Articles | Volume 18, issue 8
https://doi.org/10.5194/cp-18-1849-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1849-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate signals in stable carbon and hydrogen isotopes of lignin methoxy groups from southern German beech trees
Anna Wieland
CORRESPONDING AUTHOR
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234–236, 69120 Heidelberg, Germany
Markus Greule
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234–236, 69120 Heidelberg, Germany
Philipp Roemer
Department of Geography, Johannes Gutenberg University Mainz, 55128
Mainz, Germany
Jan Esper
Department of Geography, Johannes Gutenberg University Mainz, 55128
Mainz, Germany
Global Change Research Institute of the Czech Academy of Sciences
(CzechGlobe), 60300 Brno, Czech Republic
Frank Keppler
CORRESPONDING AUTHOR
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234–236, 69120 Heidelberg, Germany
Heidelberg Center for the Environment (HCE), Heidelberg University,
69120 Heidelberg, Germany
Related authors
No articles found.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Cited articles
Anhäuser, T., Greule, M., Polag, D., Bowen, G. J., and Keppler, F.: Mean
annual temperatures of mid-latitude regions derived from δ2H values of wood lignin methoxyl groups and its implications for paleoclimate studies,
Sci. Total Environ., 574, 1276–1282, https://doi.org/10.1016/j.scitotenv.2016.07.189, 2017a.
Anhäuser, T., Greule, M., and Keppler, F.: Stable hydrogen isotope
values of lignin methoxyl groups of four tree species across Germany and
their implication for temperature reconstruction, Sci. Total Environ., 579,
263–271, https://doi.org/10.1016/j.scitotenv.2016.11.109, 2017b.
Anhäuser, T., Sehls, B., Thomas, W., Hartl, C., Greule, M., Scholz, D.,
Esper, J., and Keppler, F.: Tree-ring δ2H values from lignin methoxyl
groups indicate sensitivity to European-scale temperature changes,
Palaeogeogr. Palaeocl., 546, 109665, https://doi.org/10.1016/j.palaeo.2020.109665, 2020.
Badeck, F. W., Tcherkez, G., Nogués, S., Piel, C., and Ghashghaie, J.:
Post-photosynthetic fractionation of stable carbon isotopes between plant
organs – A widespread phenomenon, Rapid Commun. Mass Sp., 19, 1381–1391, https://doi.org/10.1002/rcm.1912, 2005.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the
water cycle: Regional- to global-scale patterns and applications, Annu. Rev.
Earth Pl. Sc., 47, 453–479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Brand, W. A. and Coplen, T. B.: Stable Isotope Deltas Tiny yet Robust
Signatures in Nature, Isot. Environ. Healt. S., 48, 393–409,
https://doi.org/10.1080/10256016.2012.666977, 2012.
Brienen, R. J. W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A.,
Bottrell, S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M. J.,
Mielikäinen, K., Oinonen, M., and Timonen, M.: Tree height strongly
affects estimates of water-use efficiency responses to climate and CO2 using isotopes, Nat. Commun., 8, 288, https://doi.org/10.1038/s41467-017-00225-z, 2017.
Briffa, K. R., Jones, P. D., Pilcher, J. R., and Hughes, M. K.: Reconstructing summer temperatures in northern Fennoscandinavia back to AD
1700 using tree-ring data from Scots pine, Arctic Alpine Res., 20, 385–394,
https://doi.org/10.2307/1551336, 1988.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent
European drought extremes beyond Common Era background variability, Nat.
Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Buras, A.: A comment on the expressed population signal, Dendrochronologia, 44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017.
Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S.,
Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S.,
Dawson, T. E., Griffiths, H. G., Farquhar, G. D., and Wright, I. J.: Why are
non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses, Funct. Plant Biol., 36, 199–213, https://doi.org/10.1071/FP08216, 2009.
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D.,
and Farquhar, G. D.: Environmental and physiological determinants of carbon
isotope discrimination in terrestrial plants, New Phytol., 200, 950–965,
https://doi.org/10.1111/nph.12423, 2013.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: A review and comparison of two techniques, Int. J.
Climatol., 14, 379–402, https://doi.org/10.1002/joc.3370140404, 1994.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Daux, V., Edouard, J. L., Masson-Delmotte, V., Stievenard, M., Hoffmann, G.,
Pierre, M., Mestre, O., Danis, P. A., and Guibal, F.: Can climate variations
be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue, Earth
Planet. Sc. Lett., 309, 221–233, https://doi.org/10.1016/j.epsl.2011.07.003, 2011.
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: More efficient
plants: A Consequence of Rising Atmospheric CO2?, Annu. Rev. Plant Phys.,
48, 609–639, https://doi.org/10.1146/annurev.arplant.48.1.609, 1997.
Esper, J.: Long-term tree-ring variations in Juniperus at the upper
timber-line in the Karakorum (Pakistan), The Holocene, 10, 253–260, https://doi.org/10.1191/095968300670152685, 2000.
Esper, J., Konter, O., Krusic, P. J., Saurer, M., Holzkämper, S., and
Büntgen, U.: Long-term summer temperature variations in the Pyrenees
from detrended stable carbon isotopes, Geochronometria, 42, 53–59,
https://doi.org/10.1515/geochr-2015-0006, 2015.
Esper, J., Krusic, P. J., Ljungqvist, F. C., Luterbacher, J., Carrer, M.,
Cook, E., Davi, N. K., Hartl-Meier, C., Kirdyanov, A., Konter, O., Myglan,
V., Timonen, M., Treydte, K., Trouet, V., Villalba, R., Yang, B., and
Büntgen, U.: Ranking of tree-ring based temperature reconstructions of
the past millennium, Quaternary Sci. Rev., 145, 134–151,
https://doi.org/10.1016/j.quascirev.2016.05.009, 2016.
Esper, J., Holzkämper, S., Büntgen, U., Schöne, B., Keppler, F.,
Hartl, C., George, S. S., Riechelmann, D. F. C., and Treydte, K.:
Site-specific climatic signals in stable isotope records from Swedish pine
forests, Trees, 32, 855–869, https://doi.org/10.1007/s00468-018-1678-z, 2018.
Farquhar, G. D., Leary, M. H. O., and Berry, J. A.: On the Relationship
between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide
Concentration in Leaves, Aust. J. Plant Physiol., 9, 121–37, https://doi.org/10.1071/PP9820121, 1982.
Feng, X. and Epstein, S.: Carbon isotopes of trees from arid environments
and implications for reconstructing atmospheric CO2 concentration, Geochim.
Cosmochim. Ac., 59, 2599–2608, https://doi.org/10.1016/0016-7037(95)00152-2, 1995.
Francey, R. J. and Farquhar, G. D.: An explanation of 13C/12C variations in
tree rings, Nature, 297, 28–31, https://doi.org/10.1038/297028a0, 1982.
Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T.,
Malmström, C. M., Vitousek, P. M., James Collatz, G., Sellers, P. J.,
Randall, D. A., Denning, A. S., Badeck, F., and John, J.: Carbon 13
exchanges between the atmosphere and biosphere, Global Biogeochem. Cy., 11, 507–533, https://doi.org/10.1029/97GB01751, 1997.
Gagen, M., McCarroll, D., Loader, N. J., Robertson, I., Jalkanen, R., and
Anchukaitis, K. J.: Exorcising the “segment length curse”: Summer temperature reconstruction since AD 1640 using non-detrended stable carbon
isotope ratios from pine trees in northern Finland, The Holocene, 17, 435–446, https://doi.org/10.1177/0959683607077012, 2006.
Gagen, M., McCarroll, D., Robertson, I., Loader, N. J., and Jalkanen, R.: Do
tree-ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends?, Chem. Geol., 252, 42–51, https://doi.org/10.1016/j.chemgeo.2008.01.013, 2008.
Gori, Y., Wehrens, R., Greule, M., Keppler, F., Ziller, L., La Porta, N.,
and Camin, F.: Carbon, hydrogen and oxygen stable isotope ratios of whole
wood, cellulose and lignin methoxyl groups of Picea abies as climate
proxies, Rapid Commun. Mass Sp., 27, 265–275,
https://doi.org/10.1002/rcm.6446, 2013.
Greule, M., Mosandl, A., Hamilton, J. T. G., and Keppler, F.: A rapid and
precise method for determination of ratios of plant mathoxyl groups, Rapid Commun. Mass Sp., 22, 3983–3988, https://doi.org/10.1002/rcm.3817, 2008.
Greule, M., Mosandl, A., Hamilton, J. T. G., and Keppler, F.: A simple rapid
method to precisely determine ratios of plant methoxyl groups, Rapid Commun. Mass Sp., 23, 1710–1714, https://doi.org/10.1002/rcm.4057, 2009.
Greule, M., Moossen, H., Geilmann, H., Brand, W. A., and Keppler, F.: Methyl
sulfates as methoxy isotopic reference materials for δ13C and δ2H measurements, Rapid Commun. Mass Sp., 33, 343–350, https://doi.org/10.1002/rcm.8355, 2019.
Greule, M., Moossen, H., Lloyd, M. K., Geilmann, H., Brand, W. A., Eiler, J.
M., Qi, H., and Keppler, F.: Three wood isotopic reference materials for
δ2H and δ13C measurements of plant methoxy groups, Chem. Geol., 533, 119428, https://doi.org/10.1016/j.chemgeo.2019.119428, 2020.
Greule, M., Wieland, A., and Keppler, F.: Measurements and applications of
δ2H values of wood lignin methoxy groups for paleoclimatic studies,
Quaternary Sci. Rev., 268, 107107, https://doi.org/10.1016/j.quascirev.2021.107107, 2021.
Guerrieri, R., Mencuccini, M., Sheppard, L. J., Saurer, M., Perks, M. P.,
Levy, P., Sutton, M. A., Borghetti, M., and Grace, J.: The legacy of
enhanced N and S deposition as revealed by the combined analysis of
δ13C, δ18O and δ15N in tree rings, Glob. Change Biol., 17, 1946–1962, https://doi.org/10.1111/j.1365-2486.2010.02362.x, 2011.
Hafner, P., Robertson, I., McCarroll, D., Loader, N. J., Gagen, M., Bale, R.
J., Jungner, H., Sonninen, E., Hilasvuori, E., and Levaniè, T.: Climate
signals in the ring widths and stable carbon, hydrogen and oxygen isotopic
composition of Larix decidua growing at the forest limit in the southeastern European Alps, Trees, 25, 1141–1154, https://doi.org/10.1007/s00468-011-0589-z, 2011.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M.,
Keppler, F., Huang, Y., Zech, W., and Zech, M.: Late Quaternary relative
humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O biomarker paleohygrometer approach, Quatern. Int., 438, 116–130,
https://doi.org/10.1016/j.quaint.2017.03.059, 2017.
Keeling, C. D.: The Suess effect: 13Carbon-14Carbon interrelations, Environ. Int., 2, 229–300, https://doi.org/10.1016/0160-4120(79)90005-9, 1979.
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P.,
Heimann, M., and Meijer, H. A.: Atmospheric CO2 and 13CO2 Exchange with the Terrestrial Biosphere and Oceans from 1978 to 2000: Observations and Carbon Cycle Implications, in: A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, NY, 83–113, https://doi.org/10.1007/0-387-27048-5_5, 2005.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S.
C., Sun, Y., Bollenbacher, A., and Meijer, H. A. J.: Atmospheric evidence
for a global secular increase in carbon isotopic discrimination of land
photosynthesis, P. Natl. Acad. Sci. USA, 114, 10361–10366,
https://doi.org/10.1073/pnas.1619240114, 2017.
Keppler, F., Kalin, R. M., Harper, D. B., McRoberts, W. C., and Hamilton, J. T. G.: Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications, Biogeosciences, 1, 123–131, https://doi.org/10.5194/bg-1-123-2004, 2004.
Keppler, F., Harper, D. B., Kalin, R. M., Meier-Augenstein, W., Farmer, N.,
Davis, S., Schmidt, H. L., Brown, D. M., and Hamilton, J. T. G.: Stable
hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy
and constraint of the geographical origin of wood, New Phytol., 176,
600–609, https://doi.org/10.1111/j.1469-8137.2007.02213.x, 2007.
Konter, O., Holzkämper, S., Helle, G., Büntgen, U., Saurer, M., and
Esper, J.: Climate sensitivity and parameter coherency in annually resolved
δ13C and δ18O from Pinus uncinata tree-ring data in the Spanish Pyrenees, Chem. Geol., 377, 12–19,
https://doi.org/10.1016/j.chemgeo.2014.03.021, 2014.
Kress, A., Saurer, M., Siegwolf, R. T. W., Frank, D. C., Esper, J., and
Bugmann, H.: A 350 year drought reconstruction from Alpine tree ring stable
isotopes, Global Biogeochem. Cy., 24, GB2011, https://doi.org/10.1029/2009GB003613, 2010.
Kürschner, W. M.: Leaf Stomata as Biosensors of Palaeoatmospheric CO2 Levels, dissertation, Universiteit Utrecht, 153 pp., ISBN 90-393-1085-8, 1996.
Lee, H., Feng, X., Mastalerz, M., and Feakins, S. J.: Characterizing lignin:
Combining lignin phenol, methoxy quantification, and dual stable carbon and
hydrogen isotopic techniques, Org. Geochem., 136, 103894,
https://doi.org/10.1016/j.orggeochem.2019.07.003, 2019.
Leonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F.,
Mencuccini, M., Noije, T. V., and Borghetti, M.: Assessing the effects of
nitrogen deposition and climate on carbon isotope discrimination and
intrinsic water-use efficiency of angiosperm and conifer trees under rising
CO2 conditions, Glob. Change Biol., 18, 2925–2944,
https://doi.org/10.1111/j.1365-2486.2012.02757.x, 2012.
Ljungqvist, F. C., Piermattei, A., Seim, A., Krusic, P. J., Büntgen, U.,
He, M., Kirdyanov, A. V., Luterbacher, J., Schneider, L., Seftigen, K.,
Stahle, D. W., Villalba, R., Yang, B., and Esper, J.: Ranking of tree-ring
based hydroclimate reconstructions of the past millennium, Quaternary Sci. Rev., 230, 106074, https://doi.org/10.1016/j.quascirev.2019.106074, 2020.
Lu, Q., Liu, X., Anhäuser, T., Keppler, F., Wang, Y., Zeng, X., Zhang,
Q., Zhang, L., Wang, K., and Zhang, Y.: Tree-ring lignin proxies in Larix
gmelinii forest growing in a permafrost area of northeastern China: Temporal
variation and potential for climate reconstructions, Ecol. Indic., 118,
106750, https://doi.org/10.1016/j.ecolind.2020.106750, 2020.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., Van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophys. Res. Lett., 33, 2000–2003, https://doi.org/10.1029/2006GL026152, 2006.
Masle, J. and Farquhar, G. D.: Effects of Soil Strength on the Relation of
Water-Use Efficiency and Growth to Carbon Isotope Discrimination in Wheat
Seedlings, Plant Physiol., 86, 32–38, https://doi.org/10.1104/pp.86.1.32, 1988.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017, 2004.
McCarroll, D. and Pawellek, F.: Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate
signal from long Fennoscandian chronologies, The Holocene, 11, 517–526,
https://doi.org/10.1191/095968301680223477, 2001.
McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen, M., Gagen, M., Pawellek,
F., Eckstein, D., Schmitt, U., Autio, J., and Heikkinen, O.: Multiproxy
dendroclimatology: A pilot study in northern Finland, The Holocene, 13, 829–838,
https://doi.org/10.1191/0959683603hl668rp, 2003.
Mischel, M., Esper, J., Keppler, F., Greule, M., and Werner, W.: δ2H, δ13C and δ18O from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach, Isot. Environ. Healt. S., 51, 553–568, https://doi.org/10.1080/10256016.2015.1056181, 2015.
Reynolds-Henne, C. E., Siegwolf, R. T. W., Treydte, K. S., Esper, J., Henne,
S., and Saurer, M.: Temporal stability of climate-isotope relationships in
tree rings of oak and pine (Ticino, Switzerland), Global Biogeochem. Cy., 21, GB4009, https://doi.org/10.1029/2007GB002945, 2007.
Riechelmann, D. F. C., Greule, M., Treydte, K., Esper, J., and Keppler, F.:
Climate signals in δ13C of wood lignin methoxyl groups from
high-elevation larch trees, Palaeogeogr. Palaeocl., 445, 60–71, https://doi.org/10.1016/j.palaeo.2016.01.001, 2016.
Riechelmann, D. F. C., Greule, M., Siegwolf, R. T. W., Anhäuser, T.,
Esper, J., and Keppler, F.: Warm season precipitation signal in δ2H
values of wood lignin methoxyl groups from high elevation larch trees in
Switzerland, Rapid Commun. Mass Sp., 31, 1589–1598, https://doi.org/10.1002/rcm.7938, 2017.
Saurer, M., Borella, S., and Schweingruber, F.: Stable carbon isotopes in
tree rings of beech: climatic versus site-related influences, Trees, 11, 291–297, https://doi.org/10.1007/s004680050087, 1997.
Seibt, U., Rajabi, A., Griffiths, H., and Berry, J. A.: Carbon isotopes and
water use efficiency: Sense and sensitivity, Oecologia, 155, 441–454,
https://doi.org/10.1007/s00442-007-0932-7, 2008.
Sternberg, L. D. S. L. O. R.: Oxygen stable isotope ratios of tree-ring
cellulose: The next phase of understanding, New Phytol., 181, 553–562,
https://doi.org/10.1111/j.1469-8137.2008.02661.x, 2009.
Stoffel, M. and Bollschweiler, M.: Tree-ring analysis in natural hazards research – an overview, Nat. Hazards Earth Syst. Sci., 8, 187–202, https://doi.org/10.5194/nhess-8-187-2008, 2008.
Tang, K., Feng, X., and Ettl, G. J.: The variations in δD of tree rings
and the implications for climatic reconstruction, Geochim. Cosmochim. Ac., 64, 1663–1673, https://doi.org/10.1016/S0016-7037(00)00348-3, 2000.
Treydte, K., Schleser, G., Schweingruber, F., and Winiger, M.: The climatic
significance of δ13C in subalpine spruces (Lötschental, Swiss
Alps): A case study with respect to altitude, exposure and soil moisture,
Tellus B, 53, 593–611, https://doi.org/10.3402/tellusb.v53i5.16639, 2001.
Treydte, K. S., Frank, D. C., Saurer, M., Helle, G., Schleser, G. H., and
Esper, J.: Impact of climate and CO2 on a millennium-long tree-ring carbon
isotope record, Geochim. Cosmochim. Ac., 73, 4635–4647,
https://doi.org/10.1016/j.gca.2009.05.057, 2009.
Trouet, V. and Jan van Oldenborgh, G.: KNMI climate explorer: A web-based research tool for high-resolution paleoclimatology, Tree-Ring Res., 69, 3–13, 2013.
Urey, H. C.: Oxygen Isotopes in Nature and in the Laboratory, Science, 108, 489–496, https://doi.org/10.1126/science.108.2810.4, 1948.
Vadeboncoeur, M. A., Jennings, K. A., Ouimette, A. P., and Asbjornsen, H.:
Correcting tree-ring δ13C time series for tree-size effects in eight
temperate tree species, Tree Physiol., 40, 333–349, https://doi.org/10.1093/treephys/tpz138, 2020.
van der Merwe, N. J. and Medina, E.: The Canopy Effect, Carbon Isotope
Ratios and Foodwebs in Amazonia, J. Archaeol. Sci., 18, 249–259, 1991.
Van Raden, U. J., Colombaroli, D., Gilli, A., Schwander, J., Bernasconi, S.
M., van Leeuwen, J., Leuenberger, M., and Eicher, U.: High-resolution
late-glacial chronology for the Gerzensee lake record (Switzerland):
δ18O correlation between a Gerzensee-stack and NGRIP, Palaeogeogr.
Palaeocl., 391, 13–24, https://doi.org/10.1016/j.palaeo.2012.05.017, 2013.
Wang, W., Liu, X., Shao, X., Leavitt, S., Xu, G., An, W., and Qin, D.: A 200
year temperature record from tree ring δ13C at the Qaidam Basin of the Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C, J. Geophys. Res., 116, G04022, https://doi.org/10.1029/2011JG001665, 2011.
Wang, Y., Liu, X., Anhäuser, T., Lu, Q., Zeng, X., Zhang, Q., Wang, K.,
Zhang, L., Zhang, Y., and Keppler, F.: Temperature signal recorded in
δ2H and δ13C values of wood lignin methoxyl groups from a permafrost forest in northeastern China, Sci. Total Environ., 727, 138558,
https://doi.org/10.1016/j.scitotenv.2020.138558, 2020.
Wieland, A., Greule, M., Roemer, P., Esper, J., and Keppler, F.: Climate signals in stable carbon and hydrogen isotopes of lignin methoxy groups from southern German beech trees [data], V1, heiDATA [data set], https://doi.org/10.11588/data/ZCMVUY, 2022.
Wigley, T. M. L., Jones, P. D., and Briffa, K. R.: Cross-dating methods in
dendrochronology, J. Archaeol. Sci., 14, 51–64,
https://doi.org/10.1016/S0305-4403(87)80005-5, 1987.
Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., and Long, S.
P.: Quantifying the impact of current and future tropospheric ozone on tree
biomass, growth, physiology and biochemistry: A quantitative meta-analysis,
Glob. Change Biol., 15, 396–424, https://doi.org/10.1111/j.1365-2486.2008.01774.x, 2009.
Yoneyama, T., Handley, L. L., Scrimgeour, C. M., Fisher, D. B., and Raven,
J. A.: Variations of the natural abundances of nitrogen and carbon isotopes
in Triticum aestivum, with special reference to phloem and xylem exudates,
New Phytol., 137, 205–213, https://doi.org/10.1046/j.1469-8137.1997.00809.x, 1997.
Zeisel, S.: Über ein Verfahren zum quantitativen Nachweise von
Methoxyl, Monatsh. Chem., 6, 989–997, https://doi.org/10.1007/BF01554683, 1885.
Short summary
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy groups of beech trees growing in temperate, low elevation environments. Here, carbon isotope ratios reveal highest correlations with regional summer temperatures while hydrogen isotope ratios correlate more strongly with large-scale temperature changes. By combining the dual isotope ratios of wood lignin methoxy groups, a proxy for regional- to subcontinental-scale temperature patterns can be applied.
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy...