Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-525-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-525-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Michael Amoo
CORRESPONDING AUTHOR
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Ulrich Salzmann
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Matthew J. Pound
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Nick Thompson
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Peter K. Bijl
Marine Palynology and Palaeoceanography, Utrecht University,
Princetonlaan 8A, Utrecht, the Netherlands
Related authors
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann
Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, https://doi.org/10.5194/cp-12-663-2016, 2016
Short summary
Short summary
Our paper presents the experimental design for the second phase of the Pliocene Model Intercomparison Project (PlioMIP). We outline the way in which climate models should be set up in order to study the Pliocene – a period of global warmth in Earth's history which is relevant for our understanding of future climate change. By conducting a model intercomparison we hope to understand the uncertainty associated with model predictions of a warmer climate.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann
Clim. Past, 10, 167–180, https://doi.org/10.5194/cp-10-167-2014, https://doi.org/10.5194/cp-10-167-2014, 2014
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition
Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum
Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea)
Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)
Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo
Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014, https://doi.org/10.5194/cp-10-1523-2014, 2014
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Cited articles
Amoo, M., Salzmann, U., Pound, J. M., Thompson, N., and Bijl, K. P.: Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region controlled by changes in ocean currents and pCO2, Zenodo [data set], https://doi.org/10.5281/zenodo.5924930, 2021.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A.,
Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing
atmospheric CO2 concentration was the primary driver of early Cenozoic
climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Askin, R. A.: Spores and pollen from the McMurdo Sound Erratics, Antarctica,
in: Paleobiology and Paleoenvironments of Eocene Rocks, McMurdo Sound, East
Antarctica, vol. 76, edited by: Stillwell, J. D. and Feldmann, R. M., American Geophysical Union Antarctic Research Series, 161–181, ISBN 9781118668221, 2000.
Askin, R. A. and Raine, J. I.: Oligocene and Early Miocene Terrestrial
Palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin,
Antarctica, Terra Antarct., 7, 493–501, 2000.
Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A., Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016.
Benbow, M. C., Alley, N. F., Callan, R. A., and Greenwood, D. R.: Geological
history and palaeoclimate, edited by: Dexel, J. F. and Preiss, W. V., Adelaide, 208–217, ISBN 978-0-730-84147-0, 1995.
Biffin, E., Brodribb, T. J., Hill, R. S., Thomas, P., and Lowe, A. J.: Leaf
evolution in Southern Hemisphere conifers tracks the angiosperm ecological
radiation, Proc. R. Soc. B Biol. Sci., 279, 341–348,
https://doi.org/10.1098/rspb.2011.0559, 2012.
Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., Klaus, A., Fehr, A., Williams, T., Carr, S. A., Dunbar, R. B., Gonzàlez, J. J., Hayden, T. G., Iwai, M., Jimenez-Espejo, F. J., Katsuki, K., Kong, G. S., Nakai, M., Passchier, S., Pekar, S. F., Riesselman, C., Sakai, T., Shrivastava, P. K., Sugisaki, S., Tuo, S., van de Flierdt, T., Welsh, K., and Yamane, M.: Eocene cooling linked to early flow across
the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650,
https://doi.org/10.1073/pnas.1220872110, 2013.
Bijl, P. K., Frieling, J., Cramwinckel, M. J., Boschman, C., Sluijs, A., and Peterse, F.: Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172, Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, 2021.
Birks, H. J. B. and Line, J. M.: The use of rarefaction analysis for
estimating palynological richness from Quaternary pollen-analytical data,
Holocene, 2, 1–10, https://doi.org/10.1177/095968369200200101, 1992.
Birks, H. J. B., Felde, V. A., Bjune, A. E., Grytnes, J. A., Seppä, H., and Giesecke, T.: Does pollen-assemblage richness reflect floristic
richness? A review of recent developments and future challenges, Rev.
Palaeobot. Palynol., 228, 1–25, https://doi.org/10.1016/j.revpalbo.2015.12.011, 2016.
Boland, D., Brooker, M., Chippendale, G., Hall, N., Hyland, B., Johnston,
R., Kleinig, D., McDonald, M., and Turner, J.: Forest trees of Australia, 5th
edn., CSIRO, Melbourne, ISBN 978-0643069695, 2006.
Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B., and Swindles, G.
T.: Latest Cretaceous-earliest Paleogene vegetation and climate change at
the high southern latitudes: Palynological evidence from Seymour Island,
Antarctic Peninsula, Palaeogeogr. Palaeoclimatol. Palaeoecol., 408, 26–47,
https://doi.org/10.1016/j.palaeo.2014.04.018, 2014.
Cande, S. C. and Stock, J. M.: Cenozoic reconstruction of the Australia-New
Zealand-south Pacific sector of Antarctica, in: The Cenozoic Southern Ocean:
Tectonics, sedimentation and climate change between Australia and
Antarctica, edited by: Exon, N. F., Kennett, J. P., and Malone, M. J., Geophysical Monograph Series, American Geophysical Union, 5–18, https://doi.org/10.1029/151GM02, 2004.
Cantrill, D. J. and Poole, I.: After the heat: late Eocene to Pliocene
climatic cooling and modification of the Antarctic vegetation, in: The
Vegetation of Antarctica through Geological Time, edited by: Cantrill, D. J.
and Poole, I., Cambridge University Press, Cambridge, ISBN 9780521855983, 2012.
Carpenter, R. J., Jordan, G. J., Mildenhall, D. C., and Lee, D. E.: Leaf
fossils of the ancient Tasmanian relict Microcachrys (Podocarpaceae) from
New Zealand, Am. J. Bot., 98, 1164–1172, https://doi.org/10.3732/ajb.1000506, 2011.
Carpenter, R. J., Jordan, G. J., Macphail, M. K., and Hill, R. S.:
Near-tropical Early Eocene terrestrial temperatures at the
Australo-Antarctic margin, western Tasmania, Geology, 40, 267–270,
https://doi.org/10.1130/G32584.1, 2012.
Cavalli-Sforza, L. L. and Edwards, A. W.: Phylogenetic analysis, Am. J. Hum.
Genet., 19, 233–257, 1967.
Christophel, D. C. and Greenwood, D. R.: Changes in climate and vegetation
in Australia during the tertiary, Rev. Palaeobot. Palynol., 58, 97–109,
https://doi.org/10.1016/0034-6667(89)90079-1, 1989.
Christophel, D. C., Harris, W. K., and Syber, A. K.: The Eocene flora of the
Anglesea Locality, Victoria, Alcheringa, 11, 303–323, https://doi.org/10.1080/03115518708619139, 1987.
Colwyn, D. A. and Hren, M. T.: An abrupt decrease in Southern Hemisphere
terrestrial temperature during the Eocene–Oligocene transition, Earth
Planet. Sci. Lett., 512, 227–235, https://doi.org/10.1016/j.epsl.2019.01.052, 2019.
Contreras, L., Pross, J., Bijl, P. K., Koutsodendris, A., Raine, J. I., van
de Schootbrugge, B., and Brinkhuis, H.: Early to Middle Eocene vegetation
dynamics at the Wilkes Land Margin (Antarctica), Rev. Palaeobot. Palynol.,
197, 119–142, https://doi.org/10.1016/j.revpalbo.2013.05.009, 2013.
Contreras, L., Pross, J., Bijl, P. K., O'Hara, R. B., Raine, J. I., Sluijs, A., and Brinkhuis, H.: Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau), Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, 2014.
Cooper, W. and Cooper, W.: Fruits of the Australian tropical rainforest,
Nokomis Publications, Clifton Hill, Victoria, ISBN 978-0-958-17421-3, 2004.
Coxall K., H., Wilson A., P., Palike, H., Lear H., C., and Backman, J.: Rapid
stepwise onset of Antarctic glaciation and deeper calcite compensation in
the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135, 2005.
Daly, R. J., Jolley, D. W., Spicer, R. A., and Ahlberg, A.: A palynological
study of an extinct arctic ecosystem from the Palaeocene of Northern Alaska,
Rev. Palaeobot. Palynol., 166, 107–116,
https://doi.org/10.1016/j.revpalbo.2011.05.008, 2011.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 1317, 245–249,
https://doi.org/10.1038/nature01290, 2003.
Dettmann, M. E., Pocknall, D. T., Romero, E. J., and Zamaloa, M. del C.:
Nothofagidites Erdtman ex Potonie, 1960; a catalogue of species with notes
on the paleogeographic distribution of Nothofagus Bl. (southern beech), New
Zeal. Geol. Surv. Paleontol. Bull., 60, 1–77, 1990.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.:
Alternating Southern and Northern Hemisphere climate response to
astronomical forcing during the past 35 m.y., Geology, 45, 375–378,
https://doi.org/10.1130/G38663.1, 2017.
Dowe, J. L.: Australian Palms, CSIRO Publishing, Victoria, ISBN 978-0-643-09802-2, 2010.
Emanuel, W. R., Shugart, H. H., and Stevenson, M. P.: Climatic change and the
broad-scale distribution of terrestrial ecosystem complexes, Clim. Change,
7, 29–43, https://doi.org/10.1007/BF00139439, 1985.
Evi, E., Hill, R. S., and Scriven, L. J.: The angiosperm-dominated woody
vegetation of Antarctica: a review, Rev. Palaeobot. Palynol., 86, 175–198,
1995.
Exon, N. F., Berry, R. F., Crawford, A. J., and Hill, P. J.: Geological
evolution of the East Tasman Plateau, a continental fragment southeast of
Tasmania, Aust. J. Earth Sci., 44, 597–608,
https://doi.org/10.1080/08120099708728339, 1997.
Exon, N. F., Kennett, J. P., and Malone, M. J.: Proceedings of the Ocean
Drilling Program, 189 Initial Reports, Ocean Drilling Program, https://doi.org/10.2973/odp.proc.ir.189.2001, 2001.
Exon, N. F., Kennett, J. P., and Malone, M. J.: Leg 189 synthesis:
Cretaceous-Holocene history of the Tasmanian gateway, Proc. Ocean Drill.
Progr. Sci. Results, Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.189.101.2004, 2004a.
Exon, N. F., Kennett, J. P., and Malone, M. J.: The Cenozoic Southern Ocean:
Tectonics, sedimentation and climate change between Australia and
Antarctica, Geophysical Monograph Series, 151, American Geophysical Union,
Washington, ISBN 978-0-875-90416-0, 2004b.
Farjon, A.: A handbook of the World's Conifers, Koninklijke Brill, Leiden,
the Netherlands, ISBN 9789047430629, 2010.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Francis, J. E., Marenssi, S., Levy, R., Hambrey, M., Thorn, V. C., Mohr, B.,
Brinkhuis, H., Warnaar, J., Zachos, J., Bohaty, S., and DeConto, R.: From
Greenhouse to Icehouse – The Eocene/Oligocene in Antarctica, Dev. Earth
Environ. Sci., 8, 309–368, https://doi.org/10.1016/S1571-9197(08)00008-6, 2008.
Fuller, M. and Touchard, Y.: On the magnetostratigraphy of the East Tasman
Plateau, timing of the opening of the Tasmanian Gateway and
paleoenvironmental changes, in: The Cenozoic Southern Ocean: tectonics,
sedimentation and climate change between Australia and Antarctica, edited by: Exon, N., Kennett, J. P., and Malone, M., American Geophysical Union, Geophysical Monograph series, Washington, 127–151, ISBN 978-0-875-90416-0, 2004.
Gaina, C., Müller, R. D., Royer, J.-Y., and Symonds, P.: Evolution of the
Louisiade triple junction, J. Geophys. Res.-Sol. Ea., 104,
12927–12939, https://doi.org/10.1029/1999JB900038, 1999.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene-Oligocene boundary climate transition, Science, 352,
76–80, https://doi.org/10.1126/science.aab0669, 2016.
GBIF: GBIF Occurrence Download, Global Biodiversity Information Facility [data set], https://doi.org/10.15468/dl.nckq6t, 2021.
Goldner, A., Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene-Oligocene transition, Nature, 511,
574–577, https://doi.org/10.1038/nature13597, 2014.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained
cluster analysis by the method of incremental sum of squares, Comput.
Geosci., 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Grimm, E. C.: Tilia and Tiliagraph, PC spreadsheet and graphics software for
pollen data, INQUA Work. Gr. Data Handl. Methods, Newsl., 4, 5–7, 1990.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: Paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, 178, 2001.
Harbert, R. S. and Nixon, K. C.: Climate reconstruction analysis using
coexistence likelihood estimation (CRACLE): A method for the estimation of
climate using vegetation, Am. J. Bot., 102, 1277–1289,
https://doi.org/10.3732/ajb.1400500, 2015.
Hayek, L. C. and Buzas, M. A.: Surveying Natural Populations, Columbia
University Press, New York, ISBN 9780231146203, 2010.
Heureux, A. M. C. and Rickaby, R. E. M.: Refining our estimate of
atmospheric CO2 across the Eocene-Oligocene climatic transition, Earth
Planet. Sci. Lett., 409, 329–338, https://doi.org/10.1016/j.epsl.2014.10.036, 2015.
Hijmans, R. J., Phillips, S., Leathwick, J., and Elith, J.: dismo: Species
distribution modelling, R Packag. version, 1(4), 1, https://cran.r-project.org/web/packages/dismo/index.html (last access: 28 September 2021), 2017.
Hill, M. O. and Gauch, H. G.: Detrended correspondence analysis: An improved
ordination technique, Vegetatio, 43, 47–58, 1980.
Hill, P. J. and Exon, N. F.: Tectonics and basin development of the offshore
Tasmanian area; incorporating results from deep ocean drilling, in: The
Cenozoic Southern Ocean; tectonics, sedimentation and climate between
Australia and Antarctica, edited by: Exon, N. F., Kennett, J. P., and
Malone, M., Geophysical Monograph Series, 151, American Geophysical
Union, Washington, 19–19, ISBN 978-0-875-90416-0, 2004.
Hill, R. S. (Ed.): History of the Australian Vegetation: Cretaceous to Recent, University of Adelaide Press, https://doi.org/10.20851/australian-vegetation, 1994.
Hill, R. S. (Ed.): History of the Australian Vegetation: Cretaceous to Recent, University of Adelaide Press, ISBN 978-1-925261-47-9, 2017.
Hill, R. S. and Dettmann, E. M.: Origin and diversification of the Genus
Nothofagus, in: The Ecology and Biogeography of Nothofagus forests, edited by: Veblen, T. T., Hill, S. R., and Read, J., Yale University Press,
New Haven, 11–24, ISBN 0-300-06423-3, 1996.
Hill, R. S. and Macphail, M. K.: Reconstruction of the Oligocene vegetation
at Pioneer, northeast Tasmania, Alcheringa, 7, 281–299, https://doi.org/10.1080/03115518308619613, 1983.
Hill, R. S., Whang, S. S., Korasidis, V., Bianco, B., Hill, K. E., Paull, R., and Guerin, G. R.: Fossil evidence for the evolution of the Casuarinaceae in
response to low soil nutrients and a drying climate in Cenozoic Australia,
Aust. J. Bot., 68, 179–194, https://doi.org/10.1071/BT19126, 2020.
Hoem, F. S., Valero, L., Evangelinos, D., Escutia, C., Duncan, B., McKay, R. M., Brinkhuis, H., Sangiorgi, F., and Bijl, P. K.: Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica, Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, 2021.
Holdgate, G. R., Sluiter, I. R. K., and Taglieri, J.: Eocene-Oligocene coals
of the Gippsland and Australo-Antarctic basins – Paleoclimatic and
paleogeographic context and implications for the earliest Cenozoic
glaciations, Palaeogeogr. Palaeoclimatol. Palaeoecol., 472, 236–255,
https://doi.org/10.1016/j.palaeo.2017.01.035, 2017.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Homes, A. M., Cieraad, E., Lee, D. E., Lindqvist, J. K., Raine, J. I.,
Kennedy, E. M., and Conran, J. G.: A diverse fern flora including
macrofossils with in situ spores from the late Eocene of southern New
Zealand, Rev. Palaeobot. Palynol., 220, 16–28,
https://doi.org/10.1016/j.revpalbo.2015.04.007, 2015.
Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., and
Brinkhuis, H.: The Eocene–Oligocene transition: Changes in sea level,
temperature or both?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 335, 335–336, https://doi.org/10.1016/j.palaeo.2011.04.008, 2012.
Houben, A. J. P., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.:
Late Eocene Southern Ocean cooling and invigoration of circulation
preconditioned Antarctica for full-scale glaciation, Geochem. Geophy.
Geosy., 20, 2214–2234, https://doi.org/10.1029/2019GC008182, 2019.
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, 1–12, https://doi.org/10.1029/2004PA001014, 2004.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Huurdeman, E. P., Frieling, J., Reichgelt, T., Bijl, P. K., Bohaty, S. M., Holdgate, G. R., Gallagher, S. J., Peterse, F., Greenwood, D. R., and Pross, J.: Rapid expansion of meso-megathermal rain forests into the southern high latitudes at the onset of the Paleocene-Eocene Thermal Maximum, Geology, 49, 40–44, https://doi.org/10.1130/G47343.1, 2021.
Hyland, B. P. M.: Carnarvonia, in Flora of Australia, Elaeagnaceae, Proteaceae 1, edited by: McCarthy, P., CSIRO Publishing/Australian Biological Resources Study, CANBERRA, vol. 16, 343–345, ISBN 0643056939, 1995.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V.,
Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene
greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334,
https://doi.org/10.1038/ngeo179, 2008.
Kemp, E. M.: Tertiary climatic evolution and vegetation history in the
Southeast Indian Ocean region, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
24, 169–208, https://doi.org/10.1016/0031-0182(78)90042-1, 1978.
Kennett, J. P.: Cenozoic evolution of Antarctic glaciation, the
circum-Antarctic Ocean, and their impact on global paleoceanography, J.
Geophys. Res., 82, 3843–3860, https://doi.org/10.1029/jc082i027p03843, 1977.
Kershaw, A. P.: Australasia, in: Vegetation History, edited by: Huntley, B. and Webb, T., Kluwer Academic Publishers, Dordrecht, 111, 237–306, ISBN 9061931886, 1988.
Kershaw, P. and Wagstaff, B.: The southern conifer family Araucariaceae:
History, status, and value for paleoenvironmental reconstruction, Annu. Rev.
Ecol. Syst., 32, 397–414, https://doi.org/10.1146/annurev.ecolsys.32.081501.114059,
2001.
Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C. D., Gohl, K., Kuhn, G., Bohaty, S. M., Titschack, J., Müller, J., Frederichs, T., Bauersachs, T., Ehrmann, W., van de Flierdt, T., Pereira, P. S., Larter, R. D., Lohmann, G., Niezgodzki, I., Uenzelmann-Neben, G., Zundel, M., Spiegel, C., Mark, C., Chew, D., Francis, J. E., Nehrke, G., Schwarz, F., Smith, J. A., Freudenthal, T., Esper, O., Pälike, H., Ronge, T. A., Dziadek, R., Afanasyeva, V., Arndt, J. E., Ebermann, B., Gebhardt, C., Hochmuth, K., Küssner, K., Najman, Y., Riefstahl, F., and Scheinert, M.: Temperate rainforests near the South Pole during peak Cretaceous warmth, Nature, 580, 81–86, https://doi.org/10.1038/s41586-020-2148-5, 2020.
Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., and Hill, R. S.:
Terrestrial cooling record through the Eocene-Oligocene transition of
Australia, Glob. Planet. Change, 173, 61–72,
https://doi.org/10.1016/j.gloplacha.2018.12.007, 2019.
Kühl, N., Gebhardt, C., Litt, T., and Hense, A.: Probability density
functions as botanical-climatological transfer functions for climate
reconstruction, Quat. Res., 58, 381–392, https://doi.org/10.1006/qres.2002.2380,
2002.
Kumaran, N., Punekar, S., and Limaye, R.: Palaeoclimate and phytogeographical
appraisal of Neogene pollen record from India, J. Palynol., 46, 315–330,
2011.
Ladant, J.-B., Donnadieu, Y., and Dumas, C.: Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current, Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, 2014.
Lanyon, R., Varne, R., and Crawford, A. J.: Tasmanian Tertiary basalts, the
Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean),
Geology, 21, 555–558,
https://doi.org/10.1130/0091-7613(1993)021<0555:TTBTBP>2.3.CO;2, 1993.
Lauretano, V., Kennedy-Asser, A. T., Korasidis, V. A., Wallace, M. W.,
Valdes, P. J., Lunt, D. J., Pancost, R. D., and Naafs, B. D. A.: Eocene to
Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2, Nat. Geosci., 14, 659–664, https://doi.org/10.1038/s41561-021-00788-z, 2021.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.:
Cooling and ice growth across the Eocene-Oligocene transition, Geology,
36, 251–254, https://doi.org/10.1130/G24584A.1, 2008.
Lee, D. E., Lee, W. G., Jordan, G. J., and Barreda, V. D.: The Cenozoic
history of New Zealand temperate rainforests: comparisons with southern
Australia and South America, New Zeal. J. Bot., 54, 100–127,
https://doi.org/10.1080/0028825X.2016.1144623, 2016.
Legendre, P. and Legendre, F.: Numerical Ecology, 3rd edn., Elsevier, ISBN 9780444538697, 2012.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooling during the
Eocene-Oligocene climate transition, Science, 323, 1187–1190,
https://doi.org/10.1126/science.1166368, 2009.
López-Quirós, A., Escutia, C., Etourneau, J., Rodríguez-Tovar,
F. J., Roignant, S., Lobo, F. J., Thompson, N., Bijl, P. K., Bohoyo, F.,
Salzmann, U., Evangelinos, D., Salabarnada, A., Hoem, F. S., and Sicre, M.
A.: Eocene-Oligocene paleoenvironmental changes in the South Orkney
Microcontinent (Antarctica) linked to the opening of Powell Basin, Glob.
Planet. Change, 204, 103581, https://doi.org/10.1016/j.gloplacha.2021.103581, 2021.
Mabberley, D. J.: The Plant-Book, 2nd edn., Cambridge University Press, ISBN 9780521414210, 1997.
Macphail, M. and Cantrill, D. J.: Age and implications of the Forest Bed,
Falkland Islands, southwest Atlantic Ocean: Evidence from fossil pollen and
spores, Palaeogeogr. Palaeoclimatol. Palaeoecol., 240, 602–629,
https://doi.org/10.1016/j.palaeo.2006.03.010, 2006.
Macphail, M., Alley, F., Truswell, E., and Sluiter, I. R. K.: Early Tertiary
vegetation: Evidence from spores and pollen, in: History of the Australian
Vegetation: Cretaceous to Recent, edited by: Hill, R. S.,
Cambridge University Press, Cambridge, 189–261, https://doi.org/10.20851/australian-vegetation, 1994.
Macphail, M. K.: Palynostratigraphy of the murray basin, inland Southeastern
Australia, Palynology, 23, 197–240, https://doi.org/10.1080/01916122.1999.9989528,
1999.
Macphail, M. K.: Australian Palaeoclimates: Cretaceous to Tertiary – A
review of palaeobotanical and related evidence to the year 2000, CRC LEME
Spec. Vol. Open File Rep. 151, 266 pp., ISBN 1921039752, 2007.
Macphail, M. K. and Hill, R. S.: What was the vegetation in northwest
Australia during the Paleogene, 66–23 million years ago?, Aust. J. Bot.,
66, 556–574, https://doi.org/10.1071/BT18143, 2018.
Macphail, M. K. and Truswell, E. M.: Palynology of Site 1166, Prydz Bay,
East Antarctica, in: Proceedings of the Ocean Drilling Program, Scientific
Results, edited by: Cooper, A. K., O'Brien, P. E., and Richter, C., Ocean Drilling Program, vol. 188, 1–43, https://doi.org/10.2973/odp.proc.sr.188.2004, 2004.
Macphail, M. K., Pemberton, M., and Jacobson, G.: Peat mounds of southwest
Tasmania: Possible origins, Aust. J. Earth Sci., 46, 667–677,
https://doi.org/10.1046/j.1440-0952.1999.00736.x, 1999.
Martin, H.: Australian Tertiary phytogeography: Evidence for palynology, in:
History of the Australian vegetation: Cretaceous to Holocene, edited by: Hill, R. S., Cambridge University Press, Cambridge, 104–142, https://doi.org/10.20851/australian-vegetation, 1994.
Martin, H. A.: Cenozoic climatic change and the development of the arid
vegetation in Australia, J. Arid Environ., 66, 533–563,
https://doi.org/10.1016/j.jaridenv.2006.01.009, 2006.
Mosbrugger, V.: The nearest living relative method, in: Fossil Plants and
Spores: Modern Techniques, edited by: Jones, T. P. and Rowe, N. P., Geological Society, London, 261–265, ISBN 978-1-86239-035-5, 1999.
Mosbrugger, V. and Utescher, T.: The coexistence approach – A method for
quantitative reconstructions of Tertiary terrestrial palaeoclimate data
using plant fossils, Palaeogeogr. Palaeoclimatol. Palaeoecol., 134,
61–86, https://doi.org/10.1016/S0031-0182(96)00154-X, 1997.
Myerscough, P., Whelan, R., and Bradstock, R.: Ecology of Proteaceae with
special reference to the Sydney region, Cunninghamia, 6, 951–1015, 2007.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., del Castillo Torres, D., Chambers,
F. M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Gałka, M.,
Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio
Coronado, E. N., Hughes, P. D. M., Huguet, A., Könönen, M.,
Laggoun-Défarge, F., Lähteenoja, O., Lamentowicz, M., Marchant, R.,
McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A.
M., Rochefort, L., Schellekens, J., De Vleeschouwer, F., and Pancost, R. D.:
Introducing global peat-specific temperature and pH calibrations based on
brGDGT bacterial lipids, Geochim. Cosmochim. Ac., 208, 285–301,
https://doi.org/10.1016/j.gca.2017.01.038, 2017.
Ogden, J., Stewart, G. H., and Allen, R. B.: Ecology of New Zealand Nothofagus Forest, in: The Ecology and Biogeography of Nothofagus Forests, edited by: Veblen, T. T., Hill, R. S., and Read, J., Yale University Press, New Haven and London, 25–82, ISBN 0-300-06423-3, 1996.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: Vegan: community ecology
package, R Packag. version 2.5-6, https://cran.r-project.org/package=vegan (last access: 9 August 2021), 2019.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W.,
Krishnan, S., and DeConto, R. M.: The role of Carbon dioxide during the onset
of Antarctic glaciation, Science, 334, 1261–1264,
https://doi.org/10.1126/science.1203909, 2011.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314,
1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Partridge, A. and Dettmann, M.: Plant microfossils, in: Geology of Victoria,
edited by: Birch, W. D., Geological Society of Australia Special
Publication, 639–652, ISBN 18761253301, 2003.
Partridge, D. A.: New observations on the Cenozoic stratigraphy of the
Bassian Rise derived from a palynological study of the Groper-1, Mullet-1
and Bluebone-1 wells, offshore Gippsland Basin, southeast Australia, https://www.mrt.tas.gov.au/mrtdoc/petxplor/download/OR_0675/BR2006_07.pdf (last access: 1 January 2022), 2006.
Passchier, S., Ciarletta, D. J., Miriagos, T. E., Bijl, P. K., and Bohaty, S.
M.: An Antarctic stratigraphic record of stepwise ice growth through the
Eocene-Oligocene transition, Bull. Geol. Soc. Am., 129, 318–330,
https://doi.org/10.1130/B31482.1, 2017.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oligocene climate transition, Nature, 461,
1110–1113, https://doi.org/10.1038/nature08447, 2009.
Pocknall, D. T.: Palynology of Waikato Coal Measures (Late Eocene-late
Oligocene) from the Raglan area, North Island, New Zealand, New Zeal. J.
Geol. Geophys., 28, 329–349, https://doi.org/10.1080/00288306.1985.10422231, 1985.
Pocknall, D. T.: Late Eocene to early Miocene vegetation and climate history
of New Zealand, J. R. Soc. New Zeal., 19, 1–18,
https://doi.org/10.1080/03036758.1989.10426451, 1989.
Pole, M. S. and Macphail, M. K.: Eocene Nypa from Regatta Point, Tasmania,
Rev. Palaeobot. Palynol., 92, 55–67, 1996.
Poole, I., Cantrill, D., and Utescher, T.: A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 95–121, https://doi.org/10.1016/j.palaeo.2005.03.011, 2005.
Pound, M. J. and Salzmann, U.: Heterogeneity in global vegetation and
terrestrial climate change during the late Eocene to early Oligocene
transition, Sci. Rep., 7, 43386, https://doi.org/10.1038/srep43386, 2017.
Prebble, J. G., Raine, J. I., Barrett, P. J., and Hannah, M. J.: Vegetation
and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 41–57,
https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Prebble, J. G., Kennedy, E. M., Reichgelt, T., Clowes, C., Womack, T.,
Mildenhall, D. C., Raine, J. I., and Crouch, E. M.: A 100 million year
composite pollen record from New Zealand shows maximum angiosperm abundance
delayed until Eocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 566, 110207,
https://doi.org/10.1016/j.palaeo.2020.110207, 2021.
Pross, J.: Paleo-oxygenation in Tertiary epeiric seas: evidence from
dinoflagellate cysts, Palaeogeogr. Palaeoclimatol. Palaeoecol., 166,
369–381, https://doi.org/10.1016/S0031-0182(00)00219-4, 2001.
Pross, J., Klotz, S., and Mosbrugger, V.: Reconstructing palaeotemperatures
for the Early and Middle Pleistocene using the mutual climatic range method
based on plant fossils, Quat. Sci. Rev., 19, 1785–1799,
https://doi.org/10.1016/S0277-3791(00)00089-5, 2000.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M.,
Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., Raine, J. I., Huck, C.
E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de
Schootbrugge, B., Escutia, C., Brinkhuis, H., Brinkhuis, H., Escutia Dotti,
C., Klaus, A., Fehr, A., Williams, T., Bendle, J. A. P., Bijl, P. K.,
Bohaty, S. M., Carr, S. A., Dunbar, R. B., Gonzàlez, J. J., Hayden, T.
G., Iwai, M., Jimenez-Espejo, F. J., Katsuki, K., Soo Kong, G., McKay, R.
M., Nakai, M., Olney, M. P., Passchier, S., Pekar, S. F., Pross, J.,
Riesselman, C. R., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C.
E., Sugisaki, S., Tauxe, L., Tuo, S., van de Flierdt, T., Welsh, K., Yamane,
M., and Integrated Ocean Drilling Program Expedition 318 Scientists: Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77, https://doi.org/10.1038/nature11300, 2012.
Quilty, P. G.: Late Eocene foraminifers and palaeoenvironment, Cascade
Seamount, southwest Pacific Ocean: Implications for seamount subsidence and
Australia Antarctica Eocene correlation, Aust. J. Earth Sci., 48,
633–641, https://doi.org/10.1046/j.1440-0952.2001.485886.x, 2001.
Raine, J. I., Mildenhall, D. C., and Kennedy, E.: New Zealand fossil spores and pollen: an illustrated catalogue, GNS Science, New Zealand, https://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm (last access: 25 December 2021), 2011.
R Core Team: R: A language and environment for statistical computing, R
Found. Stat. Comput., https://www.r-project.org/
(last access: 9 August 2021), 2019.
Read, J. and Hill, R. S.: Dynamics of Nothofagus-dominated rainforest on
mainland Australia and lowland Tasmania, Vegetatio, 63, 67–78,
https://doi.org/10.1007/BF00032607, 1985.
Read, J., Hope, G. S., and Hill, R. S.: Phytogeography and climate analysis
of Nothofagus subgenus Brassospora in New Guinea and New Caledonia, Aust. J.
Bot., 53, 297–312, https://doi.org/10.1071/BT04155, 2005.
Reichgelt, T., West, C. K., and Greenwood, D. R.: The relation between global
palm distribution and climate, Sci. Rep., 8, 2–12,
https://doi.org/10.1038/s41598-018-23147-2, 2018.
Royer, J. and Rollet, N.: Plate-tectonic setting of the Tasmanian region,
Aust. J. Earth Sci., 44, 543–560, https://doi.org/10.1080/08120099708728336, 1997.
Sanguinetti, J. and Kitzberger, T.: Patterns and mechanisms of masting in
the large-seeded southern hemisphere conifer Araucaria araucana, Austral.
Ecol., 33, 78–87, https://doi.org/10.1111/j.1442-9993.2007.01792.x, 2008.
Scher, H. D., Bohaty, S. M., Smith, B. W., and Munn, G. H.: Isotopic
interrogation of a suspected late Eocene glaciation, Paleoceanography,
29, 628–644, https://doi.org/10.1002/2014PA002648, 2014.
Shannon, C. E.: A Mathematical Theory of Communication, Bell Syst. Tech. J.,
27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Shipboard Scientific Party: Site 1172, in: Proceedings of the Ocean Drilling
Program, 189 Initial Reports, edited by: Exon, N. F., Kennett, J. P., and
Malone, M. J., Ocean Drilling Program, 1–149, https://doi.org/10.2973/odp.proc.ir.189.107.2001, 2001.
Sijp, W. P., England, M. H., and Huber, M.: Effect of the deepening of the Tasman Gateway on the global ocean, Paleoceanography, 26, 1–18, https://doi.org/10.1029/2011PA002143, 2011.
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl,
U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.:
Timing and nature of the deepening of the Tasmanian Gateway,
Paleoceanography, 19, 1–18, https://doi.org/10.1029/2004PA001022, 2004.
Thompson, N., Salzmann, U., López-Quirós, A., Bijl, P. K., Hoem, F. S., Etourneau, J., Sicre, M.-A., Roignant, S., Hocking, E., Amoo, M., and Escutia, C.: Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition, Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, 2022.
Tibbett, E. J., Scher, H. D., Warny, S., Tierney, J. E., Passchier, S., and
Feakins, S. J.: Late Eocene record of hydrology and temperature from Prydz
Bay, East Antarctica, Paleoceanogr. Paleoclimatol., 36, e2020PA004204,
https://doi.org/10.1029/2020PA004204, 2021.
Tripathi, S. K. and Srivastava, D.: Palynology and palynofacies of the early
Palaeogene lignite bearing succession of Vastan, Cambay Basin, Western
India, Acta Palaeobot., 52, 157–175, 2012.
Truswell, E. M.: Vegetation changes in the Australian tertiary in response
to climatic and phytogeographic forcing factors, Aust. Syst. Bot., 6,
533–557, https://doi.org/10.1071/SB9930533, 1993.
Truswell, E. M. and Macphail, M. K.: Polar forests on the edge of
extinction: What does the fossil spore and pollen evidence from East
Antarctica say?, Aust. Syst. Bot., 22, 57–106, https://doi.org/10.1071/SB08046,
2009.
Utescher, T., Mosbrugger, V., and Ashraf, A. R.: Terrestrial climate
evolution in Northwest Germany over the last 25 million years, Palaios,
15, 430–449, https://doi.org/10.2307/3515514, 2000.
Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D., Jacques, F. M. B., Kern, A. K., Liu, Y. S. C., Mosbrugger, V., and Spicer, R. A.: The
Coexistence Approach-Theoretical background and practical considerations of
using plant fossils for climate quantification, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 410, 58–73, https://doi.org/10.1016/j.palaeo.2014.05.031, 2014.
Vajda, V., Raine, J. I., and Hollis, C. J.: Indication of global
deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike,
Science, 294, 1700–1702, https://doi.org/10.1126/science.1064706, 2001.
Veblen, T. T.: Regeneration Patterns in Araucaria araucana Forests in Chile,
J. Biogeogr., 9, 11–28, https://doi.org/10.2307/2844727, 1982.
Veblen, T. T., Hill, R. S., and Read, J.: The ecology and biogeography of
Nothofagus forests, Yale University Press, New Haven, ISBN 0-300-6423-3, 1996.
Verma, P., Garg, R., Rao, M. R., and Bajpai, S.: Palynofloral diversity and
palaeoenvironments of early Eocene Akri lignite succession, Kutch Basin,
western India, Palaeobio. Palaeoenv., 100, 605–627,
https://doi.org/10.1007/s12549-019-00388-1, 2020.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D.: Middle
Eocene-late Oligocene climate variability: Calcareous nannofossil response
at Kerguelen Plateau, Site 748, Mar. Micropaleontol., 69, 173–192,
https://doi.org/10.1016/j.marmicro.2008.07.006, 2008.
Villa, G., Fioroni, C., Persico, D., Roberts, A. P., and Florindo, F.: Middle
Eocene to Late Oligocene Antarctic glaciation/deglaciation and Southern
Ocean productivity, Paleoceanography, 29, 223–237,
https://doi.org/10.1002/2013PA002518, 2014.
Willard, D. A., Donders, T. H., Reichgelt, T., Greenwood, D. R., Sangiorgi,
F., Peterse, F., Nierop, K. G. J., Frieling, J., and Schouten, S.: Arctic
vegetation, temperature, and hydrology during Early Eocene transient global
warming events, Glob. Planet. Change, 178, 139–152,
https://doi.org/10.1016/j.gloplacha.2019.04.012, 2019.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (104
years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene
climate transition, Paleoceanography, 11, 251–266,
https://doi.org/10.1029/96PA00571, 1996.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature,
451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zanazzi, A., Kohn, M. J., MacFadden, B. J., and Terry, D. O.: Large
temperature drop across the Eocene–Oligocene transition in central North
America, Nature, 445, 639–642, https://doi.org/10.1038/nature05551, 2007.
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the...