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Abstract. Considered one of the most significant climate re-
organizations of the Cenozoic period, the Eocene–Oligocene
Transition (EOT; ca. 34.44–33.65) is characterized by global
cooling and the first major glacial advance on Antarctica.
In the southern high latitudes, the EOT cooling is primar-
ily recorded in the marine realm, and its extent and effect
on the terrestrial climate and vegetation are poorly docu-
mented. Here, we present new, well-dated, continuous, high-
resolution palynological (sporomorph) data and quantitative
sporomorph-based climate estimates recovered from the East
Tasman Plateau (ODP Site 1172) to reconstruct climate and
vegetation dynamics from the late Eocene (37.97 Ma) to the
early Oligocene (33.06 Ma). Our results indicate three major
climate transitions and four vegetation communities occupy-
ing Tasmania under different precipitation and temperature
regimes: (i) a warm-temperate Nothofagus–Podocarpaceae-
dominated rainforest with paratropical elements from 37.97
to 37.52 Ma; (ii) a cool-temperate Nothofagus-dominated
rainforest with secondary Podocarpaceae rapidly expanding
and taking over regions previously occupied by the warmer
taxa between 37.306 and 35.60 Ma; (iii) fluctuation between
warm-temperate–paratropical taxa and cool temperate forest
from 35.50 to 34.49 Ma, followed by a cool phase across
the EOT (34.30–33.82 Ma); and (iv) a post-EOT (earliest
Oligocene) recovery characterized by a warm-temperate for-
est association from 33.55 to 33.06 Ma. Coincident with
changes in the stratification of water masses and sequestra-
tion of carbon from surface water in the Southern Ocean, our
sporomorph-based temperature estimates between 37.52 and
35.60 Ma (phase ii) showed 2–3 ◦C terrestrial cooling. The

unusual fluctuation between warm and cold temperate forest
between 35.50 to 34.59 Ma is suggested to be linked to the
initial deepening of the Tasmanian Gateway, allowing eastern
Tasmania to come under the influence of warm water asso-
ciated with the proto-Leeuwin Current (PLC). Further to the
above, our terrestrial data show the mean annual temperature
declining by about 2 ◦C across the EOT before recovering
in the earliest Oligocene. This phenomenon is synchronous
with regional and global cooling during the EOT and linked
to declining pCO2. However, the earliest Oligocene climate
rebound along eastern Tasmania is linked to a transient re-
covery of atmospheric pCO2 and sustained deepening of the
Tasmanian Gateway, promoting PLC throughflow. The three
main climate transitional events across the studied inter-
val (late Eocene–earliest Oligocene) in the Tasmanian Gate-
way region suggest that changes in ocean circulation due to
accelerated deepening of the Tasmanian Gateway may not
have been solely responsible for the changes in terrestrial
climate and vegetation dynamics; a series of regional and
global events, including a change in the stratification of wa-
ter masses, sequestration of carbon from surface waters, and
changes in pCO2, may have also played vital roles.

1 Introduction

Palynological reconstruction demonstrates a high sensitiv-
ity of global vegetation to past changes in climate, leading
to major shifts in biome distribution (Pound and Salzmann,
2017). The Eocene–Oligocene Transition (EOT; 34.44–
33.65 Ma; Katz et al., 2008; Hutchinson et al., 2021) is one of
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the most important climate transitions of the Cenozoic and is
characterized by a shift from largely ice-free greenhouse con-
ditions to an icehouse climate, involving the development of
the Antarctic cryosphere and global cooling (Liu et al., 2009;
Pearson et al., 2009; Pagani et al., 2011; Hutchinson et al.,
2021).

Tectonic opening of the southern gateways (Kennett,
1977) and a large and sharp drop in global atmospheric CO2
(DeConto and Pollard, 2003; Huber et al., 2004; Zachos et
al., 2008; Goldner et al., 2014; Ladant et al., 2014) have
been proposed as possible drivers for this climate transition.
The opening of the Australian–Antarctic Seaway (Tasmanian
Gateway) and the Drake Passage led to the strengthening of
the Antarctic Circumpolar Current (ACC), which thermally
isolated Antarctica (Kennett, 1977). However, marine geol-
ogy, micropalaeontology, and model simulation showed a po-
tential time lag between the onset of the ACC and palaeogeo-
graphic changes, hence challenging global climate change at
the EOT driven by Southern Hemisphere tectonics (Huber et
al., 2004; Stickley et al., 2004; Goldner et al., 2014).

Although southern gateway opening and deepening have
failed to fully explain Antarctic cooling at the EOT, the
oceanographic changes following gateway opening and
deepening have been reported to climatically impact South-
ern Ocean surface waters regionally (Stickley et al., 2004;
Sijp et al., 2011; Houben et al., 2019; López-Quirós et al.,
2021; Thompson et al., 2022). However, the extent and ef-
fect of the opening and deepening of the Tasmanian Gateway
and its associated oceanographic changes on the coeval ter-
restrial climate and vegetation are not readily known. The
lack of continuous and well-dated EOT terrestrial records
place considerable limitations on the detailed temporal and
spatial reconstruction of vegetation and climate. These chal-
lenges are further compounded by the fact that the few late
Eocene and early Oligocene terrestrial palynoflora records
indicate a rather heterogeneous vegetation response at the
EOT (Pound and Salzmann, 2017). For example, in south-
eastern Australia, the late Eocene to early Oligocene vege-
tation records indicate a shift from a warm-temperate to a
cool-temperate rainforest (Korasidis et al., 2019; Lauretano
et al., 2021), whereas in New Zealand, a warm humid rain-
forest persisted (Pocknall, 1989; Homes et al., 2015; Prebble
et al., 2021). East Antarctica (Prydz Bay) saw the collapse
of tall woody vegetation and their replacement by impov-
erished, taiga-like vegetation with dwarfed trees before the
EOT during the late Eocene (Macphail and Truswell, 2004;
Truswell and Macphail, 2009; Tibbett et al., 2021), whereas a
major vegetation change did not take place across the Drake
Passage region until the early Oligocene, where there is a dis-
tinct expansion of gymnosperms and cryptogams, indicating
glacial expansion (Thompson et al., 2022).

To further our understanding of the timing and poten-
tial drivers of southern high-latitude terrestrial environment
change at the EOT, this study presents a new sporomorph
record recovered from ODP Site 1172 (Fig. 1) on the East

Tasman Plateau (ETP) spanning the late Eocene (37.97 Ma)
to earliest Oligocene (33.06 Ma). The proximity of our study
site to the Tasmanian Gateway places it in an excellent ge-
ographical position to identify potential climate or tectonic
impacts on terrestrial vegetation of the Australo-Antarctica
region. To further investigate potential links between the ter-
restrial and marine realm, we also compare our pollen-based
quantitative climate estimates with newly published TEX86-
based sea-surface temperature (SST) and mean annual air
temperature (MAATsoil) reconstructions from the same site
(Bijl et al., 2021). Our study reveals a significant terrestrial
cooling ∼ 3 Myr prior to the EOT, and a warming in the ear-
liest Oligocene that is most likely controlled by transient re-
bound of atmospheric pCO2 and sustained deepening of the
Tasmanian Gateway.

2 Materials and methods

2.1 Tectonic evolution and depositional setting

Continental breakup and seafloor spreading between Aus-
tralia and the continental blocks of Lord Howe Rise, Camp-
bell Plateau, and New Zealand (LCNZ) started in the Late
Cretaceous (∼ 75 Ma; Cande and Stock, 2004). Northward
movement of Australia was propagated by rifting leading to
the formation of the Tasman Sea and the separation of north-
eastern Australia in the Paleocene (∼ 60 Ma; Gaina et al.,
1999). The series of tectonic events paved the way for ma-
jor ocean currents to flow along the coasts of eastern Aus-
tralia and Tasmania, the ETP, and the South Tasman Rise
(STR; Exon et al., 2004a). However, the Tasman promontory
remained and separated the Australo-Antarctic Gulf (AAG)
from the Pacific Ocean until the late Eocene (∼ 35.5 Ma;
Stickley et al., 2004). Our study site (ODP Site 1172 on
the ETP; Fig. 1) is located on one of the four continental
blocks sampled during ODP Leg 189 (Exon et al., 2004b)
∼ 170 km southeast of Tasmania (43◦57.6′ S, 149◦55.7′ E;
Fig. 1a; Shipboard Scientific Party, 2001) at water depths of
∼ 2620 m (Exon et al., 2004a) and is enclosed by an 1800 m
high seamount (Royer and Rollet, 1997). Prior to the Tas-
man Sea break-up in the Late Cretaceous (95 Ma), the ETP
(which presently forms an oval platform) was part of Tas-
mania and the STR (Royer and Rollet, 1997; Exon et al.,
2004b) and subsided slowly until the late Eocene. Bathymet-
ric studies indicate that the ETP is connected to the east coast
of Tasmania by the East Tasman Saddle (Royer and Rollet,
1997), which gives no indication of a deep basin in between
(Hill and Exon, 2004). A dredging exercise confirmed the
continental origin of the plateau (Exon et al., 1997). How-
ever, the age of the guyot/seamount (dated as 36 Ma; Lanyon
et al., 1993) disqualifies the ETP itself from being the po-
tential source of the terrestrial organic matter (Bijl et al.,
2021). In addition, common Permo-Triassic reworked ele-
ments in our late Eocene–early Oligocene sporomorph as-
semblage likely indicate an eastern Tasmanian sporomorph
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Figure 1. (a) Location of the East Tasman Plateau (ODP Site 1172; red star) and present-day Tasmania (Quilty, 2001). The Tasmania
landmass is shown in green and the submerged ODP Site 1172 in grey, at a water depth of ∼ 2620 m. (b) Early Oligocene palaeogeography
and palaeoceanography of the Tasmanian Gateway. ODP Site 1172 is marked by a five-pointed black star. Surface currents are modified
after reconstructions by Stickley et al. (2004). TC: Tasman current, PLC: proto-Leeuwin current, ACountC: Antarctic Counter Current,
AAG: Australo-Antarctic Gulf. Solid red arrows indicate warmer ocean currents from the AAG, and solid blue arrows indicate cooler ocean
currents. Arrow size indicates the relative strength of the current. Figure is modified after Hoem et al. (2021).

source, in line with the Permian–Triassic upper Parmeener
Group that contains terrestrial deposits and presently makes
up the surface lithology across east Tasmania. A previous
Paleocene–Eocene sporomorph assemblage from the ETP
(ODP Site 1172) further supports an eastern Tasmanian ter-
restrial palynomorph source (Contreras et al., 2014).

Lithologically, the marine sedimentary record is divided
into three units: (i) shallow-marine, organic-rich middle
Eocene to lower upper Eocene clay; (ii) a highly condensed
middle upper Eocene to lowermost Oligocene glauconite-
rich, shallow-marine silty sandstone; and (iii) lower
Oligocene siliceous-rich carbonate ooze (Stickley et al.,
2004; Exon et al., 2001). Holes A and D of ODP Site 1172
on the East Tasman Plateau both yielded EOT records and
have been analysed for their pollen and spore contents. The
age model relies on magnetostratigraphy (which has a par-
ticularly clear signal in the late Eocene; Stickley et al., 2004;
Fuller and Touchard, 2004) and biostratigraphy (dinoflagel-
late cysts, nannoplankton, and diatoms; Stickley et al., 2004;
Bijl et al., 2013), as presented in Houben et al. (2019) and
Bijl et al. (2021).

2.2 Study material

A total of 66 samples from the late Eocene to the earli-
est Oligocene of ODP Site 1172 (37.97–33.06 Ma) were
analysed for terrestrial palynomorphs to reconstruct the
palaeovegetation and palaeoclimate. Raw pollen data, in-
cluding data on non-pollen palynomorphs (NPPs) and re-
worked sporomorphs, are available from the Zenodo data
repository (Amoo et al., 2021). These samples were pre-
pared at the Laboratory of Palaeobotany and Palynology,
Utrecht University, following standard palynological pro-

cessing techniques (Bijl et al., 2013). Sample processing in-
volved treatment with 30 % HCl and 38 % HF and sieving
the residues through a 15 µm nylon mesh (Pross, 2001). The
residues were mounted onto microscope slides with glyc-
erine gel used as the mounting medium. When analysing
marine sediments such as those used in this study, siev-
ing is a standard technique that is required to remove un-
wanted organic/inorganic matter and to increase the pollen
concentration. To reduce the potential risk of losing small
pollen grains, we regularly monitored our residues sieved at
10 and 15 µm mesh size. We found no evidence of a selec-
tive loss of smaller pollen grains such as Myrtaceidites and
Sapotaceoidaepollenites cf. latizonatus. Similar to pollen
records recovered from lakes (diameter > 200 m) and estu-
aries in Australia, our marine sporomorph record is likely
to be biased towards abundant taxa in the regional vegeta-
tion, whereas sporomorphs recovered from coal, lignite, peat,
and backswamp deposits are more likely to reflect local flora,
with higher diversity and occasional high values of underrep-
resented taxa (Macphail et al., 1994).

Leica DM 500 and DM 2000 LED microscopes were used
to analyse two slides for each sample at ×400 or ×1000
magnification. Where possible, 300 fossil spores and pollen
grains (excluding reworked sporomorphs) were analysed for
each sample, followed by further scanning of the entire mi-
croscope slide to record rare taxa. Aside from nine samples
with counts below 50 grains, overall pollen preservation and
counts were generally good. Reworked sporomorphs were
identified based on the thermal maturation (colour) of their
outer coat (exine) and occurrence outside their known strati-
graphic range. Non-pollen palynomorphs were recorded but
not added to the total pollen counts. Sporomorph percent-
ages were calculated based on the total sum of pollen and
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Figure 2. Sporomorph assemblages and relative abundances of major sporomorph taxa (angiosperms, gymnosperms, cryptogams) recovered
from the late Eocene–early Oligocene of ODP Site 1172. Angiosperm relative abundances are marked by blue bars, gymnosperm relative
abundances by red bars, and cryptogam relative abundances by green bars. In the angiosperm group, Nothofagidites is further divided into
subgenera. These are Brassospora (B), Fuscospora (F), and Lophozonia (L) types. CONISS ordination constrains our late Eocene–early
Oligocene sporomorph assemblages into four distinct pollen zones (PZ 1–PZ 4) or vegetation and climate phases. The age model is after
Houben et al. (2019) and Bijl et al. (2021).

spores excluding reworked grains, and were plotted using
Tilia version 2.6.1 (Fig. 2; Grimm, 1990). Using the Ed-
wards and Cavalli-Sforza chord distance, we applied a strati-
graphically constrained incremental sum-of-squares cluster
analysis (CONISS; Grimm, 1987) to determine pollen as-
semblage zones (PZ; Fig. 2). Sporomorph identification and
botanical affinities (used for nearest living relative identifi-
cation of fossil spores and pollen) were established using
Macphail and Cantrill (2006), Macphail (2007), Truswell and
Macphail (2009), Daly et al. (2011), Kumaran et al. (2011),
Raine et al. (2011), Bowman et al. (2014), and Macphail and
Hill (2018).

2.3 Bioclimatic analysis

The nearest living relative (NLR) approach was used
to estimate and reconstruct the mean annual temperature
(MAT), warm mean month temperature (WMMT), cold
mean month temperature (CMMT), and mean annual precip-
itation (MAP). The bioclimatic analysis used in this study
involved all pollen and spore taxa that could be related to an
NLR and are listed in Table 1. The NLR is a uniformitarian
approach based on the assumption that climate tolerance of
extant taxa can be extended into the past. However, factors
such as misidentification of fossil taxa and/or their NLRs,
unresolved differences in climate tolerance between fossil

taxa and their NLRs, potentially incomplete climate toler-
ance of NLRs, and potential weakening of the connection
between fossil taxa and NLRs through deep time may pose
some concerns and need to be considered prior to the appli-
cation of NLR-based climate reconstructions (Mosbrugger
and Utescher, 1997; Mosbrugger, 1999; Pross et al., 2000;
Utescher et al., 2000, 2014). Generally, these uncertainties
and issues with the NLR approach increase when analysing
plant remains or samples from deep-time geological records
(Poole et al., 2005). To test the validity of our NLR-based cli-
mate estimates, we compare them to previously published in-
dependent botanical or geochemical proxies in the southern
high latitudes spanning the late Eocene to early Oligocene
(e.g. Colwyn and Hren, 2019; Houben et al., 2019; Korasidis
et al., 2019; Bijl et al., 2021; Lauretano et al., 2021; Tib-
bett et al., 2021). Overall, these are generally in agreement
and provide a certain level of confidence in the utility of the
NLR-based climate estimates.

The NLR analysis in this study is combined with the prob-
ability density function (PDF). The PDF works by statisti-
cally constraining the most likely climate co-occurrence en-
velope for an assemblage (Harbert and Nixon, 2015; Hollis et
al., 2019). Bioclimatic analysis was performed by using the
dismo package in R (Hijmans et al., 2017) to cross-plot the
modern distribution of the NLR from the Global Biodiversity
Information Facility (GBIF; GBIF, 2021) with gridding from
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the WorldCLIM climate surface (Fick and Hijmans, 2017).
The datasets are then filtered to remove multiple entries per
climate grid cell, plants whose botanical affinities are vague,
doubtful, or redundant, and occurrences termed exotic (e.g.
garden plants). Filtering was performed to avoid bias in the
probability function that would likely lead to results lean-
ing towards a particular location (Reichgelt et al., 2018). To
test the robustness of the dataset, bootstrapping was applied,
which was followed by the calculation of the likelihood of
a taxon that occurs at a specific climate variable using the
mean and standard deviation of the modern range of each
taxon (Kühl et al., 2002; Willard et al., 2019). For a more
detailed explanation of this method, see Willard et al. (2019)
and Klages et al. (2020).

2.4 Quantitative and statistical analyses

Diversity indices (rarefaction, Shannon diversity index, equi-
tability) were generated using the PAST statistical software
(Hammer et al., 2001) with sample counts of ≥ 75 individ-
uals. Rarefaction is an interpolation technique that is used
to compare taxonomic diversity in samples of different sizes
(Birks and Line, 1992; Birks et al., 2016). Rarefaction anal-
yses using sample counts of ≥ 75 and ≥ 100 showed similar
diversity trends. We, however, settled on counts with ≥ 75
individual grains because they offered an added advantage
of filling in the gaps that would have been created if only
samples with counts of ≥ 100 grains were used, thereby in-
creasing the resolution of the studied section. The Shannon
diversity index (H ) is a measure of diversity that consid-
ers the number of individuals as well as the number of taxa
and the evenness of the species present (Shannon, 1948). H
ranges from 0 for vegetation communities with a single taxon
to higher values where taxa are evenly distributed (Legen-
dre and Legendre, 2012). Equitability (J ), on the other hand,
measures the level of abundance and how the species are dis-
tributed in an assemblage. Low J values indicate the domi-
nance of a few species in the population (Hayek and Buzas,
2010).

Pollen zones (PZ) were defined following stratigraphi-
cally constrained analysis (CONISS; Grimm, 1987) in Tilia
(version 2.6.1) using the total sum of squares with chord
distance square-root transformation (Cavalli-Sforza and Ed-
wards, 1967). In addition, we used detrended correspondence
analysis (DCA; Hill and Gauch, 1980) sample scores to
measure the sample-to-sample variance. DCA sample scores
were generated using the vegan package (Oksanen et al.,
2019) of the R statistical software (R Core Team, 2019).

3 Results

3.1 Palynological results from ODP Site 1172

The late Eocene–early Oligocene samples from the East Tas-
man Plateau (ODP Site 1172) yielded moderately to well-
preserved sporomorphs. Eighty-one (81) individual sporo-
morph taxa were recorded from the 57 productive samples
across the studied section. The sporomorph record is domi-
nated by Nothofagidites spp., which makes up between 38 %
to 48 % of all non-reworked sporomorphs across the stud-
ied interval (Fig. 2). Podocarpidites spp., Myricipites har-
risii, Cyathidites spp., Phyllocladidites mawsonii, and Arau-
cariacites australis form significant components of the paly-
noflora and occur with varying frequency (Fig. 2).

Based on results from rarefaction, the average diversity
for the entire studied section was 20.1± 1.74 taxa per sam-
ple of 75 individuals. The sporomorph record based on
CONISS is grouped into four pollen zones (PZ; Fig. 2), PZ 1
(early late Eocene; 37.97–37.52 Ma), PZ 2 (late Eocene–
latest Eocene; 37.30–35.60 Ma), PZ 3 (latest Eocene–earliest
Oligocene 35.50–33.36 Ma), and PZ 4 (earliest Oligocene;
33.25–33.06 Ma). All four zones consist of characteristic pa-
lynoflora assemblages that are described below. Taxa names
in brackets refer to the NLRs.

3.1.1 Pollen zone 1 (37.97–37.52 Ma; 7 samples)

Pollen zone 1 is dominated by Nothofagidites spp. (Nothofa-
gus), which accounts for ∼ 48 % of all non-reworked pa-
lynomorphs. Taxa belonging to the Brassospora (∼ 28 %)
subgenus of Nothofagus make up the most abundant com-
ponent, followed by Fuscospora (19 %) and Lophozonia
(1 %), respectively. Other angiosperms (non-Nothofagus) on
average account for 24 % of all sporomorphs. These are
represented mainly, in order of decreasing occurrence, by
Myricipites harrisii (Gymnostoma), Proteacidites pseudo-
moides (Carnarvonia), Proteacidites spp., Spinizonocolpites
spp. (Arecaceae), Malvacearumpollis mannanensis (Mal-
vaceae), and Malvacipollis spp. (Euphorbiaceae). The abun-
dance of gymnosperms is generally low throughout PZ 1 and
accounts for about 16 % of all non-reworked palynomorphs.
These are also represented mainly, in order of decreasing
occurrence, by Podocarpidites spp. (Podocarpaceae), Phyl-
locladidites mawsonii (Lagarostrobos), Dacrydiumites prae-
cupressinoides (Dacrydium), and Araucariacites australis
(Araucariaceae). Ferns and mosses account for about 12 %
of the total sporomorphs and are represented by Cyathidites
spp. (Cyatheaceae), Dictyophyllidites sp. (Gleicheniaceae),
Gleicheniidites sp. (Gleicheniaceae), Laevigatosporites spp.
(Blechnaceae), and Stereisporites sp. (Sphagnum).

Quantitatively, the sporomorph diversity for this zone,
based on rarefied values, is 19.65± 1.32 species per sample
of 75 individuals. With respect to the diversity indices, the
yields for Shannon diversity (H ) are between 2.33 and 2.69,
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Figure 3. Sporomorph percentage abundances, diversity, and detrended correspondence analysis (DCA) results for ODP Site 1172. Percent-
age abundances for the major groups (gymnosperms, other angiosperms, Nothofagus, and cryptogams) are presented for all samples with
pollen counts ≥ 75 grains. The DCA results are derived from the sample scores of axis 1 (which measures the sample-to sample variance)
and show four distinct compositional groupings, as observed with CONISS, for the late Eocene–early Oligocene Site 1172 samples. Diver-
sity is calculated based on Sander’s rarefaction analysis with samples rarefied at 75 grains/individuals. Relative percentage abundances of
Antarctic-endemic and protoperidinioid dinoflagellate cysts, the magnetostratigraphy, and the age model are after Houben et al. (2019).

Table 2. Summary of quantitative species diversity and DCA axis 1 sample scores between the late Eocene and early Oligocene from ODP
Site 1172.

Analysis Pollen zone 1 Pollen zone 2 Pollen zone 3 Pollen zone 4

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Rarefaction (75 individuals) 19.65 1.32 19.44 2.49 20.15 1.79 21.16 1.37
Rarefaction (100 individuals) 22.29 1.87 21.78 2.85 22.52 2.31 23.75 1.32
Shannon index (H ) 2.57 1.12 2.56 0.22 2.58 0.12 2.54 0.15
Equitability (J ) 0.85 0.02 0.86 0.04 0.85 0.02 0.83 0.03
DCA (axis 1 sample scores) −0.55 0.15 −0.29 0.15 0.44 0.33 0.83 0.03
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averaging at 2.57± 1.12. Equitability (J ) scores are set be-
tween 0.81 and 0.88, with an average of 0.85± 0.02 (Fig. 3;
Table 2).

3.1.2 Pollen zone 2 (37.30–35.60 Ma; 27 samples)

PZ 2 sees the decline of Nothofagidites spp. to about 42 %.
The Brassospora type remains the dominant Nothofagus sub-
genus, but with a substantial decline in abundance from about
28 % in PZ 1 to 22 % in PZ 2. The Fuscospora and Lopho-
zonia subgenera, however, accounted for 19 % and 1 %, re-
spectively (Fig. 2). In comparison to PZ 1, other angiosperms
(non-Nothofagus) see a decline from about 24 % to 17 %.
In order of decreasing abundance, the most significant taxa
among non-Nothofagus angiosperms are Myricipites har-
risii (Gymnostoma), Proteacidites spp. (Proteaceae), Mal-
vacearumpollis mannanensis (Malvaceae), and Malvacipol-
lis spp. (Euphorbiaceae). A sharp decline in Proteacidites
pseudomoides (Carnarvonia) is coupled with the disappear-
ance of Spinizonocolpites spp. (Arecaceae). Gymnosperms,
on the other hand, almost double in relative abundance from
about 16 % in PZ 1 to over 29 % in PZ 2. In order of
decreasing abundance, gymnosperm taxa are dominated by
Podocarpus spp. Araucariacites australis (Araucariaceae),
Dacrydiumites praecupressinoides (Dacrydium), and Phyl-
locladidites mawsonii (Lagarostrobos). Microcachryidites
antarcticus (Microcachrys) is a taxon that first appears in
this zone and forms an important component (∼ 11 %) of the
gymnospermous assemblage. In addition to the above, cryp-
togams decline slightly in this zone, accounting for roughly
10 % of the total sporomorphs. The main members of this
group are Cyathidites spp. (Cyatheaceae), Gleicheniidites
(Gleicheniaceae), and Laevigatosporites spp. (Blechnaceae).

This zone has lower diversity than PZ 1. Based on rarefied
values, the average diversity for PZ 2 is 19.44± 2.49 species
per sample of 75 individuals. The results for the Shannon
diversity index (H ) are between 2.15 and 2.97, averaging at
2.56± 0.22. Equitability is set between 0.78 and 0.93, with
an average of 0.86± 0.04 (Fig. 3; Table 2).

3.1.3 Pollen zone 3 (35.50–33.36 Ma; 20 samples)

Zone 3 shows a further decline in Nothofagidites spp. to
∼ 38 %. However, the Brassospora-type Nothofagus sees
a slight increase in abundance, while the Fuscospora-type
Nothofagus declines sharply from the peak of 19 % ob-
served in PZ 2 to 12 %. The Lophozonia type remains
stable (∼ 1 %). Other angiosperms (non-Nothofagus) see a
slight decline and account for ∼ 14 % of all non-reworked
sporomorphs. These are represented mainly by Myricipites
harrisii (Gymnostoma) and Proteacidites spp. (Proteaceae),
Malvacipollis spp. (Euphorbiaceae), and Malvacearumpol-
lis mannanensis (Malvaceae). Another important observa-
tion for this interval is the re-appearance of Spinizonocolpites
spp. (Arecaceae) and Proteacidites pseudomoides (Carnar-

vonia). However, in contrast to PZ 1, Spinizonocolpites spp.
are not consistently present. Gymnosperms increase slightly
in this zone, accounting for ∼ 31 %. The gymnosperms re-
main dominant with Podocarpidites spp. (Podocarpaceae).
However, other important taxa such as Araucariacites
australis (Araucariaceae), Phyllocladidites mawsonii (La-
garostrobos), and Microcachryidites (Microcachrys) decline.
Dacrydiumites praecupressinoides (Dacrydium) reaches its
peak abundance in this zone. Cryptogams significantly in-
crease in abundance and are represented, in order of abun-
dance, by Cyathidites spp. (Cyatheaceae), Laevigatosporites
spp. (Blechnaceae), Osmundacidites (Osmundaceae), Poly-
podiisporites radiatus (Polypodiaceae), and Clavifera spp.
(Gleicheniaceae).

Based on rarefied values, the average diversity for this PZ
is 20.15± 1.79 species per sample. The results for Shan-
non diversity (H ) are between 2.37 and 2.80, averaging at
2.58± 0.12. Equitability (J ) is set between 0.81–0.91, aver-
aging at 0.85± 0.02 (Fig. 3; Table 2).

3.1.4 Pollen zone 4 (33.25–33.06 Ma; 3 samples)

The percentage abundances of Nothofagidites spp. (Nothofa-
gus), including Brassospora (∼ 23 %), Fuscospora (12 %),
and Lophozonia types, remain unchanged, whereas other an-
giosperm percentages increase substantially from 14 % in
PZ 3 to ∼ 20 %. In order of decreasing abundance, these
are represented by Myricipites harrisii (Gymnostoma) and
Proteacidites pseudomoides (Carnarvonia). PZ 4 also sees
the emergence of new angiosperms such as Sapotaceoidae-
pollenites cf. latizonatus (Sapotaceae) and Parsonsidites psi-
latus (Parsonsia). Gymnosperms, however, see a sharp de-
cline in this interval, accounting for about 21 % of the total
sporomorph taxa, with Podocarpidites spp. (Podocarpaceae)
and Dacrydium praecupressinoides (Dacrydium) as the main
components. Microcachryidites antarcticus (Microcachrys),
Araucariacites australis (Araucariaceae), and Phyllocla-
didites mawsonii (Lagarostrobos) show significant declines,
whereas cryptogams increase to ∼ 20 %. The cryptogams
are represented, in order of decreasing abundance, by Cy-
athidites spp. (Cyatheaceae), Laevigatosporites spp. (Blech-
naceae), Dictyophyllidites sp. (Gleicheniaceae), and Ciboti-
idites tuberculiformis (Schizaeaceae).

Average diversity (21.16± 1.37 species per sample) is
slightly higher than in PZ 3. The results for Shannon diver-
sity (H ) are between 2.42 and 2.72, averaging at 2.54± 0.15.
Equitability (J ) is set between 0.80–0.87, averaging at
0.83± 0.03 (Fig. 3; Table 2).

4 Discussion

4.1 Vegetation composition and altitudinal zonation

Throughout the studied section, abundant Nothofagidites
spp. and common Podocarpidites spp. Myricipites har-
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risii and Phyllocladidites mawsonii indicate the presence
of Nothofagus-dominated temperate rainforest (Truswell and
Macphail, 2009; Bowman et al., 2014), which likely grew
across lowland and mid-altitude elevations in eastern Tas-
mania. The occurrence of Araucariacites australis, Micro-
cachryidites antarcticus, and Proteacidites parvus may also
suggest that a component of the sporomorph assemblage
reflects higher altitudes with more open forest conditions
(Macphail, 1999; Kershaw and Wagstaff, 2001). In addi-
tion, pollen taxa belonging to Arecaceae, Gymnostoma, and
Carnarvonia indicate the existence of a paratropical vegeta-
tion community that grew in sheltered lowland and coastal
areas (Huurdeman et al., 2021). The paratropical rainforest
likely occupied lowlands and coastal areas, while temperate
rainforest likely grew at higher elevations, similar to vegeta-
tion communities that prevailed on Wilkes Land and Tasma-
nia during the early to mid-Eocene (Pross et al., 2012; Contr-
eras et al., 2013, 2014). The existence of different vegetation
communities with NLRs that currently grow at different tem-
peratures and elevations suggests that vegetation across east-
ern Tasmania were subject to climatic gradients related to
differences in elevation and/or distance to the coastline. This
is supported by reports of a topographic divide between sites
facing the cool Tasman Current (Gippsland basin, eastern
Tasmania) and the westerly located south Australian basins
(Holdgate et al., 2017), which may have served as the loca-
tions for higher-altitude temperate forest taxa. The following
sub-sections further describe each of these vegetation com-
munities in detail.

4.1.1 Lowland to mid-altitude Nothofagus–Podocarpus
rainforest

Abundant Nothofagidites spp. and common Podocarpidites
spp., Myricipites harrisii, Phyllocladidites mawsonii, and
Cyatheaceae give an indication of a lowland to mid-altitude
Nothofagus–Podocarpus-dominated rainforest thriving un-
der high-precipitation regimes (MAP> 1300 mm yr−1) in
Tasmania during the late Eocene to the earliest Oligocene.
The main canopy is primarily made up of Nothofagidites
spp. (Nothofagus/southern beech) and podocarps (Dacrydi-
umites, Podocarpidites, Dacrycarpites) with rare Cupres-
saceae trees. Southern beech forests can either occur as
pure stands or a mixed forest, making the definition and
recognition of regional or local forest types from fossil
pollen and spores challenging. Today, pure beech stands in
New Zealand are mostly montane to subalpine, and lowland
mixed beech forests are associated with diverse broadleaf
angiosperms and canopy-emergent gymnosperms (Ogden et
al., 1996). Following Dettmann et al. (1990), we categorize
Nothofagidites pollen taxa into the subgenera Brassospora,
Fuscospora, and Lophozonia. Extant Fuscospora and Lopho-
zonia types thrive in cool-temperate conditions in Tasmania,
southeastern Australia, New Zealand, and southern South
America (Hill, 1994, 2017; Veblen et al., 1996; Read et

al., 2005), while the Brassospora type are today restricted
to warm-temperate–subtropical conditions in New Guinea
and New Caledonia (Hill and Dettmann, 1996; Veblen et
al., 1996). These Brassospora-type Nothofagus grow today at
lower to mid-altitudes that receive high and consistent rain-
fall, but also in montane and subalpine areas (typically above
500 m), pointing to their wide ecological and climate toler-
ance (MAT: 10.6 to 23.5 ◦C; Read et al., 2005).

Myricipites harrisii (Casuarinaceae) has two potential
NLRs, Casuarina/Allocasuarina and Gymnostoma. Casua-
rina/Allocasuarina have xeromorphic features indicating
adaptation to an arid climate with frequent fires (Hill, 2017;
Lee et al., 2016; Hill et al., 2020). We selected the rainfor-
est clade Gymnostoma as the most likely NLR of our fossil
taxon Myricipites harrisii, based on the subtropical affini-
ties of the associated palynoflora. This is also supported by
Paleogene vegetation reconstruction for southeastern Aus-
tralia based on macrofossil remains, which indicates rainfor-
est communities (Christophel et al., 1987; Macphail et al.,
1994; Hill, 2017), with Gymnostoma being common from the
Paleocene to Oligocene and later being replaced by Casua-
rina/Allocasuarina (sclerophyll taxa) in the Miocene (Evi et
al., 1995; Boland et al., 2006; Holdgate et al., 2017; Hill et
al., 2020).

Dacrydium cupressinum is suggested as the most likely
NLR of Dacrydiumites praecupressinoides (rimu; Raine et
al., 2011). Today, Dacrydium cupressinum occurs as a minor
component in the kauri forest of Northland, New Zealand
and as emergent taxa commonly associated with Agathis
australis (Araucariaceae) and Podocarpus totara (Farjon,
2010). The NLR of Phyllocladidites mawsonii, Lagarostro-
bos franklinii (Tasmanian Huon pine; Raine et al., 2011),
is very abundant at Site 1172. Lagarostrobos are evergreen
cool-temperate riparian trees that grow in Tasmania close
to riverbanks (Farjon, 2010; Hill, 1994, 2017). Apart from
forming groves that mark stream courses at low altitudes
(Hill and Macphail, 1983; Farjon, 2010), they may also be
found away from water courses on wet hillsides in temper-
ate forest (Farjon, 2010; Bowman et al., 2014). Lagarostro-
bos is one of the most common gymnosperms at ODP
Site 1172, and its percentage abundance is similar to those re-
covered from wells offshore Gippsland Basin (the Gropper-
1, Mullet-1, and Bluebone-1 wells; Partridge, 2006). La-
garostrobos occurs with even higher percentages in the Mid-
dle Nothofagidites asperus Zone of the terrestrial record of
the Gippsland Basin, where it appears to be overrepresented
(Holdgate et al., 2017).

The two possible NLR relatives for Proteacidites pseudo-
moides are Carnarvonia and Lomatia. Carnarvonia thrives
in warm-temperate to paratropical areas such as wet north-
eastern Australia (Mabberley, 1997; Cooper and Cooper,
2004) and grows into large trees (Hyland, 1995). Lomatia
grows as shrubs and small trees in remnant gallery warm-
temperate rainforests, for example along creek lines on sand-
stones in Northern Sydney (Bowman et al., 2014; Myer-
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scough et al., 2007). Carnarvonia was selected as the likely
NLR relative because it significantly increases in intervals
where warmth-loving taxa such as Arecaceae, Brassospora-
type Nothofagus, Gleicheniaceae, and Cyatheaceae thrive.

4.1.2 High-altitude temperate rainforest and shrubland

Components of the palynoflora that reflect higher-altitude
and more open vegetation on soils with low fertility are
Araucariacites australis, Proteacidites parvus, and Mi-
crocachryidites antarcticus (Kershaw and Wagstaff, 2001;
Macphail et al., 1999). Today, Araucariaceae trees grow in
cool-temperate forests in Chile and Argentina and extend to
the tree line (Veblen et al., 1996; Sanguinetti and Kitzberger,
2008). In the Andes, trees belonging to Araucariaceae are
found at altitudes of 600–800 m a.s.l., receive high amounts
of annual rainfall (2000–3000 mm yr−1), and experience hot
and dry spells in summer (Farjon, 2010). Araucariaceae build
pure stands at higher altitudes or mixed Valdivian rainfor-
est at lower altitudes (Farjon, 2010). Increases in araucar-
ian sporomorph taxa between 37.30–35.60 Ma in Tasma-
nia give an indication of a dense, emergent cover of Arau-
cariaceae thriving in relatively dry environments (Kershaw
and Wagstaff, 2001). Microcachrys (Raine et al., 2011), the
nearest living relative of Microcachryidites antarcticus, is a
creeping shrub that grows in alpine/subalpine areas and is
today restricted to western Tasmania under boreal to cool-
temperate conditions (Truswell and Macphail, 2009; Biffin et
al., 2012; Carpenter et al., 2011). Therefore, increases in this
Tasmanian endemic alpine shrub (Microcachrys) from 37.30
to 35.60 Ma, together with Bellendena (a low-growing pro-
tea shrub; NLR of Proteacidites parvus), and Araucariaceae
(emergent canopy), suggest that the vegetation that thrived at
higher altitudes in Tasmania preferred cool-temperate condi-
tions.

4.2 Subtropical vegetation and early late Eocene
cooling from 37.97 to 35.60 Ma

Throughout PZ 1 (37.97–37.52 Ma), abundant Nothofa-
gus (especially the N. brassii type) with secondary
Podocarpaceae and Gymnostoma and minor Arecaceae,
Carnarvonia, and cryptogams suggest the presence of a tem-
perate Nothofagus-dominated rainforest with subtropical el-
ements. Sporomorph-based climate estimates indicate these
forests grew under a MAT of 14.2–15.1 ◦C and a MAP of
1467–1681 mm yr−1 (Fig. 4). The vegetation-based summer
temperature reconstructions of ca. 18.5 ◦C closely corrobo-
rate the brGDGT-biomarker reconstructions from the same
site (Bijl et al., 2021), supporting the notion of a potential
seasonal bias of this palaeothermometer (Contreras et al.,
2014; Naafs et al., 2017). The warmth-loving taxa formed
the main lowland forest components occupying sheltered ar-
eas and lowland subtropical coastal zones (Dowe, 2010; Car-

penter et al., 2012; Tripathi and Srivastava, 2012; Verma et
al., 2020)

and swamps (Kershaw, 1988). Sporomorph-based tem-
perature estimates yield a cold month mean temperature
(CMMT) of well above freezing (11.2–12.5 ◦C; Fig. 4). The
decline and, to a large extent, the absence of cool-temperate
taxa, coupled with persistent warm-temperate (12–17 ◦C;
Emanuel et al., 1985) to subtropical (17–24 ◦C; Emanuel
et al., 1985) taxa, further point to the expansion of warm-
temperate–paratropical rainforest up into the mid-altitudes
and uplands.

The Nothofagus-dominated rainforest continued into PZ 2
(37.30–35.60 Ma). However, at ∼ 37.30 Ma, a distinct en-
vironmental change occurred, leading to a drop in, and in
some instances the demise of, warm-temperate and sub-
tropical taxa (Nothofagus subgenus Brassospora, Carnarvo-
nia, Arecaceae; Fig. 2). This vegetation change continued
throughout PZ 2, along with a concomitant rise in the rel-
ative abundances of Lagarostrobos and Microcachrys and
a decline in diversity (Table 2) ∼ 3 Ma prior to the EOT.
The increased occurrence of microthermal taxa points to a
cool-temperate (southern beech)-dominated rainforest with
secondary Podocarpaceae expanding into lowland regions
previously occupied by mesothermal taxa. The late Eocene
cool-temperate Nothofagus–Podocarpaceae-dominated rain-
forest has been suggested to resemble the modern Valdivian
rainforest of Chile (Veblen, 1982; Cantrill and Poole, 2012;
Bowman et al., 2014) and the cool-temperate Nothofagus-
dominated rainforest with riparian Lagarostrobos restricted
to river gullies in Victoria, Australia (Read and Hill, 1985)
or on fertile soils in lowland Tasmania (Read and Hill, 1985;
Macphail, 2007; Francis et al., 2008).

This interpretation is reflected in our sporomorph-based
MAT estimates indicating a 2–3 ◦C decline in MAT (Fig. 4).
Our findings also corroborate previous late Eocene stud-
ies throughout Australia indicating an increase in Nothofa-
gus subgenus Fuscospora along with a substantial decline
in Brassospora-type Nothofagus and the demise of most
Proteaceae, Arecaceae, and most Australian angiosperms
(Kemp, 1978; Kershaw, 1988; Christophel and Greenwood,
1989; Truswell, 1993; Martin, 1994, 2006; Macphail et al.,
1994; Partridge and Dettmann, 2003; Korasidis et al., 2019).
In line with the vegetation change, biomarker-based recon-
struction from Site 1172 also indicates that SSTs decline by
ca. 2–3 ◦C starting around 37.5 Ma (Fig. 4). However, the
cooling indicated by both independent proxies is not reflected
in the lipid-biomarker-based terrestrial MAT estimates, and
the reason for this disparate trend remains unknown.

The transition from a warm-temperate rainforest with
paratropical elements to cool-temperate forests in the Tas-
manian Gateway region also matches an early late Eocene
(37.3 Ma) cooling in the Southern Ocean (Kerguelen Plateau)
∼ 3 Myr prior to the EOT (Villa et al., 2008, 2014; Scher
et al., 2014). The 2–3 ◦C sporomorph-based MAT (100–
200 kyr) cooling around 37.3 Ma coincides with a regional
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Figure 4. Comparison of our sporomorph-based climate estimates, MAATsoil values based on MBT’5me, TEX86-based SSTs, and sample
scores for DCA axis 1 from the late Eocene to early Oligocene of ODP Site 1172. Sporomorph-based estimates are based on the use of
the nearest living relative (NLR) and probability density function (PDF). The range of each climate estimate represents the mathematical
error and not the real range, and may have been a result of uncertainties associated with the use of the NLR approach. Broken green lines
indicate average temperatures for sporomorph-based MATs. Biomarker thermometry data are from Bijl et al. (2021). The ∼ 790 kyr interval
corresponding to the EOT (34.44–33.65 Ma; Hutchinson et al., 2021) is indicated by the horizontal pink bar. The age model is after Houben
et al. (2019).

transient (∼ 140 kyr) cooling event at ODP Site 738 (Ker-
guelen Plateau) known as the Priabonian Oxygen Maximum
(PrOM; Scher et al., 2014). The PrOM event, placed within
magnetochron C17n.1n of the late Eocene, points to the tem-
porary growth of ice sheets on East Antarctica based on a
positive excursion of benthic δ18O (Scher et al., 2014). How-
ever, on the Kerguelen Plateau, differences in neodymium
isotopic composition (εNd) between bottom waters and ter-
rigenous sediments point to changes in sediment provenance
as opposed to changes in the reorganization of ocean cur-
rents (Scher et al., 2014). The transient 2–3 ◦C sporomorph-
based MAT cooling phase is followed by a period with a
sustained cooler climate from 37.2 to 35.6 Ma (Fig. 4). This
sustained cooler climate may have caused the climate thresh-
old of the frost-sensitive (subtropical) taxa to be exceeded,

hence their continued decline and demise. In the marine
realm, Antarctic-endemic dinoflagellate cysts (e.g. Deflan-
drea antarctica, Vozzhennikovia spp., and Enneadocysta dic-
tyostila) become dominant at Site 1172 (Fig. 3; Stickley et
al., 2004; Houben et al., 2019). The dominant Antarctic-
endemic dinocysts in addition to general sea surface circu-
lation models (Huber et al., 2004) point to the East Tas-
man Plateau and east Tasmania being bathed by relatively
cool Antarctic-derived surface waters (Houben et al., 2019),
which is consistent with TEX86-based sea surface temper-
ature records (∼ 3–4 ◦C cooling; Houben et al., 2019; Bijl
et al., 2021). Regionally, this sustained cool-temperate ter-
restrial MAT matches with oligotrophic conditions associ-
ated with low nutrients, stratification of the water mass, and
increased efficiency of the ocean’s biological pump, which
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favoured cooling as a result of carbon being sequestered
from surface water in the Southern Ocean (Villa et al., 2008,
2014).

Close to the top of PZ 2 (35.7 Ma; Fig. 4), branched
GDGT(glycerol dialkyl glycerol tetraether)-based MATs and
SSTs show strong and rapid cooling, which is not mirrored
by the pollen-based climate estimates. However, strong fluc-
tuations in gymnosperms and an increase in cryptogams
(Figs. 2 and 3) and diversity towards the top of PZ 2 in-
dicate increasing environmental disturbance, which might
be linked to the recorded change in lipid biomarker-based
MATs. The rapid cooling most likely created gaps within the
canopy, triggering an expansion of cryptogams. The diver-
gence between the different proxy signals could be related
to their different origins and transport mechanisms. Whereas
the lipid biomarkers are strongly controlled by the deposi-
tional settings, including the river run-off, and the tectonic
and geographic evolution (Bijl et al., 2021), the terrestrial pa-
lynological signal mainly consists of wind-dispersed pollen
and spores. The long distance between the study site (ODP
Site 1172) and mainland Tasmania (more than 100 km) in the
Eocene makes a major influence of river/water-transported
sporomorphs unlikely.

4.3 Warm- and cold-temperate terrestrial climate
fluctuation from 35.50–34.59 Ma

PZ 3 (35.50–33.36 Ma) is characterized by a major shift
in sporomorph assemblages, represented by an increase in
Podocarpus, declines in Lagarostrobos, Microcachrys, Arau-
cariaceae, and Fusca-type Nothofagus, along with the re-
emergence of subtropical and warm-temperate taxa. The
peak in tree ferns, especially Cyatheaceae, indicate a pe-
riod of disturbance (Vajda et al., 2001) within this interval
of vegetation shift. However, we are not able to attribute
the disturbance within this period (35.50–34.59 Ma) to an
increase in fire frequencies as there is an absence of char-
coal particles within our records. Sporomorph-based temper-
ature reconstructions indicate several fluctuations between
warm and cool climate phases with MATs between 10.6 and
15.3 ◦C (Fig. 4). In the regional Australo-Antarctic area, a
similar phase of warming and cooling is observed in the late
Eocene (35.8–34.7 Ma) climate records of Prydz Bay (Pass-
chier et al., 2017; Tibbett et al., 2021) and southern Aus-
tralia (Benbow et al., 1995). Again, pollen-based WMMTs
at Site 1172 closely match lipid-biomarker-derived MATs
(Fig. 4). In comparison, our sporomorph-based warm and
cool climate fluctuation phase between 35.50 to 34.59 Ma
is recorded as a recovery phase in the lipid-biomarker-based
MAT reconstruction. The fluctuations of pollen-based tem-
perature estimates may be at least partly caused by the proxy
method, which relies on presence–absence data. However,
a more detailed proxy comparison is hampered by the rel-
atively low resolution of the lipid biomarker in PZ 3.

Expansions and restrictions of cool-temperate and warm-
temperate forests, which indicate cooling and warming
phases, are consistent with previous late Eocene geochem-
ical, sedimentological, and palynological studies reporting
an increase in sea surface temperature (TEX86-based SST;
Houben et al., 2019; Bijl et al., 2021), widespread deposition
of glauconite (Stickley et al., 2004), and increases in cos-
mopolitan and protoperidinioid dinocysts (Fig. 3; Stickley et
al., 2004; Houben et al., 2019; Bijl et al., 2021). Though the
glauconitic unit is interpreted as marking deepening and cur-
rent inception due to a widening of the Tasmanian Gateway
(Stickley et al., 2004), a more recent counterargument links
the deposition of the greensand to atmospherically forced in-
vigorated circulation in the Southern Ocean, which helped
to prepare Antarctica for rapid expansion of ice (Houben et
al., 2019) and a further circulation change ∼ 2 Ma later (at
the EOT). However, in addressing the deposition of green-
sands along the south Australian margin, ocean model stud-
ies (Baatsen et al., 2016) point to a further expansion of
the eastward throughflow into the southwest Pacific Ocean.
Our sporomorph-based MAT consequently showed an aver-
age 2 ◦C rise in temperature between 35.50 and 34.59 Ma,
coinciding with earlier reports of the initial deepening of the
Tasmanian Gateway (Stickley et al., 2004). This is further
supported by the common appearance of low-latitude cos-
mopolitan dinoflagellate cyst taxa that, rather than being sup-
plied by the East Australian Current, are reported to have
been sourced from the throughflow associated with the east-
ward proto-Leeuwin Current (Huber et al., 2004; Stickley et
al., 2004; Houben et al., 2019). These events, coupled with
an ∼ 2 ◦C recovery in SSTs (TEX86-based; Houben et al.,
2019; Bijl et al., 2021) between 35.7 and 34.59 Ma, most
likely point to an influence of warm surface waters associated
with the Australo-Antarctic Gulf (AAG) at ODP Site 1172
(Houben et al., 2019), which is reported to have been close
to land (eastern Tasmania; Stickley et al., 2004) at that time,
thereby affecting the terrestrial climate and vegetation.

4.4 EOT cooling and climate rebound in the earliest
Oligocene from 34.30 to 33.06 Ma

At the onset of the EOT, our sporomorph record provides
evidence for a return to a sustained cooler period spanning
34.30 to 33.82 Ma in Tasmania. This EOT cool phase coin-
cides with the demise of Spinizonocolpites sp. (Arecaceae), a
drop in Cyatheaceae and Gleicheniaceae, and slight increases
in Microcachrys and Lagarostrobos. The palynoflora assem-
blage during the EOT is further characterized by a drop in
overall angiosperm (non-Nothofagus) diversity, with gym-
nosperms and Nothofagus (Brassospora type) being common
and co-dominating. Previous studies in southeast Australia
(e.g. Macphail et al., 1994; Benbow et al., 1995; Holdgate et
al., 2017; Lauretano et al., 2021) record a contemporaneous
drop in angiosperm diversity and the final demise of Are-
caceae (thermophilous elements) at the end of the Eocene

Clim. Past, 18, 525–546, 2022 https://doi.org/10.5194/cp-18-525-2022



M. Amoo et al.: Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region 539

(Pole and Macphail, 1996; Martin, 2006). Quantitatively, our
sporomorph-based MAT reconstruction records an ∼ 2 ◦C
decline across the EOT (Fig. 4), which coincides with ∼ 2.4
and 5 ◦C cooling steps in southeastern Australia (MBT’5me-
based MAATsoil; Lauretano et al., 2021) and East Antarc-
tica (Prydz Bay; MBT’5me-based MAATsoil; Tibbett et al.,
2021), respectively. This cooling in our terrestrial record fur-
ther matches the principal geochemical signature of EOT
in the marine realm: the ∼+1.5 ‰ excursion of the oxy-
gen isotope ratio of deep-sea benthic foraminifera (Zachos
et al., 1996; Coxall et al., 2005; Pälike et al., 2006; De
Vleeschouwer et al., 2017; Fig. 5) associated with global
cooling (Zanazzi et al., 2007; Pearson et al., 2009; Pagani
et al., 2011; Hutchinson et al., 2021; Tibbett et al., 2021).
This cooling at the EOT has been linked to a global decline
in atmospheric pCO2 (Pearson et al., 2009; Lauretano et al.,
2021).

Between ∼ 33.25 and 33.06 Ma (PZ 4), the sporomorph-
based climate estimates indicate a warming, with MATs
between 12.7 and 15.3 ◦C (Fig. 4). In addition, the pres-
ence of warmth-loving taxa, notably Sapotaceae, Parson-
sia (Silkpod), and Polypodiaceae (subtropical epiphytes),
further indicate a warming phase. The pollen flora re-
sembles Oligocene warm-temperate brassii southern-beech-
dominated forests of Karamu in the Waikato Coal Mea-
sures of New Zealand (Pocknall, 1985). The increase in
brassii-type Nothofagus coupled with the appearance of
Sapotaceae and subtropical epiphytes suggests that, at least
locally on lowlands, eastern Tasmania was warm enough
to accommodate warm-temperate vegetation in the earli-
est Oligocene. Previous earliest Oligocene studies in south-
east Australia (Korasidis et al., 2019) show the presence
of a cool-temperate rainforest community. The palynoflora
on east Antarctica (Askin, 2000; Askin and Raine, 2000;
Prebble et al., 2006; Tibbett et al., 2021) and north-
east Tasmania (Hill and Macphail, 1983) suggest an early
Oligocene cold-temperate Nothofagus (subgenus Lophozo-
nia or Fuscospora)–Podocarpaceae vegetation. These paly-
noflora of northern Tasmania and east Antarctica are, how-
ever, reported to have most likely been made up of pros-
trate deciduous dwarf trees or small-stature closed southern
beech/podocarp refugia with a vegetation community that
likely struggled to survive (Askin, 2000; Askin and Raine,
2000; Prebble et al., 2006; Francis et al., 2008; Tibbett et al.,
2021). However, rather than a regional scrub (e.g. in Antarc-
tica), the slight increase in angiosperms (other than Nothofa-
gus) and cryptogams point to a local warm-temperate forest
growing along eastern Tasmania in the earliest Oligocene.
Today, temperate forests in New Zealand and Tasmania host
a diverse range of cryptogams, as compared to scrub com-
munities that do not offer other taxa to thrive under the low,
closed canopies (Prebble et al., 2006).

The terrestrial cooling observed across the EOT followed
by a rapid recovery in the earliest Oligocene matches a partial
return to warmer temperatures seen in previously reported

terrestrial (Colwyn and Hren, 2019; Lauretano et al., 2021)
and marine studies (Katz et al., 2008; Lear et al., 2008; Liu
et al., 2009; Houben et al., 2012). The synchroneity between
terrestrial and marine records suggests that, in addition to
localized events (sustained Tasmanian Gateway deepening
and widening; Stickley et al., 2004), the EOT and earliest
Oligocene ETP record may also be responding to a much
wider regional or global event. The most common expla-
nation for the global cooling (Zanazzi et al., 2007; Pagani
et al., 2011; Hutchinson et al., 2021; Tibbett et al., 2021)
across the EOT and the transient warming in the earliest
Oligocene is the decline in concentration of atmospheric car-
bon dioxide (pCO2) and its recovery or rebound in the ear-
liest Oligocene, respectively (Pearson et al., 2009; Heureux
and Rickaby, 2015; Anagnostou et al., 2016; Fig. 5). Our re-
sults suggest that the warming, or at least the lack of sus-
tained cooling following the EOT in eastern Tasmania, may
be related to a combination of the pCO2 recovery (Pearson et
al., 2009) and sustained Tasmanian Gateway deepening and
widening (Stickley et al., 2004; Houben et al., 2019), allow-
ing the influx of more warm surface waters from the AAG
into the southwest Pacific, thereby affecting the terrestrial
climate and vegetation along eastern Tasmania.

5 Conclusions

The late Eocene–early Oligocene vegetation reconstructed
from terrestrial palynomorphs recovered from ODP
Site 1172 (East Tasman Plateau) is characterized by three
major climate transitions.

The early late Eocene sporomorph record suggests a
distinct 2–3 ◦C terrestrial cooling at 37.30 Ma coupled
with a transition from a warm-temperate Nothofagus–
Podocarpaceae-dominated rainforest with paratropical ele-
ments to a cool-temperate Nothofagus-dominated rainforest
with secondary Podocarpaceae. This terrestrial cooling at
37.30 Ma and sustained cool climate from 37.2–35.60 Ma co-
incides with a long-term SST decline from ∼ 23 to 19 ◦C at
ODP Site 1172, a regional transient cooling event (PrOM) at
ODP Site 738 (Kerguelen Plateau; Scher et al., 2014), and
a relatively long-term regional Southern Ocean cooling due
to carbon being sequestered from surface water (Villa et al.,
2008, 2014).

The expansion and restriction of cool- and warm-
temperate forests from 35.5 to 34.49 Ma were followed by
a period of cooling across the EOT (34.30–33.82 Ma). The
terrestrial climate fluctuation in this zone is consistent with
latest-Eocene geochemical, sedimentological, and palyno-
logical studies that report an increase in SST, a recovery
in MBT’5me-based MAATsoil (biomarker thermometry),
widespread deposition of glauconite, and the common oc-
currence of low-latitude cosmopolitan and protoperidinioid
dinocysts. These are interpreted as being linked to the ini-
tial deepening of the Tasmanian Gateway, paving the way for
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Figure 5. Comparison of the sporomorph-based MAT in the Tasmanian Gateway region across the EOT and earliest Oligocene to regional
and global marine EOT and earliest Oligocene records. (a) Marine benthic foraminiferal calcite δ18O record from ODP Site 1218 (Pälike et
al., 2006). (b) Marine δ11B-derived atmospheric pCO2 record (Anagnostou et al., 2016). (c) Terrestrial temperature change across the EOT
and earliest Oligocene based on our sporomorph-based MATs from ODP Site 1172.

the warm water associated with the PLC to affect both the
terrestrial and the marine climate in this region.

The post-EOT (earliest Oligocene) recovery was charac-
terized by a warm-temperate forest association from 33.55 to
33.06 Ma. This earliest Oligocene recovery in Tasmanian ter-
restrial temperatures following prior cooling across the EOT
coincides with a rebound of atmospheric pCO2 at the earliest
Oligocene glacial maximum (EOGM; Pearson et al., 2009)
coupled with ice sheet expansion in Antarctica (Galeotti et
al., 2016) and sustained deepening of the Tasmanian Gate-
way (Stickley et al., 2004).

Our study shows that, against a backdrop of global cooling
in the late Eocene (a sustained decline in pCO2), a series of
regional events in the marine realm, including a change in the
stratification of water masses, sequestration of carbon from
surface water, and changes in the ocean circulation due to
Tasmanian-Gateway-accelerated deepening, may have had a
knock-on effect in driving terrestrial climate and vegetation
change in the Tasmanian Gateway region.
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