Articles | Volume 19, issue 8
https://doi.org/10.5194/cp-19-1623-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1623-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Centre for Planetary Habitability, Department of Geosciences,
University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Ella W. Stokke
Centre for Planetary Habitability, Department of Geosciences,
University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Alan D. Rooney
Department of Earth and Planetary Sciences, Yale University, P.O. Box
208109, New Haven, CT 06520-8109, USA
Joost Frieling
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, UK
Philip A. E. Pogge von Strandmann
Mainz Isotope and Geochemistry Centre (MIGHTY), Institute of
Geosciences, Johannes Gutenberg University, 55122 Mainz, Germany
London Geochemistry and Isotope Centre (LOGIC), Institute of Earth
and Planetary Sciences, University College London and Birkbeck, University
of London, Gower Street, London, WC1E 6BT, UK
David J. Wilson
London Geochemistry and Isotope Centre (LOGIC), Institute of Earth
and Planetary Sciences, University College London and Birkbeck, University
of London, Gower Street, London, WC1E 6BT, UK
Henrik H. Svensen
Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway
Sverre Planke
Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway
Volcanic Basin Petroleum Research (VBPR AS), Høienhald,
Blindernveien 5, 0361 Oslo, Norway
Thierry Adatte
Institute of Earth Sciences, University of Lausanne, 1015 Lausanne,
Switzerland
Nicolas Thibault
Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen K, Denmark
Madeleine L. Vickers
Centre for Planetary Habitability, Department of Geosciences,
University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Tamsin A. Mather
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, UK
Christian Tegner
Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
Valentin Zuchuat
Palaeontology and Geological Institute, Aachen University,
Bergbaugebäude 1140, Wüllnerstraße 2, Aachen, Germany
Bo P. Schultz
Museum Salling – Fur Museum, 7884 Fur, Denmark
Related authors
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabelle A. Taylor, Elisa Carboni, Lucy J. Ventress, Tamsin A. Mather, and Roy G. Grainger
Atmos. Meas. Tech., 12, 3853–3883, https://doi.org/10.5194/amt-12-3853-2019, https://doi.org/10.5194/amt-12-3853-2019, 2019
Short summary
Short summary
Volcanic ash is a hazard associated with volcanoes. Knowing an ash cloud’s location is essential for minimising the hazard. This includes knowing the height. This study adapted a well-known technique for obtaining the height of meteorological clouds, known as CO2 slicing, for volcanic ash. Modelled data were used to refine the method and then demonstrate that the technique could work for volcanic ash. It was then successfully applied to data from the Eyjafjallajökull and Grímsvötn eruptions.
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Dougal A. Jerram, John M. Millett, Jochem Kück, Donald Thomas, Sverre Planke, Eric Haskins, Nicole Lautze, and Simona Pierdominici
Sci. Dril., 25, 15–33, https://doi.org/10.5194/sd-25-15-2019, https://doi.org/10.5194/sd-25-15-2019, 2019
Short summary
Short summary
This contribution highlights a combined research effort to collect a combined core and down-borehole geophysics data set on two boreholes from the main island on Hawaii. The results represent one of the most complete data sets of fully cored volcanics with associated borehole measurements, which can be confidently matched directly between remote data and core. The data set and results of this study include findings which should enable improved borehole facies analysis through volcanic sequences.
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019, https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
Short summary
The 2014–2015 Holuhraun eruption was the largest in Iceland for 200 years, emitting huge quantities of gas into the troposphere, at times overwhelming European anthropogenic emissions. Infrared Atmospheric sounding Interferometer data are used to derive the first time series of daily sulfur dioxide mass and vertical distribution over the eruption period. A scheme is used to estimate sulfur dioxide fluxes, the total erupted mass, and how long the sulfur dioxide remains in the atmosphere.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Elisa Carboni, Roy G. Grainger, Tamsin A. Mather, David M. Pyle, Gareth E. Thomas, Richard Siddans, Andrew J. A. Smith, Anu Dudhia, Mariliza E. Koukouli, and Dimitrios Balis
Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, https://doi.org/10.5194/acp-16-4343-2016, 2016
Short summary
Short summary
The Infrared Atmospheric Sounding Interferometer (IASI) can be used to study volcanic emission of sulfur dioxide (SO2), returning both SO2 amount and altitude data. The series of analyzed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grimsvotn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause. This tendency was independent of the maximum amount of SO2 and of the volcanic explosive index.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Variations in the biological pump throughout the Miocene: evidence from organic carbon burial in Pacific Ocean sediments
Precise dating of deglacial Laptev Sea sediments via 14C and authigenic 10Be∕9Be – assessing local 14C reservoir ages
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past, 20, 2685–2700, https://doi.org/10.5194/cp-20-2685-2024, https://doi.org/10.5194/cp-20-2685-2024, 2024
Short summary
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Abdelmalak, M. M., Planke, S., Faleide, J. I., Jerram, D. A., Zastrozhnov, D.,
Eide, S., and Myklebust, R.: The development of volcanic sequences at rifted
margins: New insights from the structure and morphology of the Vøring
Escarpment, mid-Norwegian Margin, J. Geophys. Res.-Sol.
Ea., 121, 5212–5236, 2016.
Anell, I., Thybo, H., and Rasmussen, E.: A synthesis of Cenozoic
sedimentation in the North Sea, Basin Res., 24, 154–179, 2012.
Ayris, P. and Delmelle, P.: Volcanic and atmospheric controls on ash iron solubility: A review, Phys. Chem. Earth, 45–46, 103–112,
2012.
Behar, F., Beaumont, V., and Penteado, H. L. D.: Rock-Eval 6 technology:
Performances and developments, Oil and Gas Science and Technology, 56,
111–134, 2001.
Berndt, C., Planke, S., Alvarez Zarikian, C. A., Frieling, J., Jones, M. T., Millett, J. M., Brinkhuis, H., Bünz, S., Svensen, H. H., Longman, J., Scherer, R. P., Karstens, J., Manton, B., Nelissen, M., Reed, B., Faleide, J. I., Huismans, R. S., Agarwal, A., Andrews, G. D. M., Betlem, P., Bhattacharya, J., Chatterjee, S., Christopoulou, M., Clementi, V. J., Ferré, E. C., Filina, I. Y., Guo, P., Harper, D. T., Lambart, S., Mohn, G., Nakaoka R., Tegner, C., Varela, N., Wang, M., Xu, W., and Yager, S. L.: Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., https://doi.org/10.1038/s41561-023-01246-8, 2023.
Bijl, P. K., Frieling, J., Cramwinckel, M. J., Boschman, C., Sluijs, A., and Peterse, F.: Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172, Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, 2021.
Bindler, R.: Estimating the natural background atmospheric deposition rate
of mercury utilizing ombotrophic bogs in southern Sweden, Environ.
Sci. Technol., 37, 40–46, 2003.
Blaga, C. I., Reichart, G. J., Heiri, O., and Sinninghe Damsté, J. S.:
Tetraether membrane lipid distributions in water-column particulate matter
and sediments: A study of 47 European lakes along a north-south transect,
J. Paleolimnol., 41, 523–540, 2009.
Bøggild, O. B.: Den vulkanske Aske i Moleret samt en Oversigt over Danmarks ældre Tertiærbjærgarter, B. Geol. Soc. Denmark, 33, 1–159, 1918.
Bowen, G. and Zachos, J.: Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., 3, 866–869, https://doi.org/10.1038/ngeo1014, 2010.
Bowen, G. J.: Up in smoke: A role for organic carbon feedbacks in Paleogene hyperthermals, Global Planet. Change, 109, 18–29, https://doi.org/10.1016/j.gloplacha.2013.07.001, 2013.
Boyden, J. A., Müller, D. R., Gurnis, M., Torsvik, T. H., Clark, J. A.,
Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation
plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, edited by: Keller, G. R. and Baru, C.,
Cambridge University Press, 95–114, ISBN 9780521897150, 2011.
Broeker, W. S. and Peng, T.-H.: Tracers in the sea. Eldigio Press, Lamont
(Doherty Geological Observatory), https://doi.org/10.1017/S0033822200005221, 1982.
Bujak, J. P. and Mudge, D. C.: A high-resolution North Sea Eocene dinocyst
zonation, J. Geol. Soc., 151, 449–462, https://doi.org/10.1144/gsjgs.151.3.0449, 1994.
Carmichael, M. J., Inglis, G. N., Badger, M. P., Naafs, B. D. A., Behrooz, L.,
Remmelzwaal, S., and Dickson, A. J.: Hydrological and associated
biogeochemical consequences of rapid global warming during the
Paleocene-Eocene Thermal Maximum, Global Planet. Change, 157, 114–138,
2017.
Charles, A., Condon, D., Harding, I., Pälike, H., Marshall, J., Cui, Y.,
Kump, L., and Croudace, I.: Constraints on the numerical age of the
Palaeocene-Eocene boundary, Geochem. Geophy. Geosy., 12, Q0AA17, https://doi.org/10.1029/2010GC003426,
2011.
Contreras, L., Pross, J., Bijl, P. K., O'Hara, R. B., Raine, J. I., Sluijs, A., and Brinkhuis, H.: Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau), Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, 2014.
Conway-Jones, B. W. and White, N.: Paleogene buried landscapes and climatic
aberrations triggered by mantle plume activity, Earth Planet. Sc.
Lett., 593, 117644, https://doi.org/10.1016/j.epsl.2022.117644, 2022.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.:
Ocean overturning since the Late Cretaceous: Inferences from a new benthic
foraminiferal isotope compilation, Paleoceanography 24, PA4216, https://doi.org/10.1029/2008PA001683, 2009.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty,
S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., van
der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.: Synchronous
tropical and polar temperature evolution in the Eocene, Nature, 559, 382–386,
2018.
Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J.: Negative thermal
ion mass spectrometry of osmium, rhenium and iridium, Geochim.
Cosmochim. Ac., 55, 397–401, 1991.
Deconinck, J. F. and Chamley, H.: Diversity of smectite origins in Late
Cretaceous sediments: example of chalks from northern France, Clay Miner.,
30, 365–379, 1995.
Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P.,
Dosseto, A., Gorge, C., Alanoca, L., and Maurice, L.: Riverine Li isotope
fractionation in the Amazon River basin controlled by the weathering
regimes, Geochim. Cosmochim. Ac., 164, 71–93, 2015.
Dellinger, M., Bouchez, J., Gaillardet, J., Faure, L., and Moureau, J.:
Tracing weathering regimes using the lithium isotope composition of detrital
sediments, Geology, 45, 411–414, 2017.
Dessert, C., Dupré, B., Gaillardet, J., François, L., and
Allègre, C. J.: Basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273, 2003.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of
oceanic methane hydrate as a cause of the carbon-isotope excursion at the
end of the Paleocene, Paleoceanography, 10, 965–971, 1995.
Dickson, A. J., Cohen, A. S., Coe, A. L., Davies, M., Shcherbinina, E. A., and
Gavrilov, Y. O.: Evidence for weathering and volcanism during the PETM from
Arctic Ocean and Peri-Tethys osmium isotope records, Palaeogeogr.
Palaeocl., 438, 300–307, 2015.
Dickson, A. J., Cohen, A. S., and Davies, M.: The Osmium Isotope Signature of
Phanerozoic Large Igneous Provinces, in: Large Igneous Provinces: A Driver of Global Environmental and
Biotic Changes, edited by: Ernst, R. E., Dickson, A. J., and Bekker,
A., American Geophysical Union and John Wiley and Sons, Inc, https://doi.org/10.1002/9781119507444.ch10,
2021.
Dunkley-Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A. J., Sluijs, A.,
Valdes, P. J., and Maslin, M. A.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth Sci.
Rev., 125, 123–145, 2013.
Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J.,
and Jochmann, M.: The Paleocene-Eocene Thermal Maximum in Svalbard – clay
mineral and geochemical signals, Palaeogeogr. Palaeocl., 303, 156–169, 2011.
Egger, H. and Brückl, E.: Gigantic volcanic eruptions and climatic
change in the early Eocene, Int. J. Earth Sci., 95,
1065–1070, 2006.
Eldholm, O. and Grue, K.: North Atlantic volcanic margins: dimensions and
production rates, J. Geophys. Res., 99, 2955–2968, 1994.
Eldholm, O. and Thomas, E.: Environmental impact of volcanic margin
formation, Earth Planet. Sc. Lett., 117, 319–329, 1993.
Eldrett, J. S., Greenwood, D. R., Polling, M., Brinkhuis, H., and Sluijs, A.: A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum, Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, 2014.
Ernst, R. E. and Youbi, N.: How Large Igneous Provinces affect global
climate, sometimes cause mass extinctions, and represent natural markers in
the geological record, Palaeogeogr. Palaeocl.,
478, 30–52, 2017.
Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G. N.,
Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene-Eocene warming and
biotic response in the epicontinental West Siberian Sea, Geology, 42,
767–770, 2014.
Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., and
Sluijs, A.: Thermogenic methane release as a cause for the long duration of
the PETM, P. Natl. Acad. Sci. USA, 113,
12059–12064, 2016.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O. A., Akande, S. O.,
Reichart, G.-J., Middelburg, J. J., Schouten, S., and Sluijs, A.: Extreme
warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene
Thermal Maximum, Science Advances, 3, e1600891, https://doi.org/10.1126/sciadv.1600891, 2017.
Frieling, J., Peterse, F., Lunt, D. J., Bohaty, S. M., Sinninghe Damsté,
J. S., Reichart, G. J., and Sluijs, A.: Widespread Warming Before and Elevated
Barium Burial During the Paleocene-Eocene Thermal Maximum: Evidence for
Methane Hydrate Release?, Paleoceanography and Paleoclimatology, 34, 546–566,
2019.
Frieling, J., Mather, T. A., März, C., Jenkyns, H., Hennekam, R.,
Reichart, G.-J., Slomp, C. P., and van Helmond, N.: Effects of redox
variability and early diagenesis on marine sedimentary Hg records,
Geochim. Cosmochim. Ac., 351, 78–95, 2023.
Gernon, T. M., Barr, R., Fitton, J. G., Hincks, T. K., Keir, D., Longman, J.,
Meridith, A. S., Mitchell, R. N., and Palmer, M. R.: Transient mobilization of
subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum, Nat.
Geosci., 15, 573–579, 2022.
Golonka, J.: Phanerozoic paleoenvironment and paleolithofacies
maps: Cenozoic, Geologia/Akademia Górniczo-Hutnicza im,
Stanisława Staszica w Krakowie, 35, 507–587, 2009.
Gramlich, J. W., Murphy, T. J., Garner, E. L., and Shields, W. R.: Absolute
Isotopic Abundance Ratio and Atomic Weight of a Reference Sample of Rhenium,
J. Res. Natl. Bur. Phys. Ch., 77, 691–698, 1973.
Grasby, S .E., Them II, T. R., Chen, Z., Yin, R., and Ardakani, O. H.: Mercury
as a proxy for volcanic emissions in the geologic record, Earth Sci.
Rev., 196, 102880, https://doi.org/10.1016/j.earscirev.2019.102880, 2019.
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S.,
Müller, R., Boyden, J., Seton, M., Manea, V., and Bower, D.: Plate
Tectonic Reconstructions with Continuously Closing Plates, Comput.
Geosci., 38, 35–42, 2012.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N.,
Pälike, H., Norris, R. D., Thomas, E., and Foster, G. L.: Very large
release of mostly volcanic carbon during the Palaeocene–Eocene Thermal
Maximum, Nature, 548, 573–577, 2017.
Haaland, H. J., Furnes, H., and Martinsen, O. J.: Paleogene tuffaceous
intervals, Grane Field (Block 25/11), Norwegian North Sea: their
depositional, petrographicl, geochemical character and regional
implications, Mar. Petrol. Geol., 17, 101–118, 2000.
Hansen, D. M.: The morphology of intrusion-related vent structures and their
implications for constraining the timing of intrusive events along the NE
Atlantic margin, J. Geol. Soc., 163, 789–800, 2006.
Hartley, R. A., Roberts, G. G., White, N., and Richardson, C.: Transient
convective uplift of an ancient buried landscape, Nat. Geosci., 4,
562–565, 2011.
Heilmann-Clausen, C.: Review of Paleocene dinoflagellates from the North Sea
region, GFF, 116, 51–53, https://doi.org/10.1080/11035899409546149, 1994.
Heilmann-Clausen, C.: Palæogene aflejringer over Danskekalken,
in: Aarhus Geokompendier, edited by: Nielsen, O. B., No. 1, Danmarks
geologi fra Kridt til i dag, 69–114, 1995.
Heilmann-Clausen, C., Nielsen, O. B., and Gersner, F.: Lithostratigraphy and
depositional environments in the Upper Paleocene and Eocene of Denmark,
Bulletin – Geological Society of Denmark, 33, 287–323, 1985.
Heilmann-Clausen, C., Schultz, B. P., Beyer, C., Friis, H., Schoon, P. L., and
Tegner, C.: New evidence for NE Atlantic pre-PETM volcanism, Rendiconti
Online – Società Geologica Italiana, 31, 99–100, 2014.
Heister, L. E., O'Day, P. A., Brooks, C. K., Neuhoff, P. S., and Bird, D. K.:
Pyroclastic deposits within the East Greenland Tertiary flood basalts,
J. Geol. Soc., 158, 269–284, 2001.
Horni, J., Hopper, J. R., Blischke, A., Geisler, W. H., Stewart, M.,
McDermott, K., Judge, M., Erlendsson, Ö., and Árting, U.: Regional
distribution of volcanism within the North Atlantic Igneous Province,
Geological Society, London, Special Publications, 447, https://doi.org/10.1144/SP447.18, 2017.
Hovikoski, J., Fyhn, M. B. W., Nøhr-Hansen, H., Hopper, J. R., Andrews, S.,
Barham, M., Nielsen, L. H., Bjerager, M., Bojesen-Koefoed, J., Lode, S.,
Sheldon, E., Uchman, A., Skorstengaard, P. R., and Alsen, P.:
Paleocene-Eocene volcanic segmentation of the Norwegian-Greenland seaway
reorganized high-latitude ocean circulation, Commun. Earth
Environ., 2, 172, https://doi.org/10.1038/s43247-021-00249-w, 2021.
Huurdeman, E. P., Frieling, J., Reichgelt, T., Bijl, P. K., Bohaty, S. M.,
Holdgate, G. R., Gallagher, S. J., Peterse, F., Greenwood, D. R., and Pross,
J.: Rapid expansion of meso-megathermal rain forests into the southern high
latitudes at the onset of the Paleocene-Eocene Thermal Maximum, Geology, 49,
40–44, 2020.
Inglis, G. N., Farnsworth, A., Lunt, D. J., Foster, G. L., Hollis, C. J.,
Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P. J., Galsworthy,
A. M. J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent towards the
Icehouse: Eocene sea surface cooling inferred from GDGT distributions,
Paleoceanography, 30, 1000–1020, 2015.
Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., and Pancost, R. D.: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene, Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, 2020.
Jin, S., Kemp, D. B., Jolley, D. W., Vieira, M., Zachos, J. C., Huang, C., Li,
M., and Chen, W.: Large-scale, astronomically paced sediment input to the
North Sea Basin during the Paleocene Eocene Thermal Maximum, Earth
Planet. Sc. Lett., 579, 117340, https://doi.org/10.1016/j.epsl.2021.117340, 2022.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis,
H., and Bralower, T. J.: North American continental margin records of the
Paleocene-Eocene thermal maximum: Implications for global carbon and
hydrological cycling, Paleoceanography 23, PA2217, https://doi.org/10.1029/2007PA001465, 2008.
Jones, M. T.: The environmental and climatic impacts of volcanic ash
deposition, in:
Volcanism and global environmental change, edited by: Schmidt, A., Fristad, K., and Elkins-Tanton, L., Cambridge University Press,
260–274, ISBN 9781107058378, 1107058376, 2015.
Jones, M. T., Jerram, D. A., Svensen, H. H., and Grove, C.: The effects of
large igneous provinces on the global carbon and sulphur cycles,
Palaeogeogr. Palaeocl., 441, 4–21, 2016.
Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert, B. A., Schultz, B., Tegner, C., Planke, S., and Svensen, H. H.: Mercury anomalies across the Palaeocene–Eocene Thermal Maximum, Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, 2019.
Jones, S. M., Hoggett, M., Greene, S. E., and Dunkley Jones, T.: Large Igneous
Province thermogenic greenhouse gas flux could have initiated
Paleocene-Eocene Thermal Maximum climate change, Nat. Commun., 10,
5547, https://doi.org/10.1038/s41467-019-12957-1, 2019.
Kaya, M. Y., Dupont-Nivet, G., Frieling, J., Fioroni, C., Rohrmann, A., Altıner, S. Ö., Vardar, E., Tanyaş, H., Mamtimin, M., and Zhaojie, G.:
The Eurasian epicontinental sea was an important carbon sink during the
Palaeocene-Eocene thermal maximum, Commun. Earth Environ., 3,
124, https://doi.org/10.1038/s43247-022-00451-4, 2022.
Keller, G., Mateo, P., Punekar, J., Khozyem, H., Gertsch, B., Spangenberg,
J., Bitchong, A., and Adatte, T.: Environmental changes during the
cretaceous-Paleogene mass extinction and Paleocene-Eocene thermal maximum:
Implications for the Anthropocene, Gondwana Res., 56, 69–89, 2018.
Kendall, B. S., Creaser, R. A., Ross, G. M., and Selby, D.: Constraints on the
timing of Marinoan “Snowball Earth” glaciation by 187Re–187Os dating of a
Neoproterozoic, post-glacial black shale in Western Canada, Earth
Planet. Sc. Lett., 222, 729–740, 2004.
Kender, S., Stephenson, M. H., Riding, J. B., Leng, M. J., Knox, R. B., Peck,
V. L., Kendrick, C. P., Ellis, M. A., Vane, C. H., and Jamieson, R.: Marine and
terrestrial environmental changes in NW Europe preceding carbon release at
the Paleocene–Eocene transition, Earth Planet. Sc. Lett.,
353–354, 108–120, 2012.
Kender, S., Bogus, K., Pedersen, G. K., Dybkjær, K., Mather, T. A.,
Mariani, E., Ridgwell, A., Riding, J. B., Wagner, T., Hesselbo, S. P., and
Leng, M. J.: Paleocene/Eocene carbon feedbacks triggered by volcanic
activity, Nat. Commun., 12, 5186, https://doi.org/10.1038/s41467-021-25536-0, 2021.
Kennett, J. and Stott, L.: Abrupt deep-sea warming, palaeoceanographic
changes and benthic extinctions at the end of the Palaeocene, Nature, 353,
225–229, 1991.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Damsté, J. S. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, 2010.
King, C.: A Revised Correlation of Tertiary Rocks in the British Isles and
Adjacent Areas of NW Europe, The Geological Society, London, ISBN 978-1-86239-728-6, 2016.
Kirtland Turner, S.: Constraints on the onset duration of the
Paleocene–Eocene Thermal Maximum, Philos. T. R.
Soc. A, 376, 20170082, https://doi.org/10.1098/rsta.2017.0082, 2018.
Kisakürek, B., James, R. H., and Harris, N. B. W.: Li and δ7Li in
Himalayan rivers: Proxies for silicate weathering?, Earth Planet.
Sc. Lett., 237, 387–401, 2005.
Knox, R. B. and Morton, A.: The record of early Tertiary N Atlantic
volcanism in sediments of the North Sea Basin, in: Early Tertiary Volcanism and the opening of the NE Atlantic, edited by: Morton, A. and Parson, L.,
Geological Society Special Publication, 407–419, 1988.
Knox, R. W. O. B.: Nannoplankton zonation and the Palaeocene/Eocene boundary
beds of NW Europe: an indirect correlation by means of volcanic ash layers,
J. Geol. Soc., 141, 993–999, 1984.
Knox, R. W. O. B.: Stratigraphic significance of volcanic ash in Paleocene and
Eocene sediments at Sites 549 and 550, edited by: Graciansky, P. C. D., Poag, C. W.,
al., Initial Reports DSDP. U.S. Government Printing Office,
Washington, 845–850, https://doi.org/10.2973/dsdp.proc.80.134.1985,
1985.
Kuiper, K., Deino, A., Hilgen, F., Krijgsman, W., Renne, P., and Wijbrans,
J.: Synchronizing rock clocks of Earth history, Science, 320, 500–504, 2008.
Larsen, L., Fitton, J., and Pedersen, A.: Paleogene volcanic ash layers in
the Danish Basin: compositions and source areas in the North Atlantic
Igneous Province, Lithos, 71, 47–80, 2003.
Larsen, R. B. and Tegner, C.: Pressure conditions for the solidification of
the Skaergaard intrusion: Eruption of East Greenland flood basalts in less
than 300,000 years, Lithos, 92, 181–197, 2006.
Levasseur, S., Birck, J. L., and Allègre, C. J.: The osmium riverine flux
and the oceanic mass balance of osmium, Earth Planet. Sc. Lett.,
174, 7–23, 1999.
Li, M., Bralower, T. J., Kump, L. R., Self-Trail, J. M., Zachos, J. C., Rush,
W. D., and Robinson, M. M.: Astrochronology of the Paleocene-Eocene Thermal
Maximum on the Atlantic Coastal Plain, Nat. Commun., 13, 5618, https://doi.org/10.1038/s41467-022-33390-x, 2022.
Li, Y., Clift, P. D., Murray, R. W., Exnicios, E., Ireland, T., and
Böning, P.: Asian summer monsoon influence on chemical weathering and
sediment provenance determined by clay mineral analysis from the Indus
Submarine Canyon, Quaternary Res., 93, 23–39, 2020.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A
high-resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene–Early Eocene
climate and carbon cycling, Earth Planet. Sc. Lett., 401, 18–30,
2014.
Liu, J. and Pearson, D.G.: Rapid, precise and accurate Os isotope ratio
measurements of nanogram to sub-nanogram amounts using multiple Faraday
collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS,
Chem. Geol., 363, 301–311, 2014.
Liu, Z., Horton, D. E., Tabor, C., Sageman, B. B., Percival, L. M. E., Gill,
B. C., and Selby, D.: Assessing the Contributions of Comet Impact and
Volcanism Toward the Climate Perturbations of the Paleocene-Eocene Thermal
Maximum, Geophys. Res. Lett., 46, 14798–14806, 2019.
Longman, J., Gernon, T. M., Palmer, M. R., Jones, M. T., Stokke, E. W., and
Svensen, H. H.: Marine diagenesis of tephra aided the Palaeocene-Eocene
Thermal Maximum termination, Earth Planet. Sc. Lett., 571,
117101, https://doi.org/10.1016/j.epsl.2021.117101, 2021.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl,
U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to
early Eocene global warming events, Nature, 435, 1083–1087, 2005.
Lowe, D.: Tephrochronology and its application: a review, Quaternary Geology,
6, 107–153, 2011.
Luguet, A., Nowell, G. M., and Pearson, D. G.: 184Os 188Os and 186Os 188Os
measurements by Negative Thermal Ionisation Mass Spectrometry (N-TIMS):
Effects of interfering element and mass fractionation corrections on data
accuracy and precision, Chem. Geol., 248, 342–362, 2008.
Maclennan, J. and Jones, S. M.: Regional uplift, gas hydrate dissociation
and the origins of the Paleocene-Eocene Thermal Maximum, Earth Planet. Sc. Lett., 245, 65–80, 2006.
Manton, B., Müller, P., Mazzini, A., Zastrozhnov, D., Jerram, D. A.,
Millett, J. M., Schmid, D. W., Berndt, C., Myklebust, R., and Planke, S.:
Characterizing ancient and modern hydrothermal venting systems, Mar.
Geol., 447, 106781, https://doi.org/10.1016/j.margeo.2022.106781, 2022.
Martin, C. E., Peucker-Ehrenbrink, B., Brunskill, G., and Szymczak, R.:
Osmium isotope geochemistry of a tropical estuary, Geochim.
Cosmochim. Ac., 65, 3193–3200, 2001.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: a
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Pl. Sc., 39, 489–516, 2011.
Meisel, T., Walker, R. J., Irving, A. J., and Lorand, J.-P.: Osmium isotopic
compositions of mantle xenoliths: a global perspective, Geochim.
Cosmochim. Ac., 65, 1311–1323, 2001.
Misra, S. and Froelich, P. N.: Lithium isotope history of cenozoic seawater:
Changes in silicate weathering and reverse weathering, Science, 335, 818–823,
2012.
Moore, D. M. and Reynolds, R. C.: X-ray diffraction and the identification
and analysis of clay minerals, Oxford University Press, Oxford, ISBN 9780195051704, 1997.
Murphy, B., Farley, K., and Zachos, J.: An extra-terrestrial 3He-based
timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge
IODP Site 1266, Geochim. Cosmochim. Ac., 74, 5098–5108, 2010.
Nielsen, O. B.: Danmarks geologi fra Kridt til i dag, Aarhus Geokompendie, 1,
1–13, 1995.
Nielsen, O. B., Rasmussen, E. S., and Thyberg, B. I.: Distribution of Clay
Minerals In the Northern North Sea Basin During the Paleogene and Neogene: A
Result of Source-Area Geology and Sorting Processes, J. Sediment.
Res., 85, 562–581, 2015.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S.,
Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell,
S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C.,
Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs,
B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner,
T., and Wrobel, N.E.: Cretaceous sea-surface temperature evolution:
Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth
Sci. Rev., 172, 224–247, 2017.
Olsson, J., Stipp, S. L. S., Makovicky, E., and Gislason, S. R.: Metal
scavenging by calcium carbonate at the Eyjafjallajökull volcano: A
carbon capture and storage analogue, Chem. Geol., 384, 135–148, 2014.
Outridge, P. M., Sanei, H., Stern, G. A., Hamilton, P. B., and Goodarzi, F.:
Evidence for control of mercury accumulation rates in Canadian High Arctic
lake sediments by variations of aquatic primary productivity, Environ.
Sci. Technol., 41, 5259–5265, 2007.
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis,
H., Sinninghe Damsté, J. S., Dickens, G. R., and Expedition 302
Scientists: Arctic hydrology during global warming at the Palaeocene/Eocene
Thermal Maximum, Nature 442, 671–675, 2006.
Papadomanolaki, N. M., Sluijs, A., and Slomp, C. P.: Eutrophication and
Deoxygenation Forcing of Marginal Marine Organic Carbon Burial During the
PETM, Paleoceanogr. Paleocl., 37, e2021PA004232, https://doi.org/10.1029/2021PA004232, 2022.
Paquay, F. S. and Ravizza, G.: Heterogeneous seawater 187Os 188Os during the
Late Pleistocene glaciations, Earth Planet. Sc. Lett., 349–350,
126–138, 2012.
Paque, M., Detienne, M., Maters, E. C., and Delmelle, P.: Smectites and
zeolites in ash from the 2010 summit eruption of Eyjafjallajökull
volcano, Iceland, B. Volcanol., 78, 61, https://doi.org/10.1007/s00445-016-1056-x, 2016.
Passey, S. R. and Jolley, D. W.: A revised lithostratigraphic nomenclature
for the Palaeogene Faroe Islands Basalt Group, NE Atlantic Ocean,
T. RSE Eath, 99, 127–158, 2008.
Pedersen, G. K., Pedersen, S. A. S., Steffensen, J., and Pedersen, C. S.: Clay
content of a clayey diatomite, the Early Eocene Fur Formation, Denmark,
B. Geol. Soc. Denmark, 51, 159–177, 2004.
Pedersen, S. A. S.: Architecture of Glaciotectonic Complexes, Geosciences, 4,
269–296, 2014.
Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C.,
Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., and Ruhl, M.:
Globally enhanced mercury deposition during the end-Pliensbachian extinction
and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province, Earth Planet. Sc. Lett., 428, 267–280, 2015.
Percival, L. M. E., Jenkyns, H. C., Mather, T. A., Dickson, A. J., Batenburg,
S. J., Ruhl, M., Hesselbo, S. P., Barclay, R., Jarvis, I., Robinson, S. A., and
Woelders, L.: Does large igneous province volcanism always perturb the
mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the
end-Cretaceous to other Mesozoic events, Am. J. Sci., 318,
799–860, 2018.
Percival, L. M. E., Bergquist, B. A., Mather, T. A., and Sanei, H.: Sedimentary
Mercury Enrichments as a Tracer of Large Igneous Province Volcanism, in:
Large Igneous Provinces: A
Driver of Global Environmental and Biotic Changes, edited by: Ernst, R. E., Dickson, A. J., and Bekker, A., American Geophyiscal
Union, https://doi.org/10.1002/9781119507444.ch11, 2021.
Peucker-Ehrenbrink, B. and Jahn, B.-M.: Rhenium-osmium isotope systematics
and platinum group element concentrations: Loess and the upper continental
crust, Geochem. Geophy. Geosy., 2, 1061, https://doi.org/10.1029/2001GC000172, 2001.
Peucker-Ehrenbrink, B. and Ravizza, G.: The marine osmium isotope record,
Terra Nova, 12, 205–219, 2000.
Peucker-Ehrenbrink, B. and Ravizza, G. E.: Chapter 8 – Osmium Isotope
Stratigraphy, Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 239–257, https://doi.org/10.1016/B978-0-12-824360-2.00008-5, 2020.
Planke, S., Rasmussen, T., Rey, S., and Myklebust, R.: Seismic
characteristics and distribution of volcanic intrusions and hydrothermal
vent complexes in the Vøring and Møre basins, in: Petroleum Geology: North-West Europe and Global
Perspectives – Proceedings of the 6th Petroleum Geology Conference, edited by: Doré, A. G. and
Vining, B. A.,
Geological Society, London, 833–844, 2005.
Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396
Scientists: Mid-Norwegian Margin Magmatism and Paleoclimate Implications,
Proceedings of the International Ocean Discovery Program, Volume 396, https://doi.org/10.14379/iodp.proc.396.2023, 2023.
Pogge von Strandmann, P. A. E., Burton, K. W., Opfergelt, S., Eiriksdottir,
E. S., Murphy, M. J., Einarsson, A., and Gislason, S. R.: The effect of
hydrothermal spring weathering processes and primary productivity on lithium
isotopes: Lake Myvatn, Iceland, Chem. Geol., 445, 4–13, 2016.
Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., Finlay, A. J.,
Selby, D., and Lenton, T. M.: Global climate stabilisation by chemical
weathering during the Hirnantian glaciation, Geochemical Perspective Letters,
3, 230–237, 2017a.
Pogge von Strandmann, P. A. E., Frings, P. J., and Murphy, M. J.: Lithium
isotope behaviour during weathering in the Ganges Alluvial Plain, Geochim. Cosmochim. Ac., 198, 17–31, 2017b.
Pogge von Strandmann, P. A. E., Fraser, W. T., Hammond, S. J., Tarbuck, G.,
Wood, I. G., Oelkers, E. H., and Murphy, M. J.: Experimental determination of
Li isotope behaviour during basalt weathering, Chem. Geol., 517, 34–43,
2019.
Pogge von Strandmann, P. A. E., Kasemann, S. A., and Wimpenny, J. B.: Lithium
and lithium isotopes in Earth's surface cycles, Elements, 16, 253–258, 2020.
Pogge von Strandmann, P. A. E., Jones, M. T., West, A. J., Murphy, M. J., Stokke,
E. W., Tarbuck, G., Wilson, D. J., Pearce, C. R., and Schmidt, D. N.: Lithium
isotope evidence for enhanced weathering and erosion during the
Palaeocene-Eocene Thermal Maximum, Science Advances, 7, eabh4224, https://doi.org/10.1126/sciadv.abh4224, 2021.
Powers, L., Werne, J. P., Vanderwoude, A. J., Sinninghe Damsté, J. S.,
Hopmans, E. C., and Schouten, S.: Applicability and calibration of the TEX86
paleothermometer in lakes, Org. Geochem., 41, 404–413, 2010.
Prøis, B. M.: Late Paleocene – earliest Eocene prograding system in the
SW Barents Sea, Department of Geosciences, University of Oslo, p. 76, https://www.duo.uio.no/handle/10852/45547 (last access: 1 August 2023), 2015.
Pujalte, V., Baceta, J. I., and Schmitz, B.: A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime, Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, 2015.
Pyle, D. M. and Mather, T. A.: The importance of volcanic emissions for
global atmospheric mercury cycle, Atmos. Environ., 37, 5115–5124,
2003.
Racionero-Gómez, B., Sproson, A. D., Selby, D., Gannoun, A., Gröcke,
D. R., Greenwell, H. C., and Burton, K. W.: Osmium uptake, distribution, and
187Os 188Os and 187Re 188Os compositions in Phaeophyceae macroalgae, Fucus
vesiculosus: Implications for determining the 187Os 188Os composition of
seawater, Geochim. Cosmochim. Ac., 199, 48–57, 2017.
Radionova, E. P., Beniamovski, V. N., Iakovleva, A. I., Muzylöv, N. G.,
Oreshkina, T. V., Shcherbinina, E. A., and Kozlova, G. E.: Early Paleogene
transgressions: Stratigraphical and sedimentological evidence from the
northern Peri-Tethys, in: Causes and consequences of globally warm climates in the early
Paleogene, Geological Society of America Special Paper, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas,
E., Boulder, Colordao,
239–261, https://doi.org/10.1130/0-8137-2369-8.239, 2003.
Rateau, R., Schofield, N., and Smith, M.: The potential role of igneous
intrusions on hydrocarbon migration, West of Shetland, Petrol. Geosci.,
19, 259–272, 2013.
Ravizza, G., Norris, R. D., Blusztajn, J., and Aubry, M.-P.: An osmium
isotope excursion associated with the late Paleocene thermal maximum:
Evidence of intensified chemical weathering, Paleoceanography 16, 155–163,
2001.
Reynolds III, R. C. and Reynolds Jr., R. C.: NEWMOD II a computer program for
the calculation of one-dimensional diffraction patterns of mixed-layered
clays, 1526 Farlow Avenue, Crofton, MD, 21114, USA, https://newmod-for-clays.com (last access: 30 July 2023), 2012.
Reynolds, P., Planke, S., Millett, J. M., Jerram, D. A., Trulsvik, M., and
Schofield, N.: Hydrothermal vent complexes offshore Northeast Greenland: A
potential role in driving the PETM, Earth Planet. Sc. Lett., 467,
72–78, 2017.
Roberts, C. D., LeGrande, A. N., and Tripati, A. K.: Climate sensitivity to
Arctic seway restriction during the early Paleogene, Earth Planet. Sc. Lett., 286, 576–585, 2009.
Röhl, U., Westerhold, T., Bralower, T., and Zachos, J.: On the duration
of the Paleocene-Eocene Thermal Maximum (PETM), Geochem. Geophy.
Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Rooney, A. D., Selby, D., Lloyd, J. M., Roberts, D. H., Lückge, A.,
Sageman, B. B., and Prouty, N. G.: Tracking millennial-scale Holocene glacial
advance and retreat using osmium isotopes: Insights from the Greenland ice
sheet, Quaternary Sci. Rev., 138, 49–61, 2016.
Sanei, H., Grasby, S., and Beauchamp, B.: Latest Permian mercury anomalies,
Geology, 40, 63–66, 2012.
Sato, H., Onoue, T., Nozaki, T., and Suzuki, K.: Osmium isotope evidence for
a large Late Triassic impact event, Nat. Commun., 4, 2455, https://doi.org/10.1038/ncomms3455, 2013.
Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C., Aberg, G., Asaro,
F., and Lee, C.-T. A.: Basaltic explosive volcanism, but no comet impact, at
the Paleocene–Eocene boundary: high-resolution chemical and isotopic
records from Egypt, Spain and Denmark, Earth Planet. Sc. Lett.,
225, 1–17, 2004.
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte,
T., and Khadri, S. F. R.: U-Pb constraints on pulsed eruption of the Deccan
Traps across the end-Cretaceous mass extinction, Science, 363, 862–866, 2019.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Sluijs, A., Damasté,
J. S. S., and Schouten, S.: Recognition of Early Eocene global carbon isotope
excursions using lipids of marine Thaumarchaeota, Earth Planet. Sc. Lett., 373, 160–168, 2013.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Damasté, J. S. S., and
Schouten, S.: Warming and environmental changes in the eastern North Sea
Basin during the Palaeocene–Eocene Thermal Maximum as revealed by biomarker
lipids, Org. Geochem., 78, 79–88, 2015.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté,
J. S.: Distributional variations in marine crenarchaeotal membrane lipids: A
new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274, 2002.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review,
Org. Geochem., 54, 19–61, 2013.
Selby, D. and Creaser, R. A.: Re–Os geochronology of organic rich
sediments: an evaluation of organic matter analysis methods, Chem.
Geol., 200, 225–240, 2003.
Sharma, M., Papanastassiou, D. A., and Wasserburg, G. J.: The concentration and
isotopic composition of osmium in the oceans, Geochim. Cosmochim. Ac., 61, 3287–3299, 1997.
Shaw Champion, M. E., White, N. J., Jones, S. M., and Lovell, J. P. B.:
Quantifying transient mantle convective uplift: An example from the
Faroe-Shetland basin, Tectonics 27, TC1002, https://doi.org/10.1029/2007TC002106, 2008.
Shephard, G., Müller, D., and Seton, M.: The tectonic evolution of the
Arctic since Pangea breakup: Integrating constraints from surface geology
and geophysics with mantle structure, Earth Sci. Rev., 124, 148–183,
2013.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Sinninghe Damste, J. S., Dickens, G., Huber, M., Reichart, G.-J., Stein, R.,
Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K.,
Clemens, S., Cronin, T., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan,
R., Kaminski, M., King, J., Koc, N., Martinez, N., McInroy, D., Moore Jr.,
T. C., O'Regan, M., Onodera, J., Pälike, H., Rea, B., Rio, D., Sakamoto,
T., Smith, D. C., St John, K. E. K., Suto, I., Suzuki, N., Takahashi, K.,
Watanabe, M., and Yamamoto, M.: Subtropical Arctic Ocean temperatures during
the Paleocene/Eocene Thermal Maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos,
J. C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and
Dickens, G. R.: Environmental precursors to rapid light carbon injection at
the Palaeocene/Eocene boundary, Nature, 450, 12–18, 2007.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., Schouten, S.,
Pancost, R. D., Sinninghe Damste, J. S., Welters, N. L. D., Lotter, A. F., and
Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse
world, Paleoceanography, 23, PA1S11, https://doi.org/10.1029/2008PA001615, 2008.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U.,
Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J. S., and
Brinkhuis, H.: Warm and wet conditions in the Arctic region during Eocene
Thermal Maximum 2, Nat. Geosci., 2, 777–780, 2009.
Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G.-J., and Brinkhuis, H.: Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum, Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, 2011.
Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G.-J., and Slomp, C. P.: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling, Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, 2014.
Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., and Schouten, S.: Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge, Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, 2020.
Smith, V., Warny, S., Grice, K., Schaefer, B., Whalen, M. T., Vellekoop, J., Chenot, E., Gulick, S. P. S., Arenillas, I., Arz, J. A., Bauersachs, T., Bralower, T., Demory, F., Gattacceca, J., Jones, H., Lofi, J., Lowery, C. M., Morgan, J., Nuñez Otaño, N. B., O'Keefe, J. M. K., O'Malley, K., Rodríguez-Tovar, F. J., Schwark, L., and the IODP–ICDP Expedition 364 Scientists: Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum, Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, 2020.
Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., and Ogg, J. G.:
Chapter 28 – The Paleogene Period, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz,
M. D., and Ogg, G. M., Elsevier, 1087–1140, https://doi.org/10.1016/B978-0-12-824360-2.00028-0,
2020.
Stefánsson, A. and Gíslason, S.R.: Chemical Weathering of Basalts,
Southwest Iceland: Effect of Rock Crystallinity and Secondary Minerals on
Chemical Fluxes to the Ocean, Am. J. Sci., 301, 513, https://doi.org/10.2475/ajs.301.6.513, 2001.
Steinig, S., Dummann, W., Park, W., Latif, M., Kusch, S., Hofmann, P., and
Flögel, S.: Evidence for a regional warm bias in the Early Cretaceous
TEX86 record, Earth Planet. Sc. Lett., 539, 116184, https://doi.org/10.1016/j.epsl.2020.116184, 2020.
Stoker, M. S., Holford, S. P., and Hillis, R. R.: A rift-to-drift record of
vertical crustal motions in the Faroe–Shetland Basin, NW European margin:
establishing constraints on NE Atlantic evolution, J. Geol.
Soc., 175, 263–274, 2018.
Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., and Whiteside,
J. H.: Temperature changes across the Paleocene-Eocene Thermal Maximum – a
new high-resolution TEX86 temperature record from the Eastern North Sea
Basin, Earth Planet. Sc. Lett., 544, 116388, https://doi.org/10.1016/j.epsl.2020.116388, 2020a.
Stokke, E. W., Liu, E. J., and Jones, M. T.: Evidence of explosive
hydromagmatic eruptions during the emplacement of the North Atlantic Igneous
Province, Volcanica, 3, 227–250, 2020b.
Stokke, E. W., Jones, M. T., Riber, L., Haflidason, H., Midtkandal, I., Schultz, B. P., and Svensen, H. H.: Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea, Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, 2021.
Storey, M., Duncan, R., and Swisher III, C.: Paleocene-Eocene Thermal
Maximum and the opening of the Northeast Atlantic, Science, 316, 587–589,
2007a.
Storey, M., Duncan, R., and Tegner, C.: Timing and duration of volcanism in
the North Atlantic Igneous Province: Implications for geodynamics and links
to the Iceland hotspot, Chem. Geol., 241, 264–281, 2007b.
Straume, E. O., Nummelin, A., Gaina, C., and Nisancioglu, K. H.: Climate
transition at the Eocene-Oligocene influenced by bathymetric changes to the
Atlantic-Arctic oceanic gateways, P. Natl. Acad.
Sci. USA, 119, e2115346119, https://doi.org/10.1073/pnas.2115346119, 2022.
Suan, G., Popescu, S.-M., Suc, J.-P., Schnyder, J., Fauquette, S., Baudin,
F., Yoon, D., Piepjohn, K., Sobolev, N. N., and Labrousse, L.: Subtropical
climate conditions and mangrove growth in Arctic Siberia during the early
Eocene, Geology, 45, 539–542, https://doi.org/10.1130/G38547.1, 2017.
Svensen, H., Planke, S., Malthe-Sørenssen, Jamtveit, B., Myklebust, R.,
Rasmussen Eidem, T., and Rey, S.: Release of methane from a volcanic basin
as a mechanism for initial Eocene global warming, Nature, 429, 542–545, 2004.
Svensen, H. H., Jones, M. T., Percival, L. M. E., Grasby, S. E., and Mather, T. A.: Release of mercury during contact metamorphism of shale: Implications for understanding the impacts of large igneous province volcanism, Earth Planet. Sci. Lett., 619, 118306, https://doi.org/10.1016/j.epsl.2023.118306, 2023.
Tomiyasu, T., Eguchi, T., Yamamoto, M., Anazawa, K., Sakamoto, H., Ando, T.,
Nedachi, M., and Marumo, K.: Influence of submarine fumaroles on the
distribution of mercury in the sediment of Kagoshima Bay, Japan, Mar.
Chem., 107, 173–183, 2007.
Tremblin, M., Khozyem, H., Adatte, T., Spangenberg, J.E., Fillon, C.,
Grauls, A., Hunger, T., Nowak, A., Läuchli, C., Lasseur, E., Roig,
J.-Y., Serrano, O., Calassou, S., Guillocheau, F., and Castelltort, S.:
Mercury enrichments of the Pyrenean foreland basins sediments support
enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM),
Global Planet. Change 212, 103794, https://doi.org/10.1016/j.gloplacha.2022.103794, 2022.
Trommer, G., Siccha, M., van der Meer, M. T. J., Schouten, S., Sinninghe
Damsté, J. S., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of
Crenarchaeota tetraether membrane lipids in surface sediments from the Red
Sea, Org. Geochem., 40, 724–731, 2009.
van der Meulen, B., Gingerich, P. D., Lourens, L. J., Meijer, N., van
Broekhuizen, S., van Ginneken, S., and Abels, H. A.: Carbon isotope and
mammal recovery from extreme greenhouse warming at the Paleocene-Eocene
boundary in astronomically-calibrated fluvial strata, Bighorn Basin,
Wyoming, USA, Earth Planet. Sc. Lett., 534, 116044, https://doi.org/10.1016/j.epsl.2019.116044, 2020.
Vickers, M. L., Lengger, S. K., Bernasconi, S. M., Thibault, N., Schultz, B. P.,
Fernandez, A., Ullmann, C. V., McCormack, P., Bjerrum, C. J., Rasmussen, J. A.,
Hougård, I. W., and Korte, C.: Cold spells in the Nordic Seas during the
early Eocene Greenhouse, Nat. Commun., 11, 4713, https://doi.org/10.1038/s41467-020-18558-7, 2020.
Völkening, J., Walczyk, T., and Heumann, K. G.: Osmium isotope ratio
determinations by negative thermal ionization mass spectrometry,
Int. J. Mass Spectrom., 105, 147–159,
1991.
Walters, G. L., Kemp, S. J., Hemingway, J. D., Johnston, D. T., and Hodell,
D. A.: Clay hydroxyl isotopes show an enhanced hydrologic cycle during the
Paleocene-Eocene Thermal Maximum, Nat. Commun., 13, 7885, https://doi.org/10.1038/s41467-022-35545-2, 2022.
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., and Sinninghe
Damsté, J. S.: Warm arctic continents during the Palaeocene-Eocene
thermal maximum, Earth Planet. Sc. Lett., 261, 230–238, 2007.
Wessel, P., Smith, W., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved 1542 Version Released. Eos T. Am.
Geophys. Un., 94, 409–410, 2013.
West, C. K., Greenwood, D. R., and Basinger, J. F.: Was the Arctic Eocene
“rainforest” monsoonal? Estimates of seasonal precipitation from early
Eocene megafloras from Ellesmere Island, Nunavut, Earth Planet. Sc. Lett., 427, 18–30, 2015.
Westerhold, T., Röhl, U., McCarren, H. K., and Zachos, J. C.: Latest on
the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): New
insights from exact stratigraphic position of key ash layers +19 and −17,
Earth Planet. Sc. Lett., 287, 412–419, 2009.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
White, N. and Lovell, B.: Measuring the pulse of a plume with the
sedimentary record, Nature, 387, 888–891, 1997.
Wieczorek, R., Fantle, M. S., Kump, L. R., and Ravizza, G.: Geochemical
evidence for volcanic activity prior to and enhanced terrestrial weathering
during the Paleocene Eocene Thermal Maximum, Geochim. Cosmochim. Ac.,
119, 391–410, 2013.
Wilkinson, C., Ganerød, M., Hendriks, B., and Eide, E.: Compilation and
appraisal of geochronological data from the North Atlantic Igneous Province
(NAIP), in: The NE Atlantic
Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic
Evolution, edited by: Péron-Pinvidic, G., Hopper, J. R., Stoker, M. S., Gaina, C.,
Doornenbal, J. C., Funck, T., and Árting, U. E., Geological Society, London, Special Publications, https://doi.org/10.1144/SP447.10, 2017.
Willard, D. A., Donders, T. H., Reichgelt, T., Greenwood, D. R., Sangiorgi, F.,
Peterse, F., Nierop, K. G. J., Frieling, J., Schouten, S., and Sluijs, A.:
Arctic vegetation, temperature, and hydrology during Early Eocene transient
global warming events, Global Planet. Change, 178, 139–152, 2019.
Willumsen, P. S.: Palynology of the Lower Eocene deposits of northwest
Jutland, Denmark, B. Geol. Soc. Denmark, 51, 141–157,
2004.
Yamashita, Y., Takahashi, Y., Haba, H., Enomoto, S., and Shimizu, H.:
Comparison of reductive accumulation of Re and Os in seawater–sediment
systems, Geochim. Cosmochim. Ac., 71, 3458–3475, 2007.
Zachos, J., Dickens, G., and Zeebe, R.: An early Cenozoic perspective on
greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zacke, A., Voigt, S., Joachimski, M. M., Gale, A. S., Ward, D. J., and
Tütken, T.: Surface-water freshening and high-latitude river discharge
in the Eocene North Sea, J. Geol. Soc., 166, 969–980,
2009.
Zeebe, R. E. and Lourens, L. J.: Solar System chaos and the Paleocene–Eocene
boundary age constrained by geology and astronomy, Science, 365, 926–929,
2019.
Zeebe, R. E., Zachos, J. C., and Dickens, G. R.: Carbon dioxide forcing alone
insufficient to explain Palaeocene–Eocene Thermal Maximum warming, Nat.
Geosci., 2, 576–580, 2009.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to
evaluate the integrity of TEX86 paleothermometry, Paleoceanography, 31,
220–232, 2016.
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s...