Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific
Maxence Guillermic
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, Department of Earth,
Planetary, and Space Sciences, Center for Diverse Leadership in Science,
Institute of the Environment and Sustainability, University of California –
Los Angeles, Los Angeles, CA 90095 USA
Laboratoire Géosciences Océan UMR6538, UBO, Institut
Universitaire Européen de la Mer, Rue Dumont d'Urville, 29280,
Plouzané, France
Sambuddha Misra
Indian Institute of Science, Centre for Earth Sciences, Bengaluru,
Karnataka 560012, India
The Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, UK
Robert Eagle
Department of Atmospheric and Oceanic Sciences, Department of Earth,
Planetary, and Space Sciences, Center for Diverse Leadership in Science,
Institute of the Environment and Sustainability, University of California –
Los Angeles, Los Angeles, CA 90095 USA
Laboratoire Géosciences Océan UMR6538, UBO, Institut
Universitaire Européen de la Mer, Rue Dumont d'Urville, 29280,
Plouzané, France
Aradhna Tripati
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, Department of Earth,
Planetary, and Space Sciences, Center for Diverse Leadership in Science,
Institute of the Environment and Sustainability, University of California –
Los Angeles, Los Angeles, CA 90095 USA
Laboratoire Géosciences Océan UMR6538, UBO, Institut
Universitaire Européen de la Mer, Rue Dumont d'Urville, 29280,
Plouzané, France
Related authors
Blanca Alvarez Caraveo, Maxence Guillermic, Alan Downey-Wall, Louise P. Cameron, Jill N. Sutton, John A. Higgins, Justin B. Ries, Katie Lotterhos, and Robert A. Eagle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1957, https://doi.org/10.5194/egusphere-2024-1957, 2024
Short summary
Short summary
We studied the geochemistry of two bivalves, Crassostrea virginica and Arctica islandica. We examined the effects of three ocean acidification conditions (ambient, moderate, and high) on the geochemistry of C. virginica. We show that bivalves have high physiological control over the internal calcifying fluid, presenting a challenge to using elemental proxies for reconstructing seawater parameters.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Blanca Alvarez Caraveo, Maxence Guillermic, Alan Downey-Wall, Louise P. Cameron, Jill N. Sutton, John A. Higgins, Justin B. Ries, Katie Lotterhos, and Robert A. Eagle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1957, https://doi.org/10.5194/egusphere-2024-1957, 2024
Short summary
Short summary
We studied the geochemistry of two bivalves, Crassostrea virginica and Arctica islandica. We examined the effects of three ocean acidification conditions (ambient, moderate, and high) on the geochemistry of C. virginica. We show that bivalves have high physiological control over the internal calcifying fluid, presenting a challenge to using elemental proxies for reconstructing seawater parameters.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Yama Dixit, Samuel Toucanne, Juan M. Lora, Christophe Fontanier, Virgil Pasquier, Lea Bonnin, Gwenael Jouet, and Aradhna Tripati
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-75, https://doi.org/10.5194/cp-2019-75, 2019
Preprint withdrawn
Jill N. Sutton, Yi-Wei Liu, Justin B. Ries, Maxence Guillermic, Emmanuel Ponzevera, and Robert A. Eagle
Biogeosciences, 15, 1447–1467, https://doi.org/10.5194/bg-15-1447-2018, https://doi.org/10.5194/bg-15-1447-2018, 2018
Short summary
Short summary
The boron isotope composition of marine biogenic carbonates has been studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. We highlight the potential utility of the boron isotope composition of marine biogenic carbonates as a proxy of calcifying site pH for a wide range of calcifying taxa and the importance of using species-specific seawater-pH–boron isotope calibrations when reconstructing seawater pH from the boron isotope composition of biogenic carbonates.
Justine Kimball, Robert Eagle, and Robert Dunbar
Biogeosciences, 13, 6487–6505, https://doi.org/10.5194/bg-13-6487-2016, https://doi.org/10.5194/bg-13-6487-2016, 2016
Short summary
Short summary
Deep-sea corals are a potentially valuable archive of temperature and ocean chemistry. We analyzed clumped isotope signatures (Δ47) in live-collected aragonitic scleractinian and high-Mg calcitic gorgonian deep-sea corals and compared results to published data and found offsets between taxa. The observed patterns in deep-sea corals may record distinct mineral equilibrium signatures due to very slow growth rates, kinetic isotope effects, and/or variable acid digestion fractionation factors.
R. A. Eagle, J. M. Eiler, A. K. Tripati, J. B. Ries, P. S. Freitas, C. Hiebenthal, A. D. Wanamaker Jr., M. Taviani, M. Elliot, S. Marenssi, K. Nakamura, P. Ramirez, and K. Roy
Biogeosciences, 10, 4591–4606, https://doi.org/10.5194/bg-10-4591-2013, https://doi.org/10.5194/bg-10-4591-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pleistocene
No detectable influence of the carbonate ion effect on changes in stable carbon isotope ratios (δ13C) of shallow dwelling planktic foraminifera over the past 160 kyr
Deglacial export of pre-aged terrigenous carbon to the Bay of Biscay
Nutrient utilization and diatom productivity changes in the low-latitude south-eastern Atlantic over the past 70 ka: response to Southern Ocean leakage
Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data
Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle
Peter Köhler and Stefan Mulitza
Clim. Past, 20, 991–1015, https://doi.org/10.5194/cp-20-991-2024, https://doi.org/10.5194/cp-20-991-2024, 2024
Short summary
Short summary
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from the planktic foraminifera G. ruber and/or T. sacculifer and compared them with carbon cycle simulations using the BICYCLE-SE model. In our stacks and our model-based interpretation, we cannot detect a species-specific isotopic fractionation during hard-shell formation as a function of carbonate chemistry in the surrounding seawater, something which is called a carbonate ion effect.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Katharine Hendry, Oscar Romero, and Vanessa Pashley
Clim. Past, 17, 603–614, https://doi.org/10.5194/cp-17-603-2021, https://doi.org/10.5194/cp-17-603-2021, 2021
Short summary
Short summary
Productive eastern boundary upwelling systems (EBUs) are characterized by abundant siliceous algae and diatoms, and they play a key role in carbon fixation. Understanding past shifts in diatom production is critical for predicting the impact of future climate change. We combine existing sediment archives from the Benguela EBU with new diatom isotope analyses and modelling to reconstruct late Quaternary silica cycling, which we suggest depends on both upwelling intensity and surface utilization.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Olivier Cartapanis, Eric D. Galbraith, Daniele Bianchi, and Samuel L. Jaccard
Clim. Past, 14, 1819–1850, https://doi.org/10.5194/cp-14-1819-2018, https://doi.org/10.5194/cp-14-1819-2018, 2018
Short summary
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
Cited articles
Aggarwal, S. K., and You, C. F.: A review on the determination of isotope
ratios of boron with mass spectrometry, Mass Spectrom. Rev., 36,
499–519, 2017.
Allen, K. A. and Hönisch, B.: The planktic foraminiferal proxy for
seawater carbonate chemistry, A critical evaluation, Earth Planet. Sc.
Lett., 345–348, 203–211, 2012.
Allen, K. A., Hönisch, B., Eggins, S. M., Yu, J., Spero, H. J., and
Elderfield, H.: Controls on boron incorporation in cultured tests of the
planktic foraminifer Orbulina universa, Earth Planet. Sc. Lett.,
309, 291–301, 2011.
Babila, T., Huang, K. F., Rosenthal, Y., Conte, M. H., and Lin, H. L.:
Development of as a seawater pH proxy using sediment trap time series,
abstract, available at: https://acswebcontent.acs.org/prfar/2010/nugget/11019/11019.pdf (last access: 10 December 2021), 2010.
Badger, M. P. S., Lear, C. H., Pancost, R. D., Foster, G. L., Bailey, T. R., Leng,
M. J., and Abels, H. A.: CO2 drawdown following the middle Miocene expansion
of the Antarctic Ice Sheet, Paleoceanography, 28, 42–53, 2013.
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used
for foraminiferal paleothermometry, Geochem. Geophy. Geosy.,
4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berger, W. H., Kroenke, J. W., and Mayer, L. A.: Scientific Results, Ontong Java Plateau: Proceedings of the Ocean Drilling Program, v. 130, exas A&M University, College Station, Texas, 867 pp., 1993.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle
imbalances and a variable weathering feedback, Earth Planet. Sc. Lett., 450,
152–163, 2016.
Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F., Badger,
M. P. S., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., Jaccard, S. L.,
Martínez-García, A., Pälike, H., Pancost, R. D., and Wilson, P. A.:
Causes of ice age intensification across the Mid-Pleistocene Transition,
P. Natl. Acad. Sci. USA, 114, 13114–13119,
https://doi.org/10.1073/pnas.1702143114, 2017.
Courtillot, V. E. and Renne, P. R.: On the ages of flood basalt events, C. R. Geosci., 335, 113–140, https://doi.org/10.1016/S1631-0713(03)00006-3, 2003.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., and
Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652–656,
2008.
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G.
L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2
glaciation, Sci. Rep., 10, 11002, https://doi.org/10.1038/s41598-020-67154-8, 2020.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Dyez, K. A., Hönisch, B., and Schmidt, G. A.: Early Pleistocene
obliquity-scale pCO2 variability at ∼1.5 million years ago,
Paleoceanography and Paleoclimatology, 33, 1270–1291, 2018.
Farmer, J. R., Hönisch, B., and Uchikawa, J.: Single laboratory
comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine
carbonates, Chem. Geol., 447, 173–182, 2016.
Farrell, J. W., Raffi, I., Janecek, T., Murray, D. W., Levitan, M., Dadey, K. A.,
Emeis, K. C., Lyle, M., Flores, J. A., and Hovan, S: Late Neogene sedimentation
patterns in the eastern Equatorial Pacific Ocean, in: Proceedings
of the Ocean Drilling Program, edited by: Pisias, N. G., Mayer,
L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Scientific Results, vol. 138, Ocean Drilling
Program, College Station, TX, 5–24, 1995.
Flower, B. P., and Kennett, J. P.: Middle Miocene ocean-climate transition:
High-resolution oxygen and carbon isotopic records from Deep Sea Drilling
Project Site 588A, southwest Pacific, Paleoceanography, 8, 811–843, 1993.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition:
East Antarctic ice sheet development, deep ocean circulation and global
carbon cycling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537–555,
1994.
Flower, B. P. and Kennett, J. P.: Middle Miocene deepwater paleoceanography in the southwest Pacific: relations with East Antarctic Ice Sheet development, Paleoceanography, 10, 1095–1112, https://doi.org/10.1029/95PA02022, 1995.
Foster, G. L.: Seawater pH, pCO2 and [CO ] variations in the Caribbean Sea
over the last 130 kyr: A boron isotope and study of planktic
foraminifera, Earth Planet. Sc. Lett., 271, 254–266, 2008.
Foster, G. L. and Rohling, E. J.: Relationship between sea level and climate
forcing by CO2 on geological timescales, P. Natl. Acad. Sci. USA, 110,
1209–1214, 2013.
Foster, G. L. and Sexton, P. F.: Enhanced carbon dioxide outgassing from the
eastern equatorial Atlantic during the last glacial, Geology, 42, 1003–1006,
2014.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume
and climate during the middle Miocene, Earth Planet. Sc. Lett. 341–344,
243–254, 2012.
Foster, G. L., Hönisch, B., Paris, G., Dwyer, G. S., Rae, J. W.,
Elliott, T., Gaillardet, J., Hemming, N. G., Louvat, P., and Vengosh, A.:
Interlaboratory comparison of boron isotope analyses of boric acid, seawater
and marine CaCO3 by MC-ICPMS and NTIMS, Chem. Geol., 358, 1–14, 2013.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially
without precedent in the last 420 million years, Nat. Commun., 8, 14845,
https://doi.org/10.1038/ncomms14845, 2017.
Gabitov, R. I., Rollion-Bard, C., Tripati, A., and Sadekov, A.: In situ study of boron partitioning between calcite and fluid at different crystal growth rates, Geochim. Cosmochim. Ac., 137, 81–92, 2014.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic ice
sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113,
3459–3464, 2016.
GraphPad Software: GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla
California USA, available at: http://www.graphpad.com (last access: November 2021), 2022.
Gray, W. R., and Evans, D.: Nonthermal influences on in planktonic
foraminifera: a review of culture studies and application to the Last
Glacial Maximum, Paleoceanography and Paleoclimatology, 34, 306–315,
2019.
Greenop, R., Foster, G. L., Wilson, P. A., and Lear, C. H.: Middle Miocene
climate instability associated with high-amplitude CO2 variability,
Paleoceanography, 29, 845–853, 2014.
Greenop, R., Hain, M. P., Sosdian, S. M., Oliver, K. I. C., Goodwin, P., Chalk, T. B., Lear, C. H., Wilson, P. A., and Foster, G. L.: A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera, Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017, 2017.
Greenop, R., Sosdian, S. M., Henehan, M. J., Wilson, P. A., Lear, C. H., and Foster, G. L.: Orbital forcing, ice volume, and CO2 across the Oligocene‐Miocene transition, Paleoceanography and Paleoclimatology, 34, 316–328, 2019.
Guillermic, M., Misra, S., Eagle, R., Villa, A., Chang, F., and Tripati, A.: Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients, Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, 2020.
Gutjahr, M., Bordier, L., Douville, E., Farmer, J., Foster, G. L., Hathorne,
E. C., J., Foster, G. L., Hathorne, E., Hönish, B., Lemarchand, D.,
Louvat, P., McCulloch, M., Noireaux, J., Pallavicini, N., Rodushkin, I.,
Roux, P., Stewart, J., Thil, F., and You, C. F.: Sub-permil interlaboratory
consistency for solution-based boron isotope analyses on marine carbonates,
Geostand. Geoanal. Res., 45, 59–75, https://doi.org/10.1111/ggr.12364, 2020.
Hain, M. P., Foster, G. L., and Chalk, T.: Robust constraints on past CO2
climate forcing from the boron isotope proxy, Paleoceanography and
Paleoclimatology, 33, 1099–1115, 2018.
Hansen, J., Sato, M., and Ruedy, R.: Perception of climate change,
P. Natl. Acad. Sci. USA, 109, E2415–E2423, https://doi.org/10.1073/pnas.1205276109, 2012.
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity, sea
level and atmospheric carbon dioxide, Philos. T. R. Soc. A, 371, 20120294, https://doi.org/10.1098/rsta.2012.0294, 2013.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of
Panama on Atlantic Ocean thermohaline circulation, Nature, 393,
673–676, 1998.
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological
archives and climate models for the mid-Pliocene warm period, Nat.
Commun., 7, 10646, https://doi.org/10.1038/ncomms10646, 2016.
Higgins, J. A., Kurbatov, A. V, Spaulding, N. E., Brook, E., Introne, D. S.,
Chimiak, L. M., Yan, Y., Mayewski, P. A., and Bender, M. L.: Atmospheric
composition 1 million years ago from blue ice in the Allan Hills,
Antarctica, P. Natl. Acad. Sci. USA, 112, 6887–6891, 2015.
Hodell, D. A. and Warnke, D. A.: Climatic evolution of the Southern Ocean during the Pliocene epoch from 4.8 to 2.6 million years ago, Quaternary Sci. Rev., 10, 205–214, 1991.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey”
carbon-isotope excursion, Earth Planet. Sc. Lett., 261,
534–550, 2007.
Holcomb, M., DeCarlo, T. M., Schoepf, V., Dissard, D., Tanaka, K., and McCulloch,
M.: Cleaning and pre-treatment procedures for biogenic and synthetic calcium
carbonate powders for determination of elemental and boron isotopic
compositions, Chem. Geol., 398, 11–21, 2015.
Hönisch, B. and Hemming, N. G.: Ground-truthing the boron
isotope-paleo-pH proxy in planktonic foraminifera shells: Partial
dissolution and shell size effects, Paleoceanography, 19, PA4010, https://doi.org/10.1029/2004PA001026, 2004.
Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F.:
Atmospheric carbon dioxide concentration across the mid-pleistocene
transition, Science, 324, 1551–1554, 2009.
Hönisch, B., Eggins, S. M., Haynes, L. L., Allen, K. A., Holland, K. D.,
and Lorbacher, K.: Boron Proxies in Paleoceanography and Paleoclimatology,
John Wiley & Sons, https://doi.org/10.1002/9781119010678, 2019.
Hooper, P. R., Binger, G. B., and Lees, K. R.: Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon, Geol. Soc. Am. Bull., 114, 43–50, 2002.
IPCC: Climate Change 2013 – The Physical Science Basis, edited by:
Intergovernmental Panel on Climate Change, Ed., Cambridge University Press,
Cambridge, UK, ISBN 9781107415324, https://doi.org/10.1017/CBO9781107415324, 2014.
IPCC: Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and
related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., in press, 2018.
Kasbohm, J. and Schoene, B.: Rapid eruption of the Columbia River flood
basalt and correlation with the mid-Miocene climate optimum, Science
Advances, 4, eaat8223, https://doi.org/10.1126/sciadv.aat8223, 2018.
Kennett, J. P. and Thunell, R. C.: On explosive Cenozoic volcanism and
climatic implications, Science, 196, 1231–1234, 1977.
Kent, D. V. and Muttoni, G.: Equatorial convergence of India and early Cenozoic climate trends, P. Natl. Acad. Sci. USA, 105, 16065–16070, 2008.
Koenig, S. J., DeConto, R. M., and Pollard, D.: Late Pliocene to Pleistocene
sensitivity of the Greenland Ice Sheet in response to external forcing and
internal feedbacks, Clim. Dynam., 37, 1247–1268, 2011.
Lea, D. W.: The 100 000-yr cycle in tropical SST, greenhouse forcing, and
climate sensitivity, J. Climate, 17, 2170–2179, 2004.
Lear, C. H., Rosenthal, Y., and Wright, J. D.: The closing of a seaway: ocean water masses and global climate change, Earth Planet. Sc. Lett., 210, 425–436, 2003.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M.,
Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: Neogene ice
volume and ocean temperatures: Insights from infaunal foraminiferal
paleothermometry, Paleoceanography, 30, 1437–1454, 2015.
Lemarchand, D., Gaillardet, J., Lewin, E., and Allegre, C. J.: Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic, Chem. Geol., 190, 123–140, 2002.
Lisiecki L. E. and Raymo M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, J., Tian, J., Liu, Z., Herbert, T. D., Fedorov, A. V., and Lyle, M.: Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate, Science advances, 5, eaau6060, https://doi.org/10.1126/sciadv.aau6060, 2019.
Lloyd, N. S., Sadekov, A. Y., and Misra, S.: Application of 1013 ohm Faraday
cup current amplifiers for boron isotopic analyses by solution mode and
laser ablation multicollector inductively coupled plasma mass spectrometry,
Rapid Commun. Mass Sp., 32, 9–18, 2018.
Lunt, D. J., Foster, G. L., Haywood, A. M., and Stone, E. J.: Late Pliocene
Greenland glaciation controlled by a decline in atmospheric CO2 levels,
Nature, 454, 1102–1105, 2008.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J.,
and Dowsett, H. J.: Earth system sensitivity inferred from Pliocene
modelling and data, Nat. Geosci., 3, 60–64, 2010.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker,
T. F.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present, Nature, 453, 379–382, 2008.
Ma, W., Tian, J., Li, Q., and Wang, P.: Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient response to orbital change, Geophys. Res. Lett., 38, L10701, https://doi.org/10.1029/2011GL047680, 2011.
Martin, E. E. and Scher, H. D.: Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news, Earth Planet. Sc. Lett., 220, 25–39, 2004.
Martin, E. E., Shackleton, N. J., Zachos, J. C., and Flower, B. P.: Orbitally‐tuned Sr isotope chemostratigraphy for the late middle to late Miocene, Paleoceanography, 14, 74–83, 1999.
Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.: Plio-Pleistocene climate sensitivity
evaluated using high-resolution
CO2 records, Nature, 518, 49–54, https://doi.org/10.1038/nature14145, 2015a.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan,
M. J., Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope evidence for
oceanic carbon dioxide leakage during the last deglaciation, Nature, 518,
219–222, 2015b.
Martínez-Garcia, A., Rosell-Melé, A., Jaccard, S. L., Geibert, W.,
Sigman, D. M., and Haug, G. H.: Southern Ocean dust–climate coupling over
the past four million years, Nature, 476, 312–315, 2011.
Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J., and Schott,
J.: Characterization of boron incorporation and speciation in calcite and
aragonite from co-precipitation experiments under controlled pH, temperature
and precipitation rate, Geochim. Cosmochim. Ac., 150, 299–313, 2015.
McCulloch, M. T., Holcomb, M., Rankenburg, K., and Trotter, J. A.: Rapid,
high-precision measurements of boron isotopic compositions in marine
carbonates, Rapid Commun. Mass Sp., 28, 2704–2712, 2014.
Medina-Elizalde, M. and Lea, D. W.: The mid-pleistocene transition in the
tropical pacific, Science, 310, 1009–1012, 2005.
Misra, S. and Froelich, P. N.: Lithium isotope history of cenozoic seawater:
Changes in silicate weathering and reverse weathering, Science, 335,
818–823, https://doi.org/10.1126/science.1214697, 2012.
Misra, S., Greaves, M., Owen, R., Kerr, J., Elmore, A. C., and Elderfield,
H.: Determination of of natural carbonates by HR-ICP-MS, Geochem.
Geophy. Geosy., 15, 1617–1628, 2014a.
Misra, S., Owen, R., Kerr, J., Greaves, M., and Elderfield, H.: Determination
of δ11B by HR-ICP-MS from mass limited samples: Application to
natural carbonates and water samples, Geochim. Cosmochim. Ac., 140,
531–552, 2014b.
Mitnick, E. H., Lammers, L. N., Zhang, S., Zaretskiy, Y., and DePaolo, D. J.: Authigenic carbonate formation rates in marine sediments and implications for the marine δ13C record, Earth Planet. Sc. Lett., 495, 135–145, 2018.
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Bower, D., and Cannon, J.: Ocean basin evolution and global-scale plate reorganization events since Pangea breakup, Annu. Rev. Earth Pl. Sc., 44, 107–138, 2016.
Nathan, S. A. and Leckie, R. M.: Palaeogeogr. Palaeocl., 274, 140–159, 2009.
National Oceanic and Atmospheric Administration (NOAA): Paleoclimatology, NOAA [data set], available at: https://www.ncei.noaa.gov/products/paleoclimatology, last access: December 2021.
Osborne, E. B., Umling, N. E., Bizimis, M., Buckley, W., Sadekov, A., Tappa,
E., Marshall, B., R. Sautter, L., and Thunell, R. C.: A Sediment Trap Evaluation
of as a Carbonate System Proxy in Asymbiotic and Nondinoflagellate
Hosting Planktonic Foraminifera, Paleoceanography and Paleoclimatology,
35, e2019PA003682, https://doi.org/10.1029/2019PA003682, 2020.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Atmospheric
science: Marked decline in atmospheric carbon dioxide concentrations during
the Paleogene, Science, 309, 600–603, 2005.
Pagani, M., Liu, Z., Lariviere, J., and Ravelo, A. C.: High Earth-system climate
sensitivity determined from Pliocene carbon dioxide concentrations, Nat.
Geosci., 3, 27–30, 2010.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide
concentrations over the past 60 million years, Nature, 406, 695–699, 2000.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotiyakov, V.
M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman,
E., and Stievenard, M.: Climate and atmospheric history of the past 420,000
years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Rae, J. W., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., and Whiteford, R. D.: Atmospheric CO2 over the Past 66 Million Years from
Marine Archives, Annu. Rev. Earth Pl. Sc., 49, 609–641,
https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Raitzsch, M. and Hönisch, B.: Cenozoic boron isotope variations in benthic
foraminifers, Geology, 41, 591–594, 2013.
Raitzsch, M., Bijma, J., Benthien, A., Richter, K. U., Steinhoefel, G., and
Kučera, M.: Boron isotope-based seasonal paleo-pH reconstruction for the
Southeast Atlantic – A multispecies approach using habitat preference of
planktonic foraminifera, Earth Planet. Sc. Lett., 487, 138–150, 2018.
Raitzsch, M., Bijma, J., Bickert, T., Schulz, M., Holbourn, A., and Kučera, M.: Atmospheric carbon dioxide variations across the middle Miocene climate transition, Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, 2021.
Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L., and Pande, K.: State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact, Science, 350, 76–78, 2015.
Ridgwell, A. and Zeebe, R. E.: The role of the global carbonate cycle in the
regulation and evolution of the Earth system, Earth Planet. Sc. Lett., 234,
299–315, 2005.
Robinson, R. S., Sigman, D. M., DiFiore, P. J., Rohde, M. M., Mashiotta, T. A., and Lea, D. W.: Diatom‐bound : New support for enhanced nutrient consumption in the ice age subantarctic, Paleoceanography, 20, PA3003, https://doi.org/10.1029/2004PA001114, 2005.
Rowley, D. B.: Rate of plate creation and destruction: 180 Ma to present, Geol. Soc. Am. Bull., 114, 927–933, 2002.
Royer D. L.: Stomatal density and stomatal index as indicators of
paleoatmospheric CO2 concentration, Rev. Palaeobot. Palynol., 114, 1–28, https://doi.org/10.1016/S0034-6667(00)00074-9,
2001.
Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U.,
Bartlein, P. J., Mix A. C., and Rosell-Melé, A.: Climate sensitivity
estimated from temperature reconstructions of the Last Glacial Maximum,
Science, 334, 1385–1388, 2011.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost,
R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc.
Lett., 292, 201–211, 2010.
Shankle, M. G., Burls, N. J., Fedorov, A. V., Thomas, M. D., Liu, W., Penman, D. E., Ford, H. L., Jacobs, P. H., Planavsky, N. J., and Hull, P. M.: Pliocene decoupling of equatorial Pacific temperature and pH gradients, Nature, 598, 457–461 https://doi.org/10.1038/s41586-021-03884-7, 2021.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene southern
ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, 2004.
Shipboard Scientific Party: Site 806, in: Kroenke, L. W., Berger, W. H., Janecek, T. R., et al., Proc. ODP, Init. Repts., 130, College Station, TX (Ocean Drilling Program), 291–367, https://doi.org/10.2973/odp.proc.ir.130.108.1991, 1991.
Shipboard Scientific Party: Site 872, in: Premoli Silva, I., Haggerty, J., Rack, F., et al., Proc. ODP, Init. Repts., 144, College Station, TX (Ocean Drilling Program), 105–144, https://doi.org/10.2973/odp.proc.ir.144.105.1993, 1993.
Shuttleworth, R., Bostock, H. C., Chalk, T. B., Calvo, E., Jaccard, S. L.,
Pelejero, C., Martínez-Garcia, A., and Foster, G. L.: Early
deglacial CO2 release from the Sub-Antarctic Atlantic and Pacific oceans,
Earth Planet. Sc. Lett., 554, 116649, https://doi.org/10.1016/j.epsl.2020.116649, 2021.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: November 2021), 2016.
Si, W. and Rosenthal, Y.: Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2, Nat. Geosci., 12, 833–838, 2019.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J.,
Stauffer, B, Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and
Jouzel, J.: Stable carbon cycle–climate relationship during the late
Pleistocene, Science, 310, 1313–1317, 2005.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, 2010.
Sosdian, S. M., Greenop R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear,
C. H.: Constraining the evolution of Neogene ocean carbonate chemistry using
the boron isotope pH proxy, Earth Planet. Sc. Lett., 498, 362–376, 2018.
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., and Lear, C. H.:
Ocean carbon storage across the middle Miocene: A new interpretation for the
Monterey Event, Nat. Commun., 11, 134, https://doi.org/10.1038/s41467-019-13792-0, 2020.
Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., and van de
Wal, R. S. W.: CO2 over the past 5 million years: Continuous simulation
and new δ11B-based proxy data, Earth Planet. Sc. Lett., 439, 1–10, https://doi.org/10.1016/j.epsl.2016.01.022,
2016.
Stoll, H. M., Guitian, J., Hernandez-Almeida, I., Mejia, L. M., Phelps, S.,
Polissar, P., Rosenthal, Y., Zhang, H., and Ziveri, P.: Upregulation of
phytoplankton carbon concentrating mechanisms during low CO2 glacial periods
and implications for the phytoplankton pCO2 proxy, Quaternary Sci.
Rev., 208, 1–20, https://doi.org/10.1016/j.quascirev.2019.01.012, 2019.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P.
M.: North Atlantic temperature and pCO2 coupling in the early-middle
Miocene, Geology, 46, 519–522, 2018.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C. L., and Hull,
P. M.: Miocene Evolution of North Atlantic Sea Surface Temperature,
Paleoceanography and Paleoclimatology, 35, e2019PA003748,
https://doi.org/10.1029/2019PA003748, 2020.
Sutton, J. N., Liu, Y.-W., Ries, J. B., Guillermic, M., Ponzevera, E., and Eagle, R. A.: δ11B as monitor of calcification site pH in divergent marine calcifying organisms, Biogeosciences, 15, 1447–1467, https://doi.org/10.5194/bg-15-1447-2018, 2018.
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., and Ho, C.:
Climatological distributions of pH, pCO2, total CO2, alkalinity, and
CaCO3 saturation in the global surface ocean, and temporal changes at
selected locations, Mar. Chem, 164, 95–125, 2014.
Tanner, T., Hernández-Almeida, I., Drury, A. J., Guitián, J., and
Stoll, H.: Decreasing atmospheric CO2 during the late Miocene Cooling,
Paleoceanography and Paleoclimatology, 35, e2020PA003925, https://doi.org/10.1029/2020PA003925, 2020.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, 2020.
Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the
ocean's deepest water, Paleoceanography, 14, 571–588, 1999.
Tripati, A. and Darby, D.: Evidence for ephemeral middle Eocene to early
Oligocene Greenland glacial ice and pan-Arctic sea ice, Nat.
Commun., 9, 1038, https://doi.org/10.1038/s41467-018-03180-5, 2018.
Tripati, A., Eagle, R., Eiler, J., and Beaufort, L.: Glacial ocean temperatures from “clumped isotope” thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Ac., 74, A1057, https://doi.org/10.1016/j.gca.2010.04.046, 2010.
Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO2 and Ice sheet
stability over major climate transitions of the last 20 million years,
Science, 326, 1394–1397, https://doi.org/10.1126/science.1178296, 2009.
Tripati, A. K., Roberts, C. D., Eagle, R. A., and Li, G.: A 20 million year
record of planktic foraminiferal ratios: Systematics and uncertainties
in pCO2reconstructions, Geochim. Cosmochim. Ac., 75, 2582–2610, https://doi.org/10.1016/j.gca.2011.01.018, 2011.
Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L., and Beaufort, L.: Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing, Nat. Geosci., 7, 205–209, 2014.
Tyrrell, T. and Zeebe, R. E.: History of carbonate ion concentration over
the last 100 million years, Geochim. Cosmochim. Ac., 68,
3521–3530, 2004.
Van Der Burgh, J., Visscher, H., Dilcher, D. L., and Kürschner, W. M.:
Paleoatmospheric signatures in Neogene fossil leaves, Science, 260,
1788–1790, 1993.
Vogl, J. and Rosner, M.: Production and Certification of a Unique Set of
Isotope and Delta Reference Materials for Boron Isotope Determination in
Geochemical, Environmental and Industrial Materials, Geostand. Geoanal.
Res. 36, 161–175, 2012.
Wara, M. W., Delaney, M. L., Bullen, T. D., and Ravelo, A. C.: Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera, Paleoceanography, 18, 1100, https://doi.org/10.1029/2002PA000797, 2003.
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Climate change: Permanent El
Niño-like conditions during the Pliocene warm period, Science, 309,
758–761, 2005.
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., and Law, C. S.: Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 407, 730–733, https://doi.org/10.1038/35037561, 2000.
White, S. M. and Ravelo, A. C.: The benthic record at Site 806: new constraints on the temperature of the West Pacific Warm Pool and the “El Padre” state in the Pliocene, Paleoceanography and Paleoclimatology, 35, e2019PA003812, https://doi.org/10.1029/2019PA003812, 2020.
Yan, Y., Bender, M. L., Brook, E. J., Clifford, H. M., Kemeny, P. C.,
Kurbatov, A. V., Mackay, S., Mayewski, P.A., Ng, J., Severinghaus, J. P., and
Higgins, J. A.: Two-million-year-old snapshots of atmospheric gases from
Antarctic ice, Nature, 574, 663–666, 2019.
Yu, J., Elderfield, H., and Hönisch, B.: in planktonic foraminifera as
a proxy for surface seawater pH, Paleoceanography, 22, PA2202, https://doi.org/10.1029/2006PA001347, 2007.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science,
292, 686–693, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective
on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zhang, J., Wang, P., Li, Q., Cheng, X., Jin, H., and Zhang, S.: Western
equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A, Mar.
Micropaleontol., 64, 121–140, 2007.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and Deconto, R.: A
40-million-year history of atmospheric CO2, Philos. T. R. Soc. A., 371, 20130096, https://doi.org/10.1098/rsta.2013.0096, 2013.
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-million-year temperature
history of the tropical Pacific Ocean, Science, 344, 84–87, 2014.
Short summary
Here we reconstruct atmospheric CO2 values across major climate transitions over the past 16 million years (Myr) from two sites in the West Pacific Warm Pool using a pH proxy on surface-dwelling foraminifera. We are able to reproduce pCO2 data from ice cores; therefore we apply the same framework to older samples to create a long-term pH and pCO2 reconstruction. We give quantitative constraints on pH and pCO2 changes over the main climate transitions of the last 16 Myr.
Here we reconstruct atmospheric CO2 values across major climate transitions over the past 16...