Articles | Volume 19, issue 8
https://doi.org/10.5194/cp-19-1607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cryogenic cave minerals recorded the 1889 CE melt event in northeastern Greenland
Institute of Geology, University of Innsbruck, Innsbruck, Austria
Paul Töchterle
Institute of Geology, University of Innsbruck, Innsbruck, Austria
Christoph Spötl
Institute of Geology, University of Innsbruck, Innsbruck, Austria
Irka Hajdas
Laboratory of Ion Beam Physics, ETH Zürich, Zurich, Switzerland
Xianglei Li
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
R. Lawrence Edwards
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA
Gina E. Moseley
Institute of Geology, University of Innsbruck, Innsbruck, Austria
Related authors
No articles found.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Preprint under review for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Ole Valk, Michiel M. Rutgers van der Loeff, Walter Geibert, Sandra Gdaniec, S. Bradley Moran, Kate Lepore, Robert Lawrence Edwards, Yanbin Lu, Viena Puigcorbé, Nuria Casacuberta, Ronja Paffrath, William Smethie, and Matthieu Roy-Barman
Ocean Sci., 16, 221–234, https://doi.org/10.5194/os-16-221-2020, https://doi.org/10.5194/os-16-221-2020, 2020
Short summary
Short summary
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is accompanied by a circulation change, indicated by changes in salinity. Ventilation of waters is most likely not the reason for the observed depletion in 230Th as atmospherically derived tracers do not reveal an increase in ventilation rate. It is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Mike Rogerson, Yuri Dublyansky, Dirk L. Hoffmann, Marc Luetscher, Paul Töchterle, and Christoph Spötl
Clim. Past, 15, 1757–1769, https://doi.org/10.5194/cp-15-1757-2019, https://doi.org/10.5194/cp-15-1757-2019, 2019
Short summary
Short summary
Rainfall in North Africa is known to vary through time and is likely to change as global climate warms. Here, we provide a new level of understanding about past rainfall in North Africa by looking at a stalagmite which formed within northeastern Libya between 67 and 30 thousand years ago. We find that at times more rain falls, and the associated moisture is mostly derived from the western Mediterranean during winter storms. Sometimes, water comes from the eastern Mediterranean.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Gayatri Kathayat, Hai Cheng, Ashish Sinha, Max Berkelhammer, Haiwei Zhang, Pengzhen Duan, Hanying Li, Xianglei Li, Youfeng Ning, and R. Lawrence Edwards
Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, https://doi.org/10.5194/cp-14-1869-2018, 2018
Short summary
Short summary
The 4.2 ka event is generally characterized as an approximately 300-year period of major global climate anomaly. However, the climatic manifestation of this event remains unclear in the Indian monsoon domain. Our high-resolution and precisely dated speleothem record from Meghalaya, India, characterizes the event as consisting of a series of multi-decadal droughts between 3.9 and 4.0 ka rather than a singular pulse of multi-centennial drought as previously thought.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
V. E. Johnston, A. Borsato, C. Spötl, S. Frisia, and R. Miorandi
Clim. Past, 9, 99–118, https://doi.org/10.5194/cp-9-99-2013, https://doi.org/10.5194/cp-9-99-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Instrumental Period
Ring-width and blue-light chronologies of Podocarpus lawrencei from southeastern mainland Australia reveal a regional climate signal
Climate signals in stable carbon and hydrogen isotopes of lignin methoxy groups from southern German beech trees
Seasonal climate signals preserved in biochemical varves: insights from novel high-resolution sediment scanning techniques
Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America
Reconstructing paleoclimate fields using online data assimilation with a linear inverse model
Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change
Jacinda A. O'Connor, Benjamin J. Henley, Matthew T. Brookhouse, and Kathryn J. Allen
Clim. Past, 18, 2567–2581, https://doi.org/10.5194/cp-18-2567-2022, https://doi.org/10.5194/cp-18-2567-2022, 2022
Short summary
Short summary
Tree-ring records provide a unique window into past climate variability. However, there are few such records from the Australian mainland. We present results from nine cross-sections of an alpine tree species from the Victorian Alps from 1929–1998. The tree-ring widths have significant correlations with winter temperature, precipitation and snow depth. The intensity of reflected blue light from the wood surface shows a strong response to growing season temperature and winter precipitation.
Anna Wieland, Markus Greule, Philipp Roemer, Jan Esper, and Frank Keppler
Clim. Past, 18, 1849–1866, https://doi.org/10.5194/cp-18-1849-2022, https://doi.org/10.5194/cp-18-1849-2022, 2022
Short summary
Short summary
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy groups of beech trees growing in temperate, low elevation environments. Here, carbon isotope ratios reveal highest correlations with regional summer temperatures while hydrogen isotope ratios correlate more strongly with large-scale temperature changes. By combining the dual isotope ratios of wood lignin methoxy groups, a proxy for regional- to subcontinental-scale temperature patterns can be applied.
Paul D. Zander, Maurycy Żarczyński, Wojciech Tylmann, Shauna-kay Rainford, and Martin Grosjean
Clim. Past, 17, 2055–2071, https://doi.org/10.5194/cp-17-2055-2021, https://doi.org/10.5194/cp-17-2055-2021, 2021
Short summary
Short summary
High-resolution geochemical imaging techniques provide new opportunities to investigate the biogeochemical composition of sediments at micrometer scale. Here, we compare biogeochemical data from biochemical varves with meteorological data to understand how seasonal meteorological variations are recorded in varve composition. We find that these scanning techniques help to clarify climate–proxy relationships in biochemical varves and show great potential for high-resolution climate reconstruction.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Walter A. Perkins and Gregory J. Hakim
Clim. Past, 13, 421–436, https://doi.org/10.5194/cp-13-421-2017, https://doi.org/10.5194/cp-13-421-2017, 2017
Short summary
Short summary
We examine the skill of a novel data assimilation approach to paleoclimate reconstruction that uses linear climate model forecasts. Many reconstruction studies forego the use of forecasts from climate models due to their high computational expense and relatively low skill. We show that the use of simpler linear models can improve reconstruction skill for both global mean temperature and spatial fields. Improvements displayed seem to be related to dynamical constraints from the forecasts.
V. E. Johnston, A. Borsato, C. Spötl, S. Frisia, and R. Miorandi
Clim. Past, 9, 99–118, https://doi.org/10.5194/cp-9-99-2013, https://doi.org/10.5194/cp-9-99-2013, 2013
Cited articles
Audra, P. and Nobécourt, J.-C.: Rare sulfates (mirabilite, eugsterite)
in the dry microclimate of chamois cave (Alpes-de-Haute-Provence, France),
in: Proceedings of the 16th International Congress of Speleology, Czech
Speleological Societya, 21–28 July 2013, Prague, Czech Republic, 432–436,
K26-00116, 2013.
Bajo, P., Borsato, A., Drysdale, R., Hua, Q., Frisia, S., Zanchetta, G.,
Hellstrom, J., and Woodhead, J.: Stalagmite carbon isotopes and dead carbon
proportion (DCP) in a near-closed-system situation: An interplay between
sulphuric and carbonic acid dissolution, Geochim. Cosmochim. Ac., 210,
208–227, https://doi.org/10.1016/j.gca.2017.04.038, 2017.
Bartolomé, M., Sancho, C., Osácar, M. C., Moreno, A., Leunda, M.,
Spötl, C., Luetscher, M., López-Martínez, J., and Belmonte, A.:
Characteristics of cryogenic carbonates in a Pyrenean ice cave (northern Spain), Geogaceta, 58, 107–110, 2015.
Bartolomé, M., Cazenave, G., Luetscher, M., Spötl, C., Gázquez, F., Belmonte, Á., Turchyn, A. V., López-Moreno, J. I., and Moreno, A.: Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave, The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, 2023.
Barton, H. A., Breley, G. J., Töchterle, P., and Moseley, G. E.: Cryogenic features of the permafrost ice caves of Grottedal, northeast Greenland, Cave Karst Sci., 47, 93–99, 2020.
Bieniok, A., Zagler, G., Brendel, U., and Neubauer, F.: Speleothems in the
dry cave parts of the Gamslöcher-Kolowrat Cave, Untersberg near Salzburg
(Austria), Int. J. Speleol., 40, 117–124, 2011.
Bintanja, R. and Krikken, F.: Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing, Sci. Rep.-UK, 6, 1–7,
https://doi.org/10.1038/srep38287, 2016.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482,
https://doi.org/10.1038/nature13259, 2014.
Box, J. E., Yang, L., Bromwich, D. H., and Bai, L.-S.: Greenland Ice Sheet
surface air temperature variability: 1840–2007, J. Climate, 22, 4029–4049, https://doi.org/10.1175/2009JCLI2816.1, 2009.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander Jr., E. C.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Clark, I. D. and Lauriol, B.: Kinetic enrichment of stable isotopes in
cryogenic calcites, Chem. Geol., 102, 217–228, https://doi.org/10.1016/0009-2541(92)90157-Z, 1992.
Clausen, H. B., Gundestrup, N. S., Johnsen, S. J., Bindschadler, R., and Zwally, J.: Glaciological investigations in the Crête area, central
Greenland: A search for a new deep-drilling site, Ann. Glaciol., 10, 10–15,
https://doi.org/10.3189/S0260305500004080, 1988.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J.,
Hansen, A. W., and Balling, N.: Past temperatures directly from the Greenland ice sheet, Science, 282, 268–271, https://doi.org/10.1126/science.282.5387.268, 1998.
Danmarks Meteorologiske Institut: Klimanormaler for Grønland,
Danmarks Meteorologiske Institut [data set], https://www.dmi.dk/vejrarkiv/normaler-gronland/ (last access: 12 July 2022), 2022.
Davies, W. E. and Krinsley, D. B.: Caves in Northern Greenland, Natl. Speleol. Soc. Bull., 22, 114–116, 1960.
Donner, A., Töchterle, P., and Moseley, G. E.: Basic meteorological
observations in the Centrumsø region of northeast Greenland, Cave Karst Sci., 47, 104–106, 2020.
Dorale, J. A., Edwards, R. L., Alexander, E. C., Shen, C.-C., Richards, D.
A., and Cheng, H.: Uranium-series dating of speleothems: current techniques,
limits, & applications, in: Studies of Cave Sediments, edited by: Sasowsky, I. D. and Mylroie, J., Springer US, Boston, MA, 177–197,
https://doi.org/10.1007/978-1-4419-9118-8_10, 2004.
Dublyansky, Y., Kadebskaya, O., Menshikova, E., Demeny, A., and Spötl, C.: Polymineral cryogenic deposits in caves of the Southern Ural, Russia, as
tracers of past permafrost, in: Climate Change: The Karst Record 8th International Conference, Scientific Program and Abstracts, 21–24 May 2017, Austin, USA, p. 41, 2017.
Eckhardt, S., Pisso, I., Evangeliou, N., Zwaaftink, C. G., Plach, A., McConnell, J. R., Sigl, M., Ruppel, M., Zdanowicz, C., Lim, S., Chellman,
N., Opel, T., Meyer, H., Steffensen, J. P., Schwikowski, M., and Stohl, A.:
Revised historical Northern Hemisphere black carbon emissions based on inverse modelling of ice core records, Nat. Commun., 14, 217,
https://doi.org/10.1038/s41467-022-35660-0, 2023.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.: 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years, Earth Planet. Sc. Lett., 81, 175–192, https://doi.org/10.1016/0012-821X(87)90154-3, 1987.
Fausto, R. S., van As, D., and Mankoff, K. D.: Programme for monitoring of
the Greenland ice sheet (PROMICE): Automatic weather station data, Version: v03, GEUS – Geological survey of Denmark and Greenland [data set],
https://doi.org/10.22008/promice/data/aws, 2019.
Fischer, H., Werner, M., Wagenbach, D., Schwager, M., Thorsteinnson, T., Wilhelms, F., Kipfstuhl, J., and Sommer, S.: Little Ice Age clearly recorded
in northern Greenland ice cores, Geophys. Res. Lett., 25, 1749–1752,
https://doi.org/10.1029/98GL01177, 1998.
Fleischer, R. L.: Alpha-recoil damage and solution effects in minerals:
uranium isotopic disequilibrium and radon release, Geochim. Cosmochim. Ac.,
46, 2191–2201, https://doi.org/10.1016/0016-7037(82)90194-6, 1982.
Genty, D. and Massault, M.: Bomb 14C recorded in laminated speleothems:
calculation of dead carbon proportion, Radiocarbon, 39, 33–48,
https://doi.org/10.1017/S0033822200040881, 1997.
Geofabrik and OpenStreetMap Contributors: Greenland,
https://download.geofabrik.de/north-america/greenland-latest-free.shp.zip
(last access: 13 September 2022), 2018.
Harmon, R. S., Atkinson, T. C., and Atkinson, J. L.: The mineralogy of
Castleguard Cave, Columbia Icefields, Alberta, Canada, Arct. Alp. Res., 15, 503–516, 1983.
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L., Quarta, G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon
dating, Nat. Rev. Meth. Prim., 1, 1–26, https://doi.org/10.1038/s43586-021-00058-7, 2021.
Hill, C. and Forti, P.: Cave Minerals of the World, in: 2nd Edn., National Speleological Society, Huntsville, ISBN 13:978-1879961074, 1997.
Hua, Q., McDonald, J., Redwood, D., Drysdale, R., Lee, S., Fallon, S., and
Hellstrom, J.: Robust chronological reconstruction for young speleothems using radiocarbon, Quatern. Geochronol., 14, 67–80,
https://doi.org/10.1016/j.quageo.2012.04.017, 2012.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling,
A. M.: Precision measurement of half-lives and specific activities of 235U and 238U, Phys. Rev. C, 4, 1889–1906, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Kadebskaya, O. and Tschaikovskiy, I.: Staging in the hypergene transformation of sulphate and carbonate rocks (based on slide-rocks under organ tubes in Kungur ice cave), Acta Carsolog., 44, 237–250, 2015.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111, 7964–7967,
https://doi.org/10.1073/pnas.1405397111, 2014.
Kern, Z. and Perşoiu, A.: Cave ice – the imminent loss of untapped
mid-latitude cryospheric palaeoenvironmental archives, Quaternary Sci. Rev., 67, 1–7, https://doi.org/10.1016/j.quascirev.2013.01.008, 2013.
Kjær, K. H., Bjørk, A. A., Kjeldsen, K. K., Hansen, E. S., Andresen, C. S., Siggaard-Andersen, M.-L., Khan, S. A., Søndergaard, A. S., Colgan,
W., Schomacker, A., Woodroffe, S., Funder, S., Rouillard, A., Jensen, J. F.,
and Larsen, N. K.: Glacier response to the Little Ice Age during the Neoglacial cooling in Greenland, Earth-Sci. Rev., 227, 1–43,
https://doi.org/10.1016/j.earscirev.2022.103984, 2022.
Koltai, G., Spötl, C., Jarosch, A. H., and Cheng, H.: Cryogenic cave
carbonates in the Dolomites (northern Italy): insights into Younger Dryas
cooling and seasonal precipitation, Clim. Past, 17, 775–789,
https://doi.org/10.5194/cp-17-775-2021, 2021.
Lacelle, D., Lauriol, B., and Clark, I. D.: Formation of seasonal ice bodies
and associated cryogenic cave carbonates in Caverne de L'Ours, Québec,
Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, J.
Cave Karst Stud., 71, 48–62, 2009.
Lauriol, B. and Clark, I. D.: An approach to determine the origin and age of
massive ice blockages in two arctic caves, Permafrost Periglac., 4, 77–85,
https://doi.org/10.1002/ppp.3430040107, 1993.
Lauriol, B., Carrier, L., and Thibaudeau, P.: Topoclimatic zones and ice dynamics in the caves of the Northern Yukon, Canada, Arctic, 41, 215–220,
1988.
Lemark, A.: A study of the Flade Isblink ice cap using a simple ice flow
model, Master thesis, Niels Bohr Institute Copenhagen University, Centre for
Ice and Climate, Denmark, 75 pp., https://nbi.ku.dk/english/theses/masters-theses/andreas-lemark/A_Lemark_Speciale.pdf (last access: 2 August 2023), 2010.
Loubière, J.-F.: Observations préliminaires sur les cavités de
la région du lac Centrum (NE Groenland), Karstologia, 9, 7–16,
https://doi.org/10.3406/karst.1987.2152, 1987.
Ludwig, K. R. and Titterington, D. M.: Calculation of 230Th/U isochrons,
ages, and errors. Geochim. Cosmochim. Ac., 58, 5031–5042,
https://doi.org/10.1016/0016-7037(94)90229-1, 1994.
Luetscher, M., Borreguero, M., Moseley, G. E., Spötl, C., and Edwards, R. L.: Alpine permafrost thawing during the Medieval Warm Period identified from cryogenic cave carbonates, The Cryosphere, 7, 1073–1081,
https://doi.org/10.5194/tc-7-1073-2013, 2013.
Moseley, G. E., Barton, H. A., Spötl, C., Töchterle, P., Smith, M. P., Bjerkenås, S. E., Blakely, C., Hodkinson, P. D., Shone, R. C., Sivertsen, H. C., and Wright, M.: Cave discoveries and speleogenetic features in northeast Greenland, Cave Karst Sci., 47, 74–87, 2020.
Moseley, G. E., Edwards, R. L., Lord, N. S., Spötl, C., and Cheng, H.:
Speleothem record of mild and wet mid-Pleistocene climate in northeast
Greenland, Sci. Adv., 7, 1–13, https://doi.org/10.1126/sciadv.abe1260, 2021.
Neff, W., Compo, G. P., Ralph, F. M., and Shupe, M. D.: Continental heat
anomalies and the extreme melting of the Greenland ice surface in 2012 and
1889, J. Geophys. Res.-Atmos., 119, 6520–6536, https://doi.org/10.1002/2014JD021470, 2014.
Racine, T. M. F., Reimer, P. J., and Spötl, C.: Multi-centennial mass
balance of perennial ice deposits in Alpine caves mirrors the evolution of
glaciers during the Late Holocene, Sci. Rep.-UK, 12, 1–13,
https://doi.org/10.1038/s41598-022-15516-9, 2022.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and
calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304,
https://doi.org/10.1017/S0033822200033154, 2004.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon
age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Rhodes, R. H., Yang, X., and Wolff, E. W.: Sea ice versus storms: What
controls sea salt in Arctic ice cores?, Geophys. Res. Lett., 45, 5572–5580,
https://doi.org/10.1029/2018GL077403, 2018.
Richter, D. K., Scholz, D., Jöns, N., Neuser, R. D., and Breitenbach, S.
F.: Coarse-grained cryogenic aragonite as end-member of mineral formation in
dolomite caves, Sediment. Geol., 376, 136–146, https://doi.org/10.1016/j.sedgeo.2018.08.006, 2018.
Schuster, L., Maussion, F., Langhamer, L., and Moseley, G. E.: Lagrangian
detection of precipitation moisture sources for an arid region in northeast
Greenland: relations to the North Atlantic Oscillation, sea ice cover, and
temporal trends from 1979 to 2017, Weather Clim. Dynam., 2, 1–17,
https://doi.org/10.5194/wcd-2-1-2021, 2021.
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S.,
Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C.:
High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86,
https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Shepherd, T. G.: Effects of a warming Arctic, Science, 353, 989–990,
https://doi.org/10.1126/science.aag2349, 2016.
Smith, M. P. and Rasmussen, J. A.: The geology of the Centrumsø area of
Kronprins Christian Land, northeast Greenland, and lithological constraints on speleogenesis, Cave Karst Sci., 47, 60–65, 2020.
Sole, A. J., Ignéczi, Á., Smith, M. P., and Clark, C. D.: Investigations to constrain retreat of the Greenland Ice Sheet: glacial
geomorphology and sampling for cosmogenic exposure dating of the Centrumsø area, Kronprins Christian Land, northeast Greenland, Cave Karst Sci., 47, 66–73, 2020.
Spötl, C.: Kryogene Karbonate im Höhleneis der Eisriesenwelt, Höhle, 59, 26–36, 2008.
Spötl, C.: Long-term performance of the Gasbench isotope ratio mass
spectrometry system for the stable isotope analysis of carbonate
microsamples, Rapid Commun. Mass. Spectrom., 25, 1683–1685,
https://doi.org/10.1002/rcm.5037, 2011.
Spötl, C. and Cheng, H.: Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated,
high-elevation cave in the Austrian Alps, Clim. Past, 10, 1349–1362,
https://doi.org/10.5194/cp-10-1349-2014, 2014.
Spötl, C. and Vennemann, T. W.: Continuous-flow isotope ratio mass
spectrometric analysis of carbonate minerals, Rapid Commun. Mass Spectrom., 9, 1004–1006, https://doi.org/10.1002/rcm.1010, 2003.
Spötl, C., Koltai, G., Jarosch, A. H., and Cheng, H.: Increased autumn
and winter precipitation during the Last Glacial Maximum in the European
Alps, Nat. Commun., 12, 1839, https://doi.org/10.1038/s41467-021-22090-7, 2021.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Töchterle, P., Steidle, S., Edwards, R. L., Dublyansky, Y., Spötl, C., Li, X., Gunn, J., and Moseley, G. E.: 230Th/U isochron dating of
cryogenic cave carbonates, Geochronology, 4, 617–627,
https://doi.org/10.5194/gchron-4-617-2022, 2022.
van As, D., Fausto, R. S., Ahlstrøm, A. P., Andersen, S. B., Andersen, M.
L., Citterio, M., Edelvang, K., Gravesen, P., Machguth, H., Nick, F. M.,
Nielsen, S., and Weidick, A.: Programme for monitoring of the Greenland Ice
Sheet (PROMICE): first temperature and ablation records, Geol. Surv. Den.
Greenl., 23, 73–76, https://doi.org/10.5167/uzh-131209, 2011.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci.
Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vinther, B. M., Andersen, K. K., Jones, P. D., Briffa, K. R., and Cappelen,
J.: Extending Greenland temperature records into the late eighteenth century, J. Geophys. Res., 111, D11105, https://doi.org/10.1029/2005JD006810, 2006.
Wedepohl, K. H.: The composition of the continental crust, Geochim. Cosmochim. Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Wendt, K. A., Pythoud, M., Moseley, G. E., Dublyansky, Y. V., Edwards, R. L., and Spötl, C.: Paleohydrology of southwest Nevada (USA) based on groundwater 234U/238U over the past 475 k.y., Geol. Soc. Am. Bull., 132, 793–802, https://doi.org/10.1130/B35168.1, 2020.
White, W. B.: Mineralogy of Mammoth Cave, in: Mammoth Cave, edited by: Hobbs III, H. H., Olson, R. A., Winkler, E. G., and Culver, D. C., Springer, Cham, 145–162, https://doi.org/10.1007/978-3-319-53718-4_9, 2017.
Žák, K., Richter, D. K., Filippi, M., Živor, R., Deininger, M.,
Mangini, A., and Scholz, D.: Coarsely crystalline cryogenic cave carbonate
– a new archive to estimate the Last Glacial minimum permafrost depth in
Central Europe, Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, 2012.
Žák, K., Onac, B. P., Kadebskaya, O. I., Filippi, M., Dublyansky, Y.,
and Luetscher, M.: Cryogenic mineral formation in caves, in: Ice Caves, edited by: Perşoiu, A. and Lauritzen, S.-E., Elsevier, Amsterdam, the Netherlands, 123–162, https://doi.org/10.1016/B978-0-12-811739-2.00035-8, 2018.
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland,...