Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Abrupt climate changes and the astronomical theory: are they related?
Denis-Didier Rousseau
CORRESPONDING AUTHOR
Geosciences Montpellier, University Montpellier, CNRS, Montpellier,
France
Institute of Physics-CSE, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Gliwice, Poland
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Witold Bagniewski
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Ecole Normale Supérieure and PSL University, Paris, France
Michael Ghil
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Ecole Normale Supérieure and PSL University, Paris, France
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA 90095, USA
Related authors
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024, https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Short summary
The characterisation of abrupt transitions in palaeoclimate records allows understanding of millennial climate variability and potential tipping points in the context of current climate change. In our study an algorithmic method, the matrix profile, is employed to characterise abrupt warmings designated as Dansgaard–Oeschger (DO) events and to identify the most similar transitions in the palaeoclimate time series.
Denis-Didier Rousseau
E&G Quaternary Sci. J., 70, 229–233, https://doi.org/10.5194/egqsj-70-229-2021, https://doi.org/10.5194/egqsj-70-229-2021, 2021
Short summary
Short summary
A year after his doctoral thesis, Ložek chose to share with the international community not only his vision but also the one that the Czechoslovakian researchers working on loess deposits had at that time, through a paper published in the well-established E&G journal. It represented a detailed and complete state of the art of loess and mollusc studies at that time, an extraordinarily synthetic review that still yields a modern flavor as many of the points made remain relevant today.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Niklas Boers, Mickael D. Chekroun, Honghu Liu, Dmitri Kondrashov, Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, and Michael Ghil
Earth Syst. Dynam., 8, 1171–1190, https://doi.org/10.5194/esd-8-1171-2017, https://doi.org/10.5194/esd-8-1171-2017, 2017
Short summary
Short summary
We use a Bayesian approach for inferring inverse, stochastic–dynamic models from northern Greenland (NGRIP) oxygen and dust records of subdecadal resolution for the interval 59 to 22 ka b2k. Our model reproduces the statistical and dynamical characteristics of the records, including the Dansgaard–Oeschger variability, with no need for external forcing. The crucial ingredients are cubic drift terms, nonlinear coupling terms between the oxygen and dust time series, and non-Markovian contributions.
Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, Adriana Sima, Jorgen Peder Steffensen, and Niklas Boers
Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, https://doi.org/10.5194/cp-13-1181-2017, 2017
Short summary
Short summary
We show that the analysis of δ18O and dust in the Greenland ice cores, and a critical study of their source variations, reconciles these records with those observed on the Eurasian continent. We demonstrate the link between European and Chinese loess sequences, dust records in Greenland, and variations in the North Atlantic sea ice extent. The sources of the emitted and transported dust material are variable and relate to different environments.
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
C. Hatté, C. Gauthier, D.-D. Rousseau, P. Antoine, M. Fuchs, F. Lagroix, S. B. Marković, O. Moine, and A. Sima
Clim. Past, 9, 1001–1014, https://doi.org/10.5194/cp-9-1001-2013, https://doi.org/10.5194/cp-9-1001-2013, 2013
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024, https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Short summary
The characterisation of abrupt transitions in palaeoclimate records allows understanding of millennial climate variability and potential tipping points in the context of current climate change. In our study an algorithmic method, the matrix profile, is employed to characterise abrupt warmings designated as Dansgaard–Oeschger (DO) events and to identify the most similar transitions in the palaeoclimate time series.
Michael Ghil and Denisse Sciamarella
Nonlin. Processes Geophys., 30, 399–434, https://doi.org/10.5194/npg-30-399-2023, https://doi.org/10.5194/npg-30-399-2023, 2023
Short summary
Short summary
The problem of climate change is that of a chaotic system subject to time-dependent forcing, such as anthropogenic greenhouse gases and natural volcanism. To solve this problem, we describe the mathematics of dynamical systems with explicit time dependence and those of studying their behavior through topological methods. Here, we show how they are being applied to climate change and its predictability.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Denis-Didier Rousseau
E&G Quaternary Sci. J., 70, 229–233, https://doi.org/10.5194/egqsj-70-229-2021, https://doi.org/10.5194/egqsj-70-229-2021, 2021
Short summary
Short summary
A year after his doctoral thesis, Ložek chose to share with the international community not only his vision but also the one that the Czechoslovakian researchers working on loess deposits had at that time, through a paper published in the well-established E&G journal. It represented a detailed and complete state of the art of loess and mollusc studies at that time, an extraordinarily synthetic review that still yields a modern flavor as many of the points made remain relevant today.
Eviatar Bach and Michael Ghil
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2021-35, https://doi.org/10.5194/npg-2021-35, 2021
Preprint withdrawn
Short summary
Short summary
Data assimilation (DA) is the process of combining model forecasts with observations in order to provide an optimal estimate of the system state. When models are imperfect, the uncertainty in the forecasts may be underestimated, requiring inflation of the corresponding error covariance. Here, we present a simple method for estimating the magnitude and structure of the model error covariance matrix. We demonstrate the efficacy of this method with idealized experiments.
Michael Ghil
Nonlin. Processes Geophys., 27, 429–451, https://doi.org/10.5194/npg-27-429-2020, https://doi.org/10.5194/npg-27-429-2020, 2020
Short summary
Short summary
The scientific questions posed by the climate sciences are central to socioeconomic concerns today. This paper revisits several crucial questions, starting with
What can we predict beyond 1 week, for how long, and by what methods?, and ending with
Can we achieve enlightened climate control of our planet by the end of the century?We review the progress in dealing with the nonlinearity and stochasticity of the Earth system and emphasize major strides in coupled climate–economy modeling.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Stefano Pierini, Mickaël D. Chekroun, and Michael Ghil
Nonlin. Processes Geophys., 25, 671–692, https://doi.org/10.5194/npg-25-671-2018, https://doi.org/10.5194/npg-25-671-2018, 2018
Short summary
Short summary
A four-dimensional nonlinear spectral ocean model is used to study the transition to chaos induced by periodic forcing in systems that are nonchaotic in the autonomous limit. The analysis makes use of ensemble simulations and of the system's pullback attractors. A new diagnostic method characterizes the transition to chaos: this is found to occur abruptly at a critical value and begins with the intermittent emergence of periodic oscillations with distinct phases.
Niklas Boers, Mickael D. Chekroun, Honghu Liu, Dmitri Kondrashov, Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, and Michael Ghil
Earth Syst. Dynam., 8, 1171–1190, https://doi.org/10.5194/esd-8-1171-2017, https://doi.org/10.5194/esd-8-1171-2017, 2017
Short summary
Short summary
We use a Bayesian approach for inferring inverse, stochastic–dynamic models from northern Greenland (NGRIP) oxygen and dust records of subdecadal resolution for the interval 59 to 22 ka b2k. Our model reproduces the statistical and dynamical characteristics of the records, including the Dansgaard–Oeschger variability, with no need for external forcing. The crucial ingredients are cubic drift terms, nonlinear coupling terms between the oxygen and dust time series, and non-Markovian contributions.
Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, Adriana Sima, Jorgen Peder Steffensen, and Niklas Boers
Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, https://doi.org/10.5194/cp-13-1181-2017, 2017
Short summary
Short summary
We show that the analysis of δ18O and dust in the Greenland ice cores, and a critical study of their source variations, reconciles these records with those observed on the Eurasian continent. We demonstrate the link between European and Chinese loess sequences, dust records in Greenland, and variations in the North Atlantic sea ice extent. The sources of the emitted and transported dust material are variable and relate to different environments.
Niklas Boers, Bedartha Goswami, and Michael Ghil
Clim. Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017, https://doi.org/10.5194/cp-13-1169-2017, 2017
Short summary
Short summary
We introduce a Bayesian framework to represent layer-counted proxy records as probability distributions on error-free time axes, accounting for both proxy and dating errors. Our method is applied to NGRIP δ18O data, revealing that the cumulative dating errors lead to substantial uncertainties for the older parts of the record. Applying our method to the widely used radiocarbon comparison curve derived from varved sediments of Lake Suigetsu provides the complete uncertainties of this curve.
Keroboto B. Z. Ogutu, Fabio D'Andrea, Michael Ghil, and Charles Nyandwi
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-64, https://doi.org/10.5194/esd-2016-64, 2017
Preprint retracted
Short summary
Short summary
The CoCEB model is used to evaluate hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement. While many studies in the literature treat abatement costs as an unproductive loss of income, we show that mitigation costs do slow down economic growth over the next few decades, but only up to the mid-21st century or even earlier; growth reduction is compensated later on by having avoided climate negative impacts.
J. Rombouts and M. Ghil
Nonlin. Processes Geophys., 22, 275–288, https://doi.org/10.5194/npg-22-275-2015, https://doi.org/10.5194/npg-22-275-2015, 2015
Short summary
Short summary
Our conceptual model describes global temperature and vegetation extent. We use elements from Daisyworld and classical energy balance models and add an ocean with sea ice. The model exhibits oscillatory behavior within a plausible range of parameter values.
Its periodic solutions have sawtooth behavior that is characteristic of relaxation oscillations, as well as suggestive of Quaternary glaciation cycles. The model is one of the simplest of its kind to produce such oscillatory behavior.
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
C. Hatté, C. Gauthier, D.-D. Rousseau, P. Antoine, M. Fuchs, F. Lagroix, S. B. Marković, O. Moine, and A. Sima
Clim. Past, 9, 1001–1014, https://doi.org/10.5194/cp-9-1001-2013, https://doi.org/10.5194/cp-9-1001-2013, 2013
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Millenial/D-O
A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic
Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
David A. Hodell and James E. T. Channell
Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, https://doi.org/10.5194/cp-12-1805-2016, 2016
Short summary
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
Cited articles
Adhémar, J.: Révolutions de la mer, déluges périodiques, Carilian-Goeury et V. Dalmont, Paris, 1842.
Agassiz, L.: Glaciers, Moraines, and Erratic Blocks, Edinb. New Philos. J.,
24, 364–383, 1838.
Agassiz, L.: Glaciers and the evidence of their having once existed in
Scotland, Ireland and England, Proc. Geol. Soc. Lond., vol. III, Part II,
327–332, 1842.
Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H. W., Huntley, B.,
Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W.,
Nowaczyk, N. R., Oberhansli, H., Watts, W. A., Wulf, S., and Zolitschka, B.:
Rapid environmental changes in southern Europe during the last glacial
period, Nature, 400, 740–743, 1999.
Alley, R. B.: Palaeoclimatology – Icing the north Atlantic, Nature, 392,
335–337, https://doi.org/10.1038/32781, 1998.
Alley, R. B., Clark, P. U., Keigwin, L. D., and Webb, R. S.: Making sense of
millenial-scale climate change. Mechanisms of global climate change at
millenial time scales, edited by: Clark, P. U., Webb, R. S., and Keigwin, L. D., AGU, Geophys. Monograph 112, 385–394, https://doi.org/10.1029/GM112p0385, 1999.
Alvarez-Solas, J. and Ramstein, G.: On the triggering mechanism of Heinrich
events, P. Natl. Acad. Sci. USA, 108, E1359–E1360,
https://doi.org/10.1073/pnas.1116575108, 2011.
Andrews, J. T. and Voelker, A. H. L.: “Heinrich events” (& sediments):
A history of terminology and recommendations for future usage, Quaternary Sci. Rev., 187, 31–40, https://doi.org/10.1016/j.quascirev.2018.03.017, 2018.
Bagniewski, W., Ghil, M., and Rousseau, D. D.: Automatic detection of abrupt
transitions in paleoclimate records, Chaos, 31, 113129, https://doi.org/10.1063/5.0062543, 2021.
Barbante, C., Barnola, J. M., Becagli, S., Beer, J., Bigler, M., Boutron,
C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen,
D., Debret, M., Delmonte, B., Dick, D., Falourd, S., Faria, S., Federer, U.,
Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gabrielli,
P., Gaspari, V., Gersonde, R., Graf, W., Grigoriev, D., Hamann, I., Hansson,
M., Hoffmann, G., Hutterli, M. A., Huybrechts, P., Isaksson, E., Johnsen,
S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, S.,
Kohno, M., Lambert, F., Lambrecht, A., Lambrecht, A., Landais, A., Lawer,
G., Leuenberger, M., Littot, G., Loulergue, L., Luthi, D., Maggi, V.,
Marino, F., Masson-Delmotte, V., Meyer, H., Miller, H., Mulvaney, R.,
Narcisi, B., Oerlemans, J., Oerter, H., Parrenin, F., Petit, J. R.,
Raisbeck, G., Raynaud, D., Rothlisberger, R., Ruth, U., Rybak, O., Severi,
M., Schmitt, J., Schwander, J., Siegenthaler, U., Siggaard-Andersen, M. L.,
Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L.,
Traversi, R., Udisti, R., Valero-Delgado, F., van den Broeke, M. R., van de
Wal, R. S. W., Wagenbach, D., Wegner, A., Weiler, K., Wilhelms, F., Winther,
J. G., Wolff, E., and Epica Community Members: One-to-one coupling of
glacial climate variability in Greenland and Antarctica, Nature, 444,
195–198, https://doi.org/10.1038/nature05301, 2006.
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner,
L. C., Wolff, E., and Ziegler, M.: 800 000 Years of Abrupt Climate
Variability, Science, 334, 347–351,
https://doi.org/10.1126/science.1203580, 2011.
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton,
N. J., and Lancelot, Y.: The astronomical theory of climate and the age of
the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126,
91–108, 1994.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Behre, K. E.: Biostratigraphy of the last glacial period in Europe,
Quaternary Sci. Rev., 8, 25–44, 1989.
Benn, D. I., Le Hir, G., Bao, H. M., Donnadieu, Y., Dumas, C., Fleming, E.
J., Hambrey, M. J., McMillan, E. A., Petronis, M. S., Ramstein, G.,
Stevenson, C. T. E., Wynn, P. M., and Fairchild, I. J.: Orbitally forced ice
sheet fluctuations during the Marinoan Snowball Earth glaciation, Nat.
Geosci., 8, 704–707, https://doi.org/10.1038/ngeo2502, 2015.
Berends, C. J., de Boer, B., and van de Wal, R. S. W.: Reconstructing the evolution of ice sheets, sea level, and atmospheric CO2 during the past 3.6 million years, Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, 2021.
Berger, A. L.: Support for astronomical theory of climatic change, Nature,
269, 44–45, https://doi.org/10.1038/269044a0, 1977.
Berger, A. L.: Long-term variations of caloric insolation resulting from the
Earth's orbital elements, Quaternary Res., 9, 139–167, 1978.
Birner, B., Hodell, D. A., Tzedakis, P. C., and Skinner, L. C.: Similar
millennial climate variability on the Iberian margin during two early
Pleistocene glacials and MIS 3, Paleoceanography, 31, 203–217,
https://doi.org/10.1002/2015pa002868, 2016.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in
Antarctica and Greenland during the last glacial period, Science, 291,
109–112, https://doi.org/10.1126/science.291.5501.109, 2001.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and Häuselmann, P.: NALPS: a precisely dated European climate record 120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Boers, N.: Early-warning signals for Dansgaard-Oeschger events in a
high-resolution ice core record, Nat. Commun., 9, 2556,
https://doi.org/10.1038/s41467-018-04881-7, 2018.
Boers, N., Ghil, M., and Rousseau, D. D.: Ocean circulation, ice shelf, and
sea ice interactions explain Dansgaard-Oeschger cycles, P. Natl. Acad. Sci. USA, 115, E11005–E11014, https://doi.org/10.1073/pnas.1802573115,
2018.
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews,
J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M.,
Bonani, G., and Ivy, S.: Evidence for massive discharges of icebergs into
the North Atlantic Ocean during the last glacial period, Nature, 360,
245–249, 1992.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J.,
and Bonani, G.: Correlations between climate records from North Atlantic
sediments and Greenland ice, Nature, 365, 143–147, 1993.
Bond, G. C. and Lotti, R.: Iceberg discharges into the North Atlantic on
millennial time scales during the last glaciation, Science, 267,
1005–1010, 1995.
Bond, G. C., Heinrich, H., Broecker, W. S., Labeyrie, L. D., McManus, J. F., Andrews, J. T., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., and Obrochta, S. P.: (Table S3) Abundance of
Neogloboquadrina pachyderma (s) in MIS4-2 of DSDP Site 94-609, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.834692, 2012.
Broecker, W. S.: Massive iceberg discharges as triggers for global climate
change, Nature, 372, 421–424, 1994.
Broecker, W. S.: Abrupt climate change: causal constraints provided by the
paleoclimate record, Earth-Sci. Rev., 51, 137–154, 2000.
Broecker, W. S. and Denton, G.: The role of ocean-atmosphere reorganizations
in glacial cycles, Geochim. Cosmochim. Ac., 53, 2465–2501, 1989.
Broecker, W. S. and van Donk, J.: Insolation changes, ice volumes, and 0-18
record in deep-sea cores, Rev. Geophys. Space Phys., 8, 169–198,
https://doi.org/10.1029/RG008i001p00169, 1970.
Broecker, W. S., Andree, M., Bonani, G., Wolfi, W., Oeschger, H., and Klas,
M.: Can the Greenland climatic jumps be identified in records from ocean and
land?, Quaternary Res., 30, 1–6, 1988.
Budyko, M. I.: Effect of solar radiation variations on climate of Earth,
Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109, 1969.
Buizert, C. and Schmittner, A.: Southern Ocean control of glacial AMOC
stability and Dansgaard-Oeschger interstadial duration, Paleoceanography,
30, 1595–1612, https://doi.org/10.1002/2015pa002795, 2015.
Buizert, C., Adrian, B., Ahn, J., Albert, M., Alley, R. B., Baggenstos, D.,
Bauska, T. K., Bay, R. C., Bencivengo, B. B., Bentley, C. R., Brook, E. J.,
Chellman, N. J., Clow, G. D., Cole-Dai, J., Conway, H., Cravens, E., Cuffey,
K. M., Dunbar, N. W., Edwards, J. S., Fegyveresi, J. M., Ferris, D. G.,
Fitzpatrick, J. J., Fudge, T. J., Gibson, C. J., Gkinis, V., Goetz, J. J.,
Gregory, S., Hargreaves, G. M., Iverson, N., Johnson, J. A., Jones, T. R.,
Kalk, M. L., Kippenhan, M. J., Koffman, B. G., Kreutz, K., Kuhl, T. W.,
Lebar, D. A., Lee, J. E., Marcott, S. A., Markle, B. R., Maselli, O. J.,
McConnell, J. R., McGwire, K. C., Mitchell, L. E., Mortensen, N. B., Neff,
P. D., Nishiizumi, K., Nunn, R. M., Orsi, A. J., Pasteris, D. R., Pedro, J.
B., Pettit, E. C., Price, P. B., Priscu, J. C., Rhodes, R. H., Rosen, J. L.,
Schauer, A. J., Schoenemann, S. W., Sendelbach, P. J., Severinghaus, J. P.,
Shturmakov, A. J., Sigl, M., Slawny, K. R., Souney, J. M., Sowers, T. A.,
Spencer, M. K., Steig, E. J., Taylor, K. C., Twickler, M. S., Vaughn, B. H.,
Voigt, D. E., Waddington, E. D., Welten, K. C., Wendricks, A. W., White, J.
W. C., Winstrup, M., Wong, G. J., Woodruff, T. E., and Wais Divide Project
Members: Precise interpolar phasing of abrupt climate change during the last
ice age, Nature, 520, 661–665, https://doi.org/10.1038/nature14401, 2015a.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015b.
Capron, E., Rasmussen, S. O., Popp, T. J., Erhardt, T., Fischer, H., Landais, A., Pedro, J. B., Vettoretti, G., Grinsted, A., Gkinis, V., Vaughn, B., Svensson, A., Vinther, B. M., and White, J. W. C.: The anatomy of past abrupt warmings recorded in Greenland ice, Nat. Commun., 12, 2106, https://doi.org/10.1038/s41467-021-22241-w, 2021.
Chappell, J. and Shackleton, N. J.: Oxygen isotopes and sea-level, Nature,
324, 137–140, https://doi.org/10.1038/324137a0, 1986.
Chapront, J., Bretagnon, P., and Mehl, M.: Un formulaire pour le calcul des
perturbations d'ordres élevés dans les problèmes
planétaires, Celest. Mech., 11, 379–399,
https://doi.org/10.1007/BF01228813, 1975.
Cheng, H., Edwards, R. L., Sinha, A., Spotl, C., Yi, L., Chen, S. T., Kelly,
M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y.
F., and Zhang, H. W.: The Asian monsoon over the past 640 000 years and ice
age terminations, Nature, 534, 640–646,
https://doi.org/10.1038/nature18591, 2016.
Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition by
ice sheet erosion of regolith, Paleoceanography, 13, 1–9, 1998.
Clark, P. U., Alley, R. B., and Pollard, D.: Climatology – Northern
hemisphere ice-sheet influences on global climate change, Science, 286,
1104–1111, https://doi.org/10.1126/science.286.5442.1104, 1999.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin,
V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene
transition: characteristics. mechanisms, and implications for long-term
changes in atmospheric PCO2, Quaternary Sci. Rev., 25, 3150–3184,
https://doi.org/10.1016/j.quascirev.2006.07.008, 2006.
Clark, P. U., Hostetler, S. W., Pisias, N. G., Schmittner, A., and Meissner,
K. J.: Mechanisms for an ∼ 7 kyr climate and sea-level
oscillation during marine isotope stage 3, Geophys. Monogr. Ser., 173,
209–246, 2007.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710–714,
https://doi.org/10.1126/science.1172873, 2009.
Clark, P. U., Shakun, J., Rosenthal, Y., Köhler, P., Schrag, D., Pollard, D., Liu, Z., and Bartlein, P.: Requiem for the Regolith Hypothesis: Sea-Level and Temperature Reconstructions Provide a New Template for the Middle Pleistocene Transition, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-13981, https://doi.org/10.5194/egusphere-egu21-13981, 2021.
Croll, J.: Climate and Time, D. Appletown and Company, NY, 1890.
Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate
theory, Philos. Trans. R. Soc.-Math. Phys. Eng. Sci., 370, 1140–1165,
https://doi.org/10.1098/rsta.2011.0315, 2012.
Dansgaard, W., Johnsen, S. J., Moller, J., and Langway, C. C.: One thousand
centuries of climatic record from Camp Century on the Greenland ice sheet,
Science, 166, 377–381, 1969.
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S.
F., Kristinsdottir, P. M., and Reeh, N.: A new Greenland deep ice core,
Science, 218, 1273–1277, 1982.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahi-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjöprnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for
general instability of past climate from a 250 kyr ice-core record, Nature,
364, 218–220, 1993.
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic
to the Nordic seas, Paleoceanography, 28, 491–502,
https://doi.org/10.1002/palo.20042, 2013.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma), Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, 2021.
Eckmann, J. P., Kamphorst, S. O., and Ruelle, D.: Recurrence plots of
dynamical systems, Europhys. Lett., 4, 973–977,
https://doi.org/10.1209/0295-5075/4/9/004, 1987.
Efron, B.: nonparametric estimates of standard error – The Jackknife, the
bootstrap and other methods, Biometrika, 68, 589–599,
https://doi.org/10.2307/2335441, 1981.
Efron, B. and Tibshirani, R.: Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy, Stat.
Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D., and Piotrowski, A. M.: Evolution of Ocean Temperature and Ice
Volume Through the Mid-Pleistocene Climate Transition, Science, 337,
704–709, https://doi.org/10.1126/science.1221294, 2012.
Emiliani, C.: Pleistocene temperatures, J. Geol., 63, 538–578, 1955.
Fischer, H., Schuepbach, S., Gfeller, G., Bigler, M., Roethlisberger, R.,
Erhardt, T., Stocker, T. F., Mulvaney, R., and Wolff, E.: Millennial changes
in North American wildfire and soil activity over the last glacial cycle,
Nat. Geosci., 8, 723–728, https://doi.org/10.1038/ngeo2495, 2015.
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M.,
Goektuerk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A.,
Kramers, J., and Tuysuz, O.: Timing and climatic impact of Greenland
interstadials recorded in stalagmites from northern Turkey, Geophys. Res.
Lett., 36, L19707, https://doi.org/10.1029/2009gl040050, 2009.
Fletcher, W. J., Goni, M. F. S., Allen, J. R. M., Cheddadi, R.,
Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D.,
Margari, V., Mueller, U. C., Naughton, F., Novenko, E., Roucoux, K., and
Tzedakis, P. C.: Millennial-scale variability during the last glacial in
vegetation records from Europe, Quaternary Sci. Rev., 29, 2839–2864,
https://doi.org/10.1016/j.quascirev.2009.11.015, 2010.
Flint, R. F.: Glacial and Quaternary geology, Wiley, New York, 892 pp., ISBN 0471264350, 1971.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated
in a coupled climate model, Nature, 409, 153–158, 2001.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and
Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in
western Europe from stalagmite data, Nature, 421, 833–837, 2003.
Ghil, M.: Cryothermodynamics – The chaotic dynamics of paleoclimate, Phys.-Nonlinear Phenom., 77, 130–159,
https://doi.org/10.1016/0167-2789(94)90131-7, 1994.
Ghil, M. and Childress, S.: Topics in Geophysical Fluid Dynamics:
Atmospheric Dynamics, Dynamo Theory and Climate Dynamics, Springer-Verlag,
New York, 485 pp., ISBN 978-0-387-96475-1, 1987.
Ghil, M. and Le Treut, H.: A climate model with cryodynamics and
geodynamics, J. Geophys. Res.-Oceans, 86, 5262–5270,
https://doi.org/10.1029/JC086iC06p05262, 1981.
Ghil, M. and Tavantzis, J.: Global Hopf-bifurcation in a simple climate
model, Siam J. Appl. Math., 43, 1019–1041, https://doi.org/10.1137/0143067,
1983.
Guillevic, M., Bazin, L., Landais, A., Stowasser, C., Masson-Delmotte, V., Blunier, T., Eynaud, F., Falourd, S., Michel, E., Minster, B., Popp, T., Prié, F., and Vinther, B. M.: Evidence for a three-phase sequence during Heinrich Stadial 4 using a multiproxy approach based on Greenland ice core records, Clim. Past, 10, 2115–2133, https://doi.org/10.5194/cp-10-2115-2014, 2014.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
Orbit: Pacemaker of the Ice Ages, Science, 194, 1121–1132, 1976.
Heinrich, H.: Origin and Consequences of Cyclic Ice Rafting in the Northeast
Atlantic Ocean during the Past 130 000 years, Quaternary Res., 29, 142–152,
1988.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42,
RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A.
M., and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474,
https://doi.org/10.1126/science.aaf5529, 2016.
Hinnov, L. A.: Cyclostratigraphy and its revolutionizing applications in the
earth and planetary sciences, Geol. Soc. Am. Bull., 125, 1703–1734,
https://doi.org/10.1130/b30934.1, 2013.
Hinnov, L. A.: Chapter One – Cyclostratigraphy and Astrochronology in 2018,
in: Stratigraphy & Timescales, vol. 3, edited by: Montenari, M., Academic
Press, 1–80, https://doi.org/10.1016/bs.sats.2018.08.004, 2018.
Hinnov, L. A., Schulz, M., and Yiou, P.: Interhemispheric space-time
attributes of the Dansgaard-Oeschger oscillations between 100 and 0 ka, Quaternary Sci. Rev., 21, 1213–1228, 2002.
Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, 2016a.
Hodell, D. A. and Channell, J. E. T.: Foraminiferal stable isotopes and
physical properties from North Atlantic sediment cores for the past 3.2
million years, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.871937, 2016b.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and Roehl,
U.: Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic
at the end of the middle Pleistocene transition (similar to 640 ka)?,
Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008pa001591, 2008.
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J.,
Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H.,
Fairchild, I. J., Ferreira, D., Goodman, J. C., Halverson, G. P., Jansen, M.
F., Le Hir, G., Love, G. D., Macdonald, F. A., Maloof, A. C., Partin, C. A.,
Ramstein, G., Rose, B. E. J., Rose, C. V., Sadler, P. M., Tziperman, E.,
Voigt, A., and Warren, S. G.: Snowball Earth climate dynamics and Cryogenian
geology-geobiology, Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983,
2017.
Imbrie, J. P. and Imbrie, K.: Ice Ages solving the mystery, Harvard
University Press, 224 pp., ISBN 0-674-44075-7, 1979.
Jakob, K. A., Wilson, P. A., Pross, J., Ezard, T. H. G., Fiebig, J.,
Repschlager, J., and Friedrich, O.: A new sea-level record for the
Neogene/Quaternary boundary reveals transition to a more stable East
Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 117, 30980–30987,
https://doi.org/10.1073/pnas.2004209117, 2020.
Johnsen, S. J., Dansgaard, W., Clausen, H. B., and Langway, C. C.: Oxygen
isotope profiles through the Antartic and Greenland ice sheets, Nature,
235, 429–434, 1972.
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen,
H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and
White, J.: Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP,
J. Quaternary Sci., 16, 299–307, 2001.
Källèn, E., Crafoord, C., and Ghil, M.: Free oscillations in a
climate model with ice-sheet dynamics, J. Atmos. Sci., 36, 2292–2303,
https://doi.org/10.1175/1520-0469(1979)036<2292:foiacm>2.0.co;2, 1979.
Kent, D. V., Olsen, P. E., and Muttoni, G.: Astrochronostratigraphic
polarity time scale (APTS) for the Late Triassic and Early Jurassic from
continental sediments and correlation with standard marine stages,
Earth-Sci. Rev., 166, 153–180,
https://doi.org/10.1016/j.earscirev.2016.12.014, 2017.
Kent, D. V., Olsen, P. E., Rasmussen, C., Lepre, C., Mundil, R., Irmis, R.
B., Gehrels, G. E., Giesler, D., Geissman, J. W., and Parker, W. G.:
Empirical evidence for stability of the 405-kiloyear Jupiter-Venus
eccentricity cycle over hundreds of millions of years, P. Natl. Acad. Sci. USA, 115, 6153–6158, https://doi.org/10.1073/pnas.1800891115,
2018.
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, 2014.
Klockmann, M., Mikolajewicz, U., and Marotzke, J.: Two AMOC States in
Response to Decreasing Greenhouse Gas Concentrations in the Coupled Climate
Model MPI-ESM, J. Climate, 31, 7969–7984,
https://doi.org/10.1175/jcli-d-17-0859.1, 2018.
Knorr, G. and Lohmann, G.: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation, Nature, 424, 532–536, https://doi.org/10.1038/nature01855, 2003.
Knudsen, M. F., Norgaard, J., Grischott, R., Kober, F., Egholm, D. L.,
Hansen, T. M., and Jansen, J. D.: New cosmogenic nuclide burial-dating model
indicates onset of major glaciations in the Alps during Middle Pleistocene
Transition, Earth Planet. Sci. Lett., 549, L116491,
https://doi.org/10.1016/j.epsl.2020.116491, 2020.
Kukla, G., McManus, J. F., Rousseau, D. D., and Chuine, I.: How long and how
stable was the last interglacial?, Quaternary Sci. Rev., 16, 605–612, 1997.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89, https://doi.org/10.1051/0004-6361/201116836, 2011.
Lehman, S.: Ice sheets, wayward winds and sea change, Nature, 365, 108–110,
1993.
Le Treut, H., Portes, J., Jouzel, J., and Ghil, M.: Isotopic modeling of
climatic oscillations – Implications for a comparative-study of marine and
ice core records, J. Geophys. Res.-Atmos., 93, 9365–9383,
https://doi.org/10.1029/JD093iD08p09365, 1988.
Le Verrier, U. J.-J.: Théorie et Tables du Mouvement Apparent du Soleil,
Ann. Obs. Impérial Paris, 1–64, 1858.
Liebrand, D., Lourens, L. J., Hodell, D. A., de Boer, B., van de Wal, R. S. W., and Pälike, H.: Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene, Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, 2011.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic delta O-18 records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt
Climate and Weather Changes Across Time Scales, Paleoceanogr.
Paleocl., 35, e2019PA003782, https://doi.org/10.1029/2019PA003782, 2020.
Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, 2018.
Lohmann, J. and Ditlevsen, P. D.: Objective extraction and analysis of statistical features of Dansgaard–Oeschger events, Clim. Past, 15, 1771–1792, https://doi.org/10.5194/cp-15-1771-2019, 2019.
MacAyeal, D. R.: Binge/purge oscillations of the Laurentide ice sheet as a
cause of the North Atlantic Heinrich events, Paleoceanography, 8, 775–784,
https://doi.org/10.1029/93pa02200, 1993.
Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P., Springer, S.
R., Liu, Z. Y., Otto-Bliesner, B. L., Carlson, A. E., Ungerer, A., Padman,
J., He, F., Cheng, J., and Schmittner, A.: Ice-shelf collapse from
subsurface warming as a trigger for Heinrich events, P. Natl. Acad. Sci. USA, 108, 13415–13419, https://doi.org/10.1073/pnas.1104772108, 2011.
Marwan, N., Carmen Romano, M., Thiel, M., and Kurths, J.: Recurrence plots
for the analysis of complex systems, Phys. Rep., 438, 237–329,
https://doi.org/10.1016/j.physrep.2006.11.001, 2007.
Marwan, N., Schinkel, S., and Kurths, J.: Recurrence plots 25 years later –
Gaining confidence in dynamical transitions, Europhys. Lett., 101, 20007,
https://doi.org/10.1209/0295-5075/101/20007, 2013.
McManus, J. F., Bond, G. C., Broecker, W. S., Johnsen, S., Labeyrie, L., and
Higgins, S.: High-resolution climate records from the North Atlantic during
the last interglacial, Nature, 371, 326–329, 1994.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0,5-million-year record of
millennial-scale climate variability in the North Atlantic, Science, 283,
971–975, 1999.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing, Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, 2014.
Menviel, L., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An
ice-climate oscillatory framework for Dansgaard-Oeschger cycles, Narure Rev.
Earth Environ., 1, 677–693, https://doi.org/10.1038/s43017-020-00106-y,
2021.
Meyers, S. R. and Malinverno, A.: Proterozoic Milankovitch cycles and the
history of the solar system, P. Natl. Acad. Sci. USA, 115,
6363–6368, https://doi.org/10.1073/pnas.1717689115, 2018.
Milankovic, M.: Théorie mathématique des Phénomènes
thermiques produits par la radiation solaire, edited by: Académie
Yougoslave des Sciences et des Arts de Zagreb, Gauthier Villars, Paris,
1920.
Milankovic, M.: Kanon der Erdbestrahlung und seine Anwendung auf das
Eiszeitenproblem, Royal Serbian Sciences, Belgrade, 633 pp., 1941.
Miller, G. H. and De Vernal, A.: Will greenhouse warming lead to
Northern-Hemisphere ice-sheet growth, Nature, 355, 244–246,
https://doi.org/10.1038/355244a0, 1992.
Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V.: A
180-Million-Year Record of Sea Level and Ice Volume Variations from
Continental Margin and Deep-Sea Isotopic Records, Oceanography, 24, 40–53,
https://doi.org/10.5670/oceanog.2011.26, 2011.
Müller, U. C., Pross, J., and Bibus, E.: Vegetation response to rapid
climate change in Central Europe during the past 140 000 yr based on
evidence from the Füramoos pollen record, Quaternary Res., 59, 235–245,
2003.
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R.,
Rogledi, S., and Sciunnach, D.: Onset of major Pleistocene glaciations in
the Alps, Geology, 31, 989–992, https://doi.org/10.1130/g19445.1, 2003.
Naafs, B. D. A., Hefter, J., and Stein, R.: Millennial-scale ice rafting
events and Hudson Strait Heinrich(-like) Events during the late Pliocene and
Pleistocene: a review, Quaternary Sci. Rev., 80, 1–28,
https://doi.org/10.1016/j.quascirev.2013.08.014, 2013.
Obrochta, S. P., Crowley, T. J., Channell, J. E. T., Hodell, D. A., Baker,
P. A., Seki, A., and Yokoyama, Y.: Climate variability and ice-sheet
dynamics during the last three glaciations, Earth Planet. Sci. Lett., 406,
198–212, https://doi.org/10.1016/j.epsl.2014.09.004, 2014.
Olsen, P. E., Laskar, J., Kent, D. V., Kinney, S. T., Reynolds, D. J., Sha,
J. G., and Whiteside, J. H.: Mapping Solar System chaos with the Geological
Orrery, P. Natl. Acad. Sci. USA, 116, 10664–10673,
https://doi.org/10.1073/pnas.1813901116, 2019.
Peltier, W. R. and Vettoretti, G.: Dansgaard-Oeschger oscillations predicted
in a comprehensive model of glacial climate: A “kicked” salt oscillator in
the Atlantic, Geophys. Res. Lett., 41, 7306–7313,
https://doi.org/10.1002/2014gl061413, 2014.
Penck, A. and Brückner, E.: Die Alpen im Eiszeitalter, CHR. Herm.
Tauchnitz, Leipzig, 1190 pp., 1909.
Pilgrim, L. J. H.: Versuch einer rechnerischen Behandlung des
Eiszeitproblems, Gutenberg, 1904.
Pisias, N. G. and Moore, T. C.: The evolution of Pleistocene climate: A
time-series approach, Earth Planet. Sci. Lett., 52, 450–458,
https://doi.org/10.1016/0012-821x(81)90197-7, 1981.
Rahmstorf, S.: Ocean circulation and climate during the past 120 000 years,
Nature, 419, 207–214, 2002.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014 (data available at: https://www.iceandclimate.nbi.ku.dk/data/GICC05modelext_GRIP_and_GISP2_and_resampled_data_series_Seierstad_et_al._2014_version_10Dec2014-2.xlsx, last access: 10 February 2022).
Riechers, K., Mitsui, T., Boers, N., and Ghil, M.: Orbital Insolation Variations, Intrinsic Climate Variability, and Quaternary Glaciations, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2021-136, in review, 2021.
Rousseau, D.-D., Svensson, A., Bigler, M., Sima, A., Steffensen, J. P., and Boers, N.: Eurasian contribution to the last glacial dust cycle: how are loess sequences built?, Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, 2017a.
Rousseau, D. D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F.,
Taylor, S., and Antoine, P.: (MIS3 & 2) millennial oscillations in
Greenland dust and Eurasian aeolian records – A paleosol perspective, Quaternary Sci. Rev., 169, 99–113, https://doi.org/10.1016/j.quascirev.2017.05.020,
2017b.
Rousseau, D.-D., Antoine, P., and Sun, Y.: How dusty was the last glacial
maximum over Europe?, Quaternary Sci. Rev., 254, 6775–6775, 2021.
Ruddiman, W. F.: Late Quaternary deposition of ice) rafted sand in subpolar
North-Atlantic (Lat 40-degrees to 65-degrees-N), Geol. Soc. Am. Bull., 88,
1813–1827, https://doi.org/10.1130/0016-7606(1977)88<1813:lqdois>2.0.co;2, 1977.
Ruddiman, W. F., Raymo, M., Martinson, D. G., Clement, B. M., and Backman,
J.: Pleistocene evolution: Northern Hemisphere ice sheets and North
Atlantic Ocean, Paleoceanography, 4, 353–412, 1989.
Saltzman, B.: Dynamical Paleoclimatology, Academic Press, San Diego, 354 pp., ISBN 0-12-617331-1, 2002.
Sanchez-Goni, M. F., Turon, J. L., Eynaud, F., and Gendreau, S.: European
climatic response to millennial-scale changes in the atmosphere-ocean system
during the last glacial period, Quaternary Res., 54, 394–403, 2000.
Sanchez-Goni, M. F., Cacho, I., Turon, J. L., Guiot, J., Sierro, F. J.,
Peypouquet, J. P., Grimalt, J. O., and Shackleton, N. J.: Synchroneity
between marine and terrestrial responses to millennial scale climatic
variability during the last glacial period in the Mediterranean region,
Clim. Dynam., 19, 95–105, https://doi.org/10.1007/s00382-001-0212-x, 2002.
Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P.,
Haupt, B. J., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schafer-Neth,
C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Kreveld, S.,
Vogelsang, E., Volker, A., and Weinelt, M.: Fundamental modes and abrupt
changes in north Atlantic circulation and climate over the last 60 ky –
Concepts, reconstruction and numerical modeling, in: The Northern North Atlantic: A Changing Environment, edited by: Schafer, P., Ritzau, W., Sclüter, M., and Thiede, J., Springer Verlag, Heidelberg, 365–410, ISBN 978-3-642-63136-8, 2001.
Schulz, M.: On the 1470-year pacing of Dansgaard-Oeschger warm events,
Paleoceanography, 17, 4.1–4.10, 2002.
Schupbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G.,
Leuenberger, D., Mini, O., Mulvaney, R., Abram, N. J., Fleet, L., Frey, M.
M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H.,
Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P.,
Winstrup, M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma,
K., Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J.,
Fisher, D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J.,
Barbante, C., Kang, J. H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S.,
Hansson, M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
McConnell, J., and Wolff, E. W.: Greenland records of aerosol source and
atmospheric lifetime changes from the Eemian to the Holocene, Nat. Commun.,
9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018.
Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.:
Phanerozoic paleotemperatures: The earth's changing climate during the last
540 million years, Earth-Sci. Rev., 215, 103503,
https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth
Planet. Sci. Lett., 292, 201–211,
https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Sellers, W. D.: Global climatic model based on the energy balance of the
Earth- Atmosphere system, J. Appl. Meteorol., 8, 392–400, 1969.
Shackleton, N. J.: The 100 000-year ice-age cycle identified and found to
lag temperature, carbon dioxide, and orbital eccentricity, Science, 289,
1897–1902, https://doi.org/10.1126/science.289.5486.1897, 2000.
Shackleton, N. J. and Opdyke, N. D.: Oxygen isotope and palaeomagnetic
evidence for early Northern Hemisphere glaciation, Nature, 270, 216–223,
1977.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between
millennial-scale events 64 000-24 000 years ago, Paleoceanography, 15,
565–569, https://doi.org/10.1029/2000pa000513, 2000.
Shaffer, G., Olsen, S. M., and Bjerrum, C. J.: Ocean subsurface warming as a
mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting
events, Geophys. Res. Lett., 31, L24202, https://doi.org/10.1029/2004gl020968, 2004.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the
bipolar seesaw, Paleoceanography, 18, 11-1–11-9, 2003.
Svensson, A., Dahl-Jensen, D., Steffensen, J. P., Blunier, T., Rasmussen, S. O., Vinther, B. M., Vallelonga, P., Capron, E., Gkinis, V., Cook, E., Kjær, H. A., Muscheler, R., Kipfstuhl, S., Wilhelms, F., Stocker, T. F., Fischer, H., Adolphi, F., Erhardt, T., Sigl, M., Landais, A., Parrenin, F., Buizert, C., McConnell, J. R., Severi, M., Mulvaney, R., and Bigler, M.: Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period, Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, 2020.
Timmermann, A., Gildor, H., Schulz, M., and Tziperman, E.: Coherent resonant
millennial-scale climate oscillations triggered by massive meltwater pulses,
J. Climate, 16, 2569–2585,
https://doi.org/10.1175/1520-0442(2003)016<2569:crmcot>2.0.co;2, 2003.
Turner, S. K.: Pliocene switch in orbital-scale carbon cycle/climate
dynamics, Paleoceanography, 29, 1256–1266,
https://doi.org/10.1002/2014pa002651, 2014.
Tziperman, E. and Gildor, H.: On the mid-Pleistocene transition to 100 kyr
glacial cycles and the asymmetry between glaciation and deglaciation times,
Paleoceanography, 18, 1001, https://doi.org/10.1029/2001pa000627, 2003.
van de Wal, R. S. W., de Boer, B., Lourens, L. J., Köhler, P., and Bintanja, R.: Reconstruction of a continuous high-resolution CO2 record over the past 20 million years, Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, 2011.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperatures changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Waelbroeck, C., Labeyrie, L. D., Michel, E., Duplessy, J.-C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: NOAA/WDS
Paleoclimatology – Sea-level and Deep Water Temperature 430 kyr
Reconstructions, NOAA National Centers for Environmental Information [data set], available at: https://www.ncdc.noaa.gov/paleo/study/10496 (last access: 10 February 2022), 2010.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C.,
and Dorale, J. A.: A high-resolution absolute-dated Late Pleistocene monsoon
record from Hulu Cave, China, Science, 294, 2345–2348,
https://doi.org/10.1126/science.1064618, 2001.
Westerhold, T.: Cenozoic global reference benthic carbon and oxygen
isotope dataset (CENOGRID), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.917503, 2020.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Palike, H., Rohl, U.,
Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Woillard, G.: Grande Pile Peat Bog: A Continuous Pollen Record for the Last
140 000 Years, Quaternary Res., 9, 1–21, 1978.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson,
A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838,
https://doi.org/10.1016/j.quascirev.2009.10.013, 2010.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Zagwijn, W. H.: Vegetation and climate during warmer intervals in the Late
Pleistocene of western and central Europe, Quatern. Int., 3/4, 57–67,
1989.
Zhang, S., Wang, X., Hammarlund, E. U., Wang, H., Costa, M. M., Bjerrum, C.
J., Connelly, J. N., Zhang, B., Bian, L., and Canfield, D. E.: Orbital
forcing of climate 1.4 billion years ago, P. Natl. Acad. Sci. USA,
112, E1406–E1413, https://doi.org/10.1073/pnas.1502239112, 2015.
Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, 2019.
Short summary
The study of abrupt climate changes is a relatively new field of research that addresses paleoclimate variations that occur in intervals of tens to hundreds of years. Such timescales are much shorter than the tens to hundreds of thousands of years that the astronomical theory of climate addresses. We revisit several high-resolution proxy records of the past 3.2 Myr and show that the abrupt climate changes are nevertheless affected by the orbitally induced insolation changes.
The study of abrupt climate changes is a relatively new field of research that addresses...