, 1375–1398, 2019.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A review,
Rev. Geophys., 54, 5–63, 2016. a
Chappell, J.: Sea level changes forced ice breakouts in the Last Glacial cycle:
new results from coral terraces, Quaternary Sci. Rev., 21, 1229–1240,
2002. a
Clague, J. J. and Ward, B.: Pleistocene Glaciation of British Columbia, in:
Quaternary Glaciations – Extent and Chronology A Closer Look, edited by:
Ehlers, J., Gibbard, P. L., and Hughes, P. D., vol. 15 of Developments
in Quaternary Sciences, chap. 44, 563–573, Elsevier,
https://doi.org/10.1016/B978-0-444-53447-7.00044-1, 2011. a, b
Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J.: The role of the
thermohaline circulation in abrupt climate change, Nature, 415, 863–869,
2002. a
Clark, P. U., Hostetler, S. W., Pisias, N. G., Schmittner, A., and Meissner,
K. J.: Mechanisms for an 7-kyr climate and sea-level oscillation during
marine isotope stage 3, Geophysical Monograph, American Geophysical Union,
173, 209, https://doi.org/10.1029/173GM15, 2007. a, b
Cook, K. H. and Held, I. M.: Stationary waves of the ice age climate, J. Climate, 1, 807–819, 1988. a
Dalton, A. S., Finkelstein, S. A., Barnett, P. J., and Forman, S. L.:
Constraining the Late Pleistocene history of the Laurentide Ice Sheet by
dating the Missinaibi Formation, Hudson Bay Lowlands, Canada, Quaternary
Sci. Rev., 146, 288–299, 2016. a
Dalton, A. S., Väliranta, M., Barnett, P. J., and Finkelstein, S. A.:
Pollen and macrofossil-inferred palaeoclimate at the Ridge Site, Hudson Bay
Lowlands, Canada: evidence for a dry climate and significant recession of the
Laurentide Ice Sheet during Marine Isotope Stage 3, Boreas, 46, 388–401,
2017. a
Dalton, A. S., Pico, T., Gowan, E. J., Clague, J. J., Forman, S. L., McMartin,
I., Sarala, P., and Helmens, K. F.: The marine δ18O record
overestimates continental ice volume during Marine Isotope Stage 3,
Global Planet. Change, 103814, https://doi.org/10.1016/j.gloplacha.2022.103814, 2022. a, b
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C., Johnsen, S.,
Kristinsdottir, P., and Reeh, N.: A new Greenland deep ice core, Science,
218, 1273–1277, 1982. a
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic, C.:
Toward global maps of internal tide energy sinks, Ocean Modell., 137,
52–75, 2019. a
Ditlevsen, P. D. and Johnsen, S. J.: Tipping points: early warning and wishful
thinking, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044486, 2010. a
Ditlevsen, P. D., Kristensen, M. S., and Andersen, K. K.: The recurrence time
of Dansgaard-Oeschger events and limits on the possible periodic component,
J. Climate, 18, 2594–2603, 2005. a
Ditlevsen, P. D., Andersen, K. K., and Svensson, A.: The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle, Clim. Past, 3, 129–134, https://doi.org/10.5194/cp-3-129-2007, 2007. a
Dowdeswell, J., Maslin, M., Andrews, J., and McCave, I.: Iceberg production,
debris rafting, and the extent and thickness of Heinrich layers (H-1, H-2) in
North Atlantic sediments, Geology, 23, 301–304, 1995. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Feulner, G., Rahmstorf, S., Levermann, A., and Volkwardt, S.: On the
Origin of the Surface Air Temperature Difference between the Hemispheres in
Earth's Present-Day Climate, J. Climate, 26, 7136–7150,
https://doi.org/10.1175/JCLI-D-12-00636.1, 2013. a
Gasson, E., DeConto, R. M., and Pollard, D.: Modeling the oxygen isotope
composition of the Antarctic ice sheet and its significance to Pliocene sea
level, Geology, 44, 827–830, 2016. a
Gauthier, M. S. and Hodder, T. J.: Surficial geology mapping from Manigotagan
to Berens River, southeastern Manitoba (parts of NTS 62P1, 7, 8, 10, 15,
63A2, 7), Report of Activities 2020, Manitoba Agriculture and Resource
Development, Manitoba Geological Survey, 41–46, https://www.manitoba.ca/iem/geo/field/roa20pdfs/GS2020-6.pdf (last access: 28 April 2023), 2020. a
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and
Van-Exter, S.: Precise dating of Dansgaard–Oeschger climate oscillations in
western Europe from stalagmite data, Nature, 421, 833–837, 2003. a
Goni, M. F. S. and Harrison, S. P.: Millennial-scale climate variability and
vegetation changes during the Last Glacial: Concepts and terminology,
Quaternary Sci. Rev., 29, 2823–2827, 2010. a
Gowan, E. J.: Global ice sheet reconstruction for the past 80000 years, PANGAEA, https://doi.org/10.1594/PANGAEA.905800, 2019. a
Grant, K., Rohling, E., Ramsey, C. B., Cheng, H., Edwards, R., Florindo, F.,
Heslop, D., Marra, F., Roberts, A., Tamisiea, M. E., and Williams, F.: Sea-level
variability over five glacial cycles, Nat. Commun., 5, 1–9, 2014. a
Guo, C., Bentsen, M., Bethke, I., Ilicak, M., Tjiputra, J., Toniazzo, T., Schwinger, J., and Otterå, O. H.: Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, 2019a. a
Heinrich, H.: Origin and consequences of cyclic ice rafting in the northeast
Atlantic Ocean during the past 130,000 years, Quaternary Res., 29,
142–152, 1988. a
Hofer, D., Raible, C. C., Dehnert, A., and Kuhlemann, J.: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region, Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, 2012. a
Holden, P. B., Edwards, N., Oliver, K., Lenton, T., and Wilkinson, R.: A
probabilistic calibration of climate sensitivity and terrestrial carbon
change in GENIE-1, Clim. Dynam., 35, 785–806, 2010. a
Huisman, S. E., Den Toom, M., Dijkstra, H. A., and Drijfhout, S.: An indicator
of the multiple equilibria regime of the Atlantic meridional overturning
circulation, J. Phys. Oceanogr., 40, 551–567, 2010. a
Hulbe, C. L.: An ice shelf mechanism for Heinrich layer production,
Paleoceanography, 12, 711–717, 1997. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., Tech. Rep. 5, Intergovernmental Panel on Climate Change,
Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013. a
Jackson, L. and Vellinga, M.: Multidecadal to centennial variability of the
AMOC: HadCM3 and a perturbed physics ensemble, J. Climate, 26,
2390–2407, 2013. a
Jacobel, A., McManus, J., Anderson, R., and Winckler, G.: Climate-related
response of dust flux to the central equatorial Pacific over the past 150
kyr, Earth Planet. Sci. Lett., 457, 160–172, 2017. a
Johnsen, S., Clausen, H., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer,
C., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.: Irregular glacial
interstadials recorded in a new Greenland ice core, Nature, 359, 311–313,
1992. a
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen,
H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and
White, J.: Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP,
J. Quaternary Sci., 16, 299–307, 2001. a
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and Von Storch, J.: Characteristics of the ocean
simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model,
J. Adv. Model. Earth Sy., 5, 422–446, 2013. a
Justino, F. and Peltier, W. R.: The glacial North Atlantic Oscillation,
Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL023822, 2005. a
Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., and X Zhang: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, 2013. a, b
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017. a, b, c
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018. a
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021a. a, b, c, d
Kageyama, M., Sime, L. C., Sicard, M., Guarino, M.-V., de Vernal, A., Stein, R., Schroeder, D., Malmierca-Vallet, I., Abe-Ouchi, A., Bitz, C., Braconnot, P., Brady, E. C., Cao, J., Chamberlain, M. A., Feltham, D., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P., Nisancioglu, K. H., Otto-Bliesner, B. L., O'ishi, R., Ramos Buarque, S., Salas y Melia, D., Sherriff-Tadano, S., Stroeve, J., Shi, X., Sun, B., Tomas, R. A., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., Zheng, W., and Ziehn, T.: A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences, Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, 2021b. a
Kawamura, K., Abe-Ouchi, A., Motoyama, H., Ageta, Y., Aoki, S., Azuma, N.,
Fujii, Y., Fujita, K., Fujita, S., Fukui, K., Furukawa, T., Furusaki, A., Goto-Azuma, K., Greve, R., Hirabayashi, M., Hondoh, T., Hori, A.,
Horikawa, S., Horiuchi, K., Igarashi, M., Iizuka, Y., Kameda, T., Kanda, H., Kohno, M., Kuramoto, T., Matsushi, Y., Miyahara, M., Miyake, T., Miyamoto, A., Nagashima, Y., Nakayama, Y., Nakazawa, T., Nakazawa, F., Nishio, F., Obinata, I., Ohgaito, R., Oka, A., Okuno, J., Okuyama, J., Oyabu, I., Parrenin, F., Pattyn, F., Saito, F., Saito, T., Saito, T., Sakurai, T., Sasa, K., Seddik, H., Shibata, Y., Shinbori, K., Suzuki, K., Suzuki, T., Takahashi, A., Takahashi, K., Takahashi, S., Takata, M., Tanaka, Y., Uemura, R., Watanabe, G., Watanabe, O., Yamasaki, T., Yokoyama, K., Yoshimori, M., and Yoshimoto, T.: State dependence of
climatic instability over the past 720,000 years from Antarctic ice cores and
climate modeling, Sci. Adv., 3, e1600446, https://doi.org/10.1126/sciadv.1600446, 2017. a, b, c, d
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A. P., Hättestrand, C.,
Alm, G., and Glasser, N.: North American ice sheet build-up during the last
glacial cycle, 115–21 kyr, Quaternary Sci. Rev., 29, 2036–2051, 2010. a
Klockmann, M., Mikolajewicz, U., and Marotzke, J.: The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model, Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, 2016. a
Klockmann, M., Mikolajewicz, U., Kleppin, H., and Marotzke, J.: Coupling of the
subpolar gyre and the overturning circulation during abrupt glacial climate
transitions, Geophys. Res. Lett., 47, e2020GL090361, https://doi.org/10.1029/2020GL090361, 2020. a, b, c
Knorr, G., Barker, S., Zhang, X., Lohmann, G., Gong, X., Gierz, P., Stepanek,
C., and Stap, L. B.: A salty deep ocean as a prerequisite for glacial
termination, Nat. Geosci., 14, 930–936, 2021. a
Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M., and Fischer, H.: Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica, Clim. Past, 8, 609–623, https://doi.org/10.5194/cp-8-609-2012, 2012. a
Landais, A., Barnola, J., Masson-Delmotte, V., Jouzel, J., Chappellaz, J.,
Caillon, N., Huber, C., Leuenberger, M., and Johnsen, S.: A continuous record
of temperature evolution over a sequence of Dansgaard-Oeschger events during
Marine Isotopic Stage 4 (76 to 62 kyr BP), Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL021193, 2004. a, b
Lang, C., Leuenberger, M., Schwander, J., and Johnsen, S.: 16 ∘C rapid
temperature variation in central Greenland 70,000 years ago, Science, 286,
934–937, 1999. a
Larter, R. D., Anderson, J. B., Graham, A. G., Gohl, K., Hillenbrand, C.-D.,
Jakobsson, M., Johnson, J. S., Kuhn, G., Nitsche, F. O., Smith, J. A., Witus, A. E., Bentley, M. J., Dowdeswell, J. A., Ehrmann, W., Klages, J. P., Lindow, J., Cofaigh, C. Ó, and Spiegel, C.: Reconstruction of changes in the Amundsen Sea and Bellingshausen sea
sector of the West Antarctic ice sheet since the last glacial maximum,
Quaternary Sci. Rev., 100, 55–86, 2014. a
Levine, R. C. and Bigg, G. R.: Sensitivity of the glacial ocean to Heinrich
events from different iceberg sources, as modeled by a coupled
atmosphere-iceberg-ocean model, Paleoceanography, 23, https://doi.org/10.1029/2008PA001613, 2008. a
Lhardy, F., Bouttes, N., Roche, D. M., Crosta, X., Waelbroeck, C., and Paillard, D.: Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis, Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, 2021. a
Li, C. and Battisti, D. S.: Reduced Atlantic storminess during Last Glacial
Maximum: Evidence from a coupled climate model, J. Climate, 21,
3561–3579, 2008. a
Li, C., Battisti, D., Schrag, D., and Tziperman, E.: Abrupt climate shifts in
greeland due to displacements of the sea ice edge, Geophys. Res. Lett., 32, L19702, https://doi.org/10.1029/2005GL023492, 2005. a, b
Li, C., Battisti, D., and Bitz, C.: Can North Atlantic sea ice anomalies
account for Dansgaard-Oeschger climate signals?, J. Climate, 23, 5457–5475,
https://doi.org/10.1175/2010JCLI3409.1, 2010. a, b
Liu, Z., Otto-Bliesner, B., He, F., Brady, E., Tomas, R., Clark, P., A.E., C.,
Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach,
J., and Cheng, J.: Transient simulation of last deglaciation with a new
mechanism for Bolling-Allerod warming, Science, 325, 310–314,
https://doi.org/10.1126/science.1171041, 2009. a
Löfverström, M., Caballero, R., Nilsson, J., and Kleman, J.: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle, Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, 2014. a
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt climate
and weather changes across time scales, Paleoceanography and
Paleoclimatology, 35, e2019PA003782, https://doi.org/10.1029/2019PA003782, 2020. a
Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, 2018. a, b
Lohmann, J. and Ditlevsen, P. D.: Objective extraction and analysis of statistical features of Dansgaard–Oeschger events, Clim. Past, 15, 1771–1792, https://doi.org/10.5194/cp-15-1771-2019, 2019. a, b
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric CH4 over the past
800,000 years, Nature, 453, 383–386, 2008. a
Lynch-Stieglitz, J.: The Atlantic meridional overturning circulation and abrupt
climate change, Annu. Rev. Mar. Sci., 9, 83–104, 2017. a
MacAyeal, D.: A low-order model of the Heinrich event cycle, Paleoceanography,
8, 767–773, 1993. a
Madonna, E., Li, C., Grams, C. M., and Woollings, T.: The link between
eddy-driven jet variability and weather regimes in the North
Atlantic-European sector, Q. J. Roy. Meteor. Soc., 143, 2960–2972, 2017. a
Manabe, S. and Broccoli, A.: The influence of continental ice sheets on the
climate of an ice age, J. Geophys. Res.-Atmos., 90,
2167–2190, 1985. a
Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P., Springer, S. R.,
Liu, Z., Otto-Bliesner, B. L., Carlson, A. E., Ungerer, A., Padman, J., He, F., Cheng, J., and Schmittner, A.: Ice-shelf collapse from subsurface warming as a trigger for Heinrich
events, P. Natl. Acad. Sci. USA, 108,
13415–13419, 2011. a
Marshall, S. J. and Clarke, G. K.: A continuum mixture model of ice stream
thermomechanics in the Laurentide Ice Sheet 2. Application to the Hudson
Strait Ice Stream, J. Geophys. Res.-Sol. Ea., 102,
20615–20637, 1997. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S. Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the
MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to
increasing CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
2019. a
McMartin, I., Campbell, J. E., and Dredge, L. A.: Middle Wisconsinan marine
shells near Repulse Bay, Nunavut, Canada: implications for Marine Isotope
Stage 3 ice-free conditions and Laurentide Ice Sheet dynamics in north-west
Hudson Bay, J. Quaternary Sci., 34, 64–75, 2019. a
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Global Climate Projections, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. a
Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing, Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, 2014. a
Merz, N., Raible, C. C., and Woollings, T.: North Atlantic eddy-driven jet in
interglacial and glacial winter climates, J. Climate, 28, 3977–3997,
2015. a
Met Office: Met Office Unified Model [code], https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership, last access: 12 April 2023. a
Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt
millennial-scale climate changes: a statistical modelling study, Clim.
Dynam., 48, 2729–2749, 2017. a
Montoya, M., Born, A., and Levermann, A.: Reversed North Atlantic gyre dynamics
in present and glacial climates, Clim. Dynam., 36, 1107–1118, 2011. a
NGRIP Project Members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004. a
Nilsson, J., Broström, G., and Walin, G.: The thermohaline circulation and
vertical mixing: Does weaker density stratification give stronger
overturning?, J. Phys. Oceanogr., 33, 2781–2795, 2003. a
Ohgaito, R., Yamamoto, A., Hajima, T., O'ishi, R., Abe, M., Tatebe, H., Abe-Ouchi, A., and Kawamiya, M.: PMIP4 experiments using MIROC-ES2L Earth system model, Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, 2021. a
Oliver, K. I. C. and Edwards, N. R.: Location of potential energy sources and
the export of dense water from the Atlantic Ocean, Geophys. Res. Lett., 35, L22604, https://doi.org/10.1029/2008GL035537, 2008. a
Pausata, F. S. R., Li, C., Wettstein, J. J., Nisancioglu, K. H., and Battisti, D. S.: Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison, Clim. Past, 5, 489–502, https://doi.org/10.5194/cp-5-489-2009, 2009. a
Pausata, F. S. R., Li, C., Wettstein, J. J., Kageyama, M., and Nisancioglu, K. H.: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period, Clim. Past, 7, 1089–1101, https://doi.org/10.5194/cp-7-1089-2011, 2011. a
Pedro, J., Andersson, C., Vettoretti, G., Voelker, A., Waelbroeck, C., Dokken,
T. M., Jensen, M. F., Rasmussen, S., Sessford, E., Jochum, M., and Nisancioglu, K. H.:
Dansgaard-Oeschger and Heinrich event temperature anomalies in the North
Atlantic set by sea ice, frontal position and thermocline structure,
Quaternary Sci. Rev., 289, 107599, https://doi.org/10.1016/j.quascirev.2022.107599, 2022. a, b, c, d, e
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M.,
Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.:
Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of
the Arctic Ocean, Science, 356, 285–291, 2017. a
Rahmstorf, S.: Bifurcations of the Atlantic thermohaline circulation in
response to changes in the hydrological cycle, Nature, 378, 145–149, 1995. a
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years,
Nature, 419, 207–214, https://doi.org/10.1038/nature01090, 2002. a
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J. Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last
Glacial period based on three synchronized Greenland ice-core records:
refining and extending the INTIMATE event stratigraphy,
Quaternary Sci. Rev., 106, 14–28, 2014. a, b, c
Rasmussen, T. L. and Thomsen, E.: The role of the North Atlantic Drift in the
millennial timescale glacial climate fluctuations,
Palaeogeogr. Palaeocl., 210, 101–116, 2004. a
Rind, D., Schmidt, G. A., Jonas, J., Miller, R., Nazarenko, L., Kelley, M., and
Romanski, J.: Multicentury instability of the Atlantic meridional circulation
in rapid warming simulations with GISS ModelE2,
J. Geophys. Res.-Atmos., 123, 6331–6355, 2018.
Roche, D. M., Wiersma, A. P., and Renssen, H.: A systematic study of the impact
of freshwater pulses with respect to different geographical locations,
Clim. Dynam., 34, 997–1013, 2010. a
Rohling, E. J., Marsh, R., Wells, N. C., Siddall, M., and Edwards, N. R.:
Similar meltwater contributions to glacial sea level changes from Antarctic
and northern ice sheets, Nature, 430, 1016–1021, 2004. a
Romé, Y. M., Ivanovic, R. F., Gregoire, L. J., Sherriff-Tadano, S., and
Valdes, P. J.: Millennial-scale climate oscillations triggered by deglacial
meltwater discharge in last glacial maximum simulations, Paleoceanography and
Paleoclimatology, e2022PA004451, https://doi.org/10.1029/2022PA004451, 2022. a
Rousseau, D.-D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F.,
Taylor, S., and Antoine, P.: (MIS3 & 2) millennial oscillations in Greenland
dust and Eurasian aeolian records–A paleosol perspective, Quaternary Sci. Rev., 169, 99–113, 2017. a
Rousseau, D.-D., Bagniewski, W., and Ghil, M.: Abrupt climate changes and the astronomical theory: are they related?, Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022, 2022. a
Samelson, R.: Simple mechanistic models of middepth meridional overturning, J.
Phys. Oceanogr., 34, 2096–2103, 2004. a
Sanchez Goñi, M. F. and Harrison, S. P.: Millennial-scale climate
variability and vegetation changes during the Last Glacial: Concepts and
terminology, Quaternary Sci. Rev., 29, 2823–2827, 2010. a
Sánchez Goñi, M. F., Desprat, S., Daniau, A.-L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., Allen, J. R. M., Anderson, R. S., Behling, H., Bonnefille, R., Burjachs, F., Carrión, J. S., Cheddadi, R., Clark, J. S., Combourieu-Nebout, N., Mustaphi, Colin. J. Courtney, Debusk, G. H., Dupont, L. M., Finch, J. M., Fletcher, W. J., Giardini, M., González, C., Gosling, W. D., Grigg, L. D., Grimm, E. C., Hayashi, R., Helmens, K., Heusser, L. E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B., Jiménez-Moreno, G., Kawai, S., Kershaw, A. P., Kumon, F., Lawson, I. T., Ledru, M.-P., Lézine, A.-M., Liew, P. M., Magri, D., Marchant, R., Margari, V., Mayle, F. E., McKenzie, G. M., Moss, P., Müller, S., Müller, U. C., Naughton, F., Newnham, R. M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K. H., Rucina, S. M., Scott, L., Takahara, H., Tzedakis, P. C., Urrego, D. H., van Geel, B., Valencia, B. G., Vandergoes, M. J., Vincens, A., Whitlock, C. L., Willard, D. A., and Yamamoto, M.: The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period, Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, 2017. a
Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E., Chappellaz,
J., Loulergue, L., Schüpbach, S., Spahni, R., Fischer, H., and Stocker, T. F.:
Atmospheric nitrous oxide during the last 140,000 years, Earth Planet. Sc. Lett., 300, 33–43, 2010. a
Schulz, M., Berger, W. H., Sarnthein, M., and Grootes, P. M.: Amplitude
variations of 1470-year climate oscillations during the last 100,000 years
linked to fluctuations of continental ice mass, Geophys. Res. Lett.,
26, 3385–3388, 1999. a
Seager, R. and Battisti, D. S.: Challenges to our understanding of the general
circulation: Abrupt climate change, Global Circulation of the Atmosphere,
331–371, https://doi.org/10.1515/9780691236919-014, 2007. a
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,
E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.:
Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores
for the past 104 ka reveal regional millennial-scale δ18O gradients
with possible Heinrich event imprint, Quaternary Sci. Rev., 106,
29–46, 2014. a
Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Dufresne, J.-L., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations, Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, 2020. a
Siddall, M., Rohling, E. J., Thompson, W. G., and Waelbroeck, C.: Marine
isotope stage 3 sea level fluctuations: Data synthesis and new outlook,
Rev. Geophys., 46, https://doi.org/10.1029/2007RG000226, 2008. a
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S.,
Dethloff, K., Dorn, W., Fieg, K., Gößling, H. F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang, Q.: Towards
multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model
formulation and mean climate, Clim. Dynam., 44, 757–780, 2015. a, b, c
Sidorenko, D., Goessling, H. F., Koldunov, N., Scholz, P., Danilov, S., Barbi,
D., Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S., Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler, T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H., and Jung T.: Evaluation of
FESOM2. 0 coupled to ECHAM6. 3: preindustrial and HighResMIP simulations,
J. Adv. Model. Earth Sy., 11, 3794–3815, 2019. a
Sime, L. C., Hopcroft, P. O., and Rhodes, R. H.: Impact of abrupt sea ice loss
on Greenland water isotopes during the last glacial period, P. Natl. Acad. Sci. USA, 116,
4099–4104, https://doi.org/10.1073/pnas.1807261116, 2019. a, b, c
Singh, H. A., Battisti, D. S., and Bitz, C. M.: A heuristic model of
Dansgaard–Oeschger cycles. Part I: Description, results, and sensitivity
studies, J. Climate, 27, 4337–4358, 2014. a
Spolaor, A., Vallelonga, P., Turetta, C., Maffezzoli, N., Cozzi, G., Gabrieli,
J., Barbante, C., Goto-Azuma, K., Saiz-Lopez, A., Cuevas, C. A., and Dahl-Jensen, D.:
Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice
core, Sci. Rep., 6, 33925, https://doi.org/10.1038/srep33925, 2016. a
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the
bipolar seesaw, Paleoceanography, 18, https://doi.org/10.1029/2003PA000920, 2003. a
Stouffer, R. J., Yin, J., Gregory, J., Dixon, K., Spelman, M., Hurlin, W.,
Weaver, A., Eby, M., Flato, G., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., and Weber, S. L.: Investigating the causes
of the response of the thermohaline circulation to past and future climate
changes, J. Climate, 19, 1365–1387, 2006. a, b
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated
distribution of deglacial chronologies for the North American ice complex
from glaciological modeling, Earth Planet. Sci. Lett., 315,
30–40, 2012. a
Tesi, T., Muschitiello, F., Mollenhauer, G., Miserocchi, S., Langone, L.,
Ceccarelli, C., Panieri, G., Chiggiato, J., Nogarotto, A., Hefter, J., Ingrosso, G., Giglio, F., Giordano, P., and Capotondi, L.: Rapid Atlantification along the Fram Strait at the beginning of the
20th century, Sci. Adv., 7, eabj2946, https://doi.org/10.1126/sciadv.abj2946, 2021. a
Thomas, E. R., Wolff, E. W., Mulvaney, R., Johnsen, S. J., Steffensen, J. P.,
and Arrowsmith, C.: Anatomy of a Dansgaard-Oeschger warming transition:
High-resolution analysis of the North Greenland Ice Core Project ice core,
J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD011215, 2009. a
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen,
C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584,
569–573, 2020. a
Turner, J. and Marshall, G. J.: Climate change in the polar regions, Cambridge
University Press, https://doi.org/10.1017/CBO9780511975431, 2011. a
Tzedakis, P., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced climate instability in the North Atlantic and
southern Europe during the Last Interglacial, Nat. Commun., 9,
1–14, 2018. a, b, c
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014. a
Uriarte, A.: Historia del Clima de la Tierra. Servicio Central de Publicaciones
del Gobierno Vasco, 2009, 306 p., ISBN 84-457-2079-1, 2019. a
Valdes, P.: Built for stability, Nat. Geosci., 4, 414–416, 2011. a
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, 2017. a
van der Schrier, G., Drijfhout, S. S., Hazeleger, W., and Noulin, L.: Increasing the
Atlantic subtropical jet cools the circum-North Atlantic region, Meteorol. Z., 16, 675e684, https://doi.org/10.1127/0941-2948/2007/0252, 2007. a
Vanneste, H., De Vleeschouwer, F., Martínez-Cortizas, A., Von Scheffer,
C., Piotrowska, N., Coronato, A., and Le Roux, G.: Late-glacial elevated dust
deposition linked to westerly wind shifts in southern South America,
Sci. Rep., 5, 1–10, 2015. a
Voelker, A. H.: Global distribution of centennial-scale records for
Marine Isotope Stage (MIS) 3: a database, Quaternary Sci. Rev., 21,
1185–1212, 2002. a
Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov,
V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., Iakovlev, N. G.,
Shestakova, A. A., and Emelina, S. V.: Simulation of the modern climate using the
INM-CM48 climate model, Russ. J. Numer. Anal. M., 33, 367–374, 2018. a
Wagner, J. D., Cole, J. E., Beck, J. W., Patchett, P. J., Henderson, G. M., and
Barnett, H. R.: Moisture variability in the southwestern United States linked
to abrupt glacial climate change, Nat. Geosci., 3, 110–113, 2010. a
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart,
P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern Brazil
over the past 210 kyr linked to distant climate anomalies, Nature, 432,
740–743, 2004. a
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J.,
Jiang, X., Wang, X., and An, Z.: Millennial-and orbital-scale changes in the
East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093,
2008. a
Welander, P.: A simple heat-salt oscillator, Dynamics of Atmospheres and
Oceans, 6, 233–242, 1982. a
Wunsch, C.: Abrupt climate change: An alternative view, Quaternary Res.,
65, 191–203, 2006. a
Zhang, X. and Prange, M.: Stability of the Atlantic overturning circulation
under intermediate (MIS3) and full glacial (LGM) conditions and its
relationship with Dansgaard-Oeschger climate variability, Quaternary Sci.
Rev., 242, 106443, https://doi.org/10.1016/j.quascirev.2020.106443, 2020. a, b, c, d, e, f, g, h
Zhang, X., Lohmann, G., Knorr, G., and Xu, X.: Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation, Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, 2013. a
Short summary
Greenland ice core records feature Dansgaard–Oeschger (D–O) events, abrupt warming episodes followed by a gradual-cooling phase during mid-glacial periods. There is uncertainty whether current climate models can effectively represent the processes that cause D–O events. Here, we propose a Marine Isotopic Stage 3 (MIS3) baseline protocol which is intended to provide modelling groups investigating D–O oscillations with a common framework.
Greenland ice core records feature Dansgaard–Oeschger (D–O) events, abrupt warming episodes...