Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
Xudong Xu
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
University of Chinese Academy of Science, Beijing 100049, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Jianguo Liu
CORRESPONDING AUTHOR
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266061, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Yun Huang
CORRESPONDING AUTHOR
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
Lanlan Zhang
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Liang Yi
State Key Laboratory of Marine Geology, Tongji University, Shanghai
200092, China
Shengfa Liu
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266061, China
Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Yiping Yang
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Shandong Provincial Research Institute of Coal Geology Planning and
Exploration, Jinan 250104, China
Long Tan
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
China
University of Chinese Academy of Science, Beijing 100049, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
Planktonic foraminiferal assemblages as tracers of paleoceanographic changes within the Northern Benguela current system since the Early Pleistocene
Changes in the Red Sea overturning circulation during Marine Isotope Stage 3
Glacial-interglacial Circumpolar Deep Water temperatures during the last 800,000 years: estimates from a synthesis of bottom water temperature reconstructions
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Central Arctic Ocean paleoceanography from ∼ 50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Mediterranean Outflow Water variability during the Early Pleistocene
Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios
Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19)
Photic zone changes in the north-west Pacific Ocean from MIS 4–5e
Seasonal changes in glacial polynya activity inferred from Weddell Sea varves
High-latitude obliquity as a dominant forcing in the Agulhas current system
Sensitivity of Red Sea circulation to sea level and insolation forcing during the last interglacial
Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition
Oceanic tracer and proxy time scales revisited
Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation
A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Arianna Valentina Del Gaudio, Aaron Avery, Gerald Auer, Werner Erwin Piller, and Walter Kurz
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-16, https://doi.org/10.5194/cp-2024-16, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, the South Atlantic Central Water and the Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575-U1576 to characterize the water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño/Niña-like and deglaciation events.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
David M. Chandler and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2023-850, https://doi.org/10.5194/egusphere-2023-850, 2023
Short summary
Short summary
Sea-level rise and global climate change caused by ice melt in Antarctica is a puzzle of feedbacks between the climate, ocean and ice sheets, over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate in the last 800,000 years. This knowledge can help us to better understanding how climate and sea-level are likely to change in the future.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018, https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
Short summary
Eastern equatorial Pacific (EEP) thermocline dynamics during the intensification of Northern Hemisphere glaciation (iNHG; ~ 2.5 Ma) currently remain unclear. In light of this uncertainty, we generated geochemical, faunal and sedimentological data for EEP Site 849 (~ 2.75–2.4 Ma). We recorded a thermocline depth change shortly before the final phase of the iNHG, which supports the hypothesis that tropical thermocline shoaling may have contributed to substantial Northern Hemisphere ice growth.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Carl Wunsch
Clim. Past, 12, 1281–1296, https://doi.org/10.5194/cp-12-1281-2016, https://doi.org/10.5194/cp-12-1281-2016, 2016
Short summary
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
T. Caley, J.-H. Kim, B. Malaizé, J. Giraudeau, T. Laepple, N. Caillon, K. Charlier, H. Rebaubier, L. Rossignol, I. S. Castañeda, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, https://doi.org/10.5194/cp-7-1285-2011, 2011
G. Trommer, M. Siccha, E. J. Rohling, K. Grant, M. T. J. van der Meer, S. Schouten, U. Baranowski, and M. Kucera
Clim. Past, 7, 941–955, https://doi.org/10.5194/cp-7-941-2011, https://doi.org/10.5194/cp-7-941-2011, 2011
S. Sepulcre, L. Vidal, K. Tachikawa, F. Rostek, and E. Bard
Clim. Past, 7, 75–90, https://doi.org/10.5194/cp-7-75-2011, https://doi.org/10.5194/cp-7-75-2011, 2011
C. Siberlin and C. Wunsch
Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, https://doi.org/10.5194/cp-7-27-2011, 2011
A. H. L. Voelker, T. Rodrigues, K. Billups, D. Oppo, J. McManus, R. Stein, J. Hefter, and J. O. Grimalt
Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, https://doi.org/10.5194/cp-6-531-2010, 2010
L. E. Lisiecki
Clim. Past, 6, 305–314, https://doi.org/10.5194/cp-6-305-2010, https://doi.org/10.5194/cp-6-305-2010, 2010
M. Ziegler, L. J. Lourens, E. Tuenter, and G.-J. Reichart
Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, https://doi.org/10.5194/cp-6-63-2010, 2010
Cited articles
Abram, N. J., Hargreaves, J. A., Wright, N. M., Thirumalai, K., Ummenhofer,
C. C., and England, M. H.: Palaeoclimate perspectives on the Indian Ocean
Dipole, Quaternary Sci. Rev., 237, 106302, https://doi.org/10.1016/j.quascirev.2020.106302, 2020.
Ahmad, S. M., Anil Babu, G., Padmakumari, V. M., Dayal, A. M., Sukhija, B. S., and Nagabhushanam, P.: Sr, Nd isotopic evidence of terrigenous flux
variations in the Bay of Bengal: Implications of monsoons during the last
∼ 34,000 years, Geophys. Res. Lett., 32, L22711, https://doi.org/10.1029/2005GL024519, 2005.
Ahmad, S. M., Padmakumari, V. M., and Babu, G. A.: Strontium and neodymium
isotopic compositions in sediments from Godavari, Krishna and Pennar rivers,
Current Science, 97, 1766–1769, 2009.
Ali, S., Hathorne, E. C., Frank, M., Gebregiorgis, D., Stattegger, K.,
Stumpf, R., Kutterolf, S., Johnson, J. E., and Giosan, L.: South Asian
monsoon history over the past 60 kyr recorded by radiogenic isotopes and
clay mineral assemblages in the Andaman Sea, Geochem. Geophy. Geosy., 16,
505–521, https://doi.org/10.1002/2014gc005586, 2015.
Ali, S., Hathorne, E. C., and Frank, M.: Persistent Provenance of South Asian
Monsoon-Induced Silicate Weathering Over the Past 27 Million Years, Paleoceanography and Paleoclimatology, 36, e2020PA003909, https://doi.org/10.1029/2020PA003909, 2021.
An, Z., Clemens, S., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W., Luo,
J., Wang, S., Xu, H., Cai, Y., Zhou, W., Liu, X., Liu, W., Shi, Z., Yan, L.,
Xiao, X., Chang, H., Wu, F., Ai, L., and Lu, F.: Glacial-Interglacial Indian
Summer Monsoon Dynamics, Science, 333, 719–723, https://doi.org/10.1126/science.1203752, 2011.
Awasthi, N., Ray, J. S., Singh, A. K., Band, S. T., and Rai, V. K.: Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation, Geochem. Geophy. Geosy., 15,
3890–3906, https://doi.org/10.1002/2014gc005462, 2014.
Ayliffe, L. K., Gagan, M. K., Zhao, J. X., Drysdale, R. N., Hellstrom, J. C.,
Hantoro, W. S., Griffiths, M. L., Scott-Gagan, H., Pierre, E. S., Cowley, J. A., and Suwargadi, B. W.: Rapid interhemispheric climate links via the
Australasian monsoon during the last deglaciation, Nat. Commun., 4, 2908, https://doi.org/10.1038/ncomms3908, 2013.
Beck, J. W., Zhou, W., Li, C., Wu, Z., White, L., Xian, F., Kong, X. H., and
An, Z.: A 550,000-year record of East Asian monsoon rainfall from Be-10 in
loess, Science, 360, 877–881, https://doi.org/10.1126/science.aam5825, 2018.
Bejugam, P. and Nayak, G. N.: Source and depositional processes of the
surface sediments and their implications on productivity in recent past off
Mahanadi to Pennar River mouths, western Bay of Bengal, Palaeogeogr.
Palaeocl., 483, 58–69, https://doi.org/10.1016/j.palaeo.2016.12.006, 2017.
Biscaye, P. E.: Mineralogy and sedimentation of recent deep-sea clay in
Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Am. Bull., 76,
803–832, https://doi.org/10.1130/0016-7606(1965)76[803:masord]2.0.co;2, 1965.
Blaauw, M. and Christen, J. A.: Flexible Paleoclimate Age-Depth Models Using
an Autoregressive Gamma Process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-ba618, 2011.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to
Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Chamley, H.: Clay Sedimentology, Springer, Berlin, 623 pp., 1989.
Chatterjee, A., Shankar, D., McCreary, J. P., Vinayachandran, P. N., and
Mukherjee, A.: Dynamics of Andaman Sea circulation and its role in
connecting the equatorial Indian Ocean to the Bay of Bengal, J. Geophys.
Res.-Oceans, 122, 3200–3218, https://doi.org/10.1002/2016JC012300, 2017.
Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N.,
Nilsson-Kerr, K., Rosenthal, Y., Anand, P., and McGrath, S. M.: Remote and local
drivers of Pleistocene South Asian summer monsoon precipitation: A test for
future predictions, Sci. Adv., 7, eabg3848, https://doi.org/10.1126/sciadv.abg3848, 2021.
Colin, C., Turpin, L., Bertaux, J., Desprairies, A., and Kissel, C.:
Erosional history of the Himalayan and Burman Ranges during the last two
glacial-interglacial cycles, Earth Planet. Sc. Lett., 171, 647–660, https://doi.org/10.1016/s0012-821x(99)00184-3, 1999.
Colin, C., Turpin, L., Blamart, D., Frank, N., Kissel, C., and Duchamp, S.:
Evolution of weathering patterns in the Indo-Burman Ranges over the last 280
kyr: Effects of sediment provenance on ratios tracer,
Geochem. Geophy. Geosy., 7, Q03007, https://doi.org/10.1029/2005gc000962, 2006.
Curray, J. R., Emmel, F. J., and Moore, D. G.: The Bengal Fan: morphology,
geometry, stratigraphy, history and processes, Mar. Petrol. Geol., 19,
1191–1223, https://doi.org/10.1016/S0264-8172(03)00035-7, 2003.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y.,
Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug,
G. H.: Links between tropical rainfall and North Atlantic climate during the
last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
DiNezio, P. N. and Tierney, J. E.: The effect of sea level on glacial
Indo-Pacific climate, Nat. Geosci., 6, 485–491, https://doi.org/10.1038/ngeo1823, 2013.
Dou, Y., Yang, S., Shi, X., Clift, P. D., Liu, S., Liu, J., Li, C., Bi, L.,
and Zhao, Y.: Provenance weathering and erosion records in southern Okinawa
Trough sediments since 28 ka: Geochemical and Sr–Nd–Pb isotopic evidences, Chem. Geol., 425, 93–109, https://doi.org/10.1016/j.chemgeo.2016.01.029, 2016.
Dutt, S., Gupta, A. K., Clemens, S. C., Cheng, H., Singh, R. K., Kathayat, G., and Edwards, R. L.: Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P., Geophys. Res. Lett., 42, 5526–5532, https://doi.org/10.1002/2015gl064015, 2015.
Fournier, L., Fauquembergue, K., Zaragosi, S., Zorzi, C., Malaize, B.,
Bassinot, F., Joussain, R., Colin, C., Moreno, E., and Leparmentier, F.: The
Bengal fan: external controls on the Holocene Active Channel turbidite
activity, Holocene, 27, 900–913, https://doi.org/10.1177/0959683616675938, 2017.
Gautam, P. K., Narayana, A. C., Kumar, P. K., Bhavani, P. G., Yadava, M. G., and Jull, A. J. T.: Indian monsoon variability during the last 46 kyr: isotopic records of planktic foraminifera from southwestern Bay of Bengal, J. Quaternary Sci., 36, 138–151, https://doi.org/10.1002/jqs.3263, 2020.
Gebregiorgis, D., Hathorne, E. C., Sijinkumar, A. V., Nath, B. N.,
Nürnberg, D., and Frank, M.: South Asian summer monsoon variability
during the last ∼54 kyrs inferred from surface water salinity and
river runoff proxies, Quaternary Sci. Rev., 138, 6–15, https://doi.org/10.1016/j.quascirev.2016.02.012, 2016.
Gibbs, R. J.: Clay mineral segregation in the marine environment, J.
Sediment. Res., 47, 237–243, 1977.
Goodbred, S. L. and Kuehl, S. A.: Enormous Ganges-Brahmaputra sediment
discharge during strengthened early Holocene monsoon, Geology, 28, 1083–1086, https://doi.org/10.1130/0091-7613(2000)028<1083:Egbsdd>2.3.Co;2, 2000.
Grant, K. M., Rohling, E. J., Ramsey, C. B., Cheng, H., Edwards, R. L.,
Florindo, F., Heslop, D., Marra, F., Roberts, A. P., Tamisiea, M. E., and
Williams, F.: Sea-level variability over five glacial cycles, Nat. Commun.,
5, 5076, https://doi.org/10.1038/ncomms6076, 2014.
Hanebuth, T., Stattegger, K., and Grootes, P. M.: Rapid Flooding of the Sunda
Shelf: A Late-Glacial Sea-Level Record, Science, 288, 1033–1035, https://doi.org/10.1126/science.288.5468.1033, 2000.
Hillier, S.: Erosion, Sedimentation and sedimentary origin of clays, in: Origin and Mineralogy of Clays. Clays Environment, edited by: Velde, B., Springer, Berlin, 162–219, https://doi.org/10.1007/978-3-662-12648-6_4, 1995
Huang, J., Wan, S., Li, A., and Li, T.: Two-phase structure of tropical
hydroclimate during Heinrich Stadial 1 and its global implications, Quaternary Sci. Rev., 222, 105900, https://doi.org/10.1016/j.quascirev.2019.105900, 2019.
Jacobsen, S. B. and Wasserburg, G. J.: Sm-Nd isotopic evolution of chondrites, Earth Planet. Sc. Lett., 50, 139–155, https://doi.org/10.1016/0012-821x(80)90125-9, 1980.
Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L.,
Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., and Bassinot, F.:
Climatic control of sediment transport from the Himalayas to the proximal NE
Bengal Fan during the last glacial-interglacial cycle, Quaternary Sci. Rev., 148, 1–16, https://doi.org/10.1016/j.quascirev.2016.06.016, 2016.
Joussain, R., Liu, Z., Colin, C., Duchamp-Alphonse, S., Yu, Z., Moréno,
E., Fournier, L., Zaragosi, S., Dapoigny, A., Meynadier, L., and Bassinot,
F.: Link between Indian monsoon rainfall and physical erosion in the
Himalayan system during the Holocene, Geochem. Geophy. Geosy., 18, 3452–3469, https://doi.org/10.1002/2016gc006762, 2017.
Kessarkar, P. M., Rao, V. P., Ahmad, S. M., Patil, S. K., Kumar, A. A., Babu,
G. A., Chakraborty, S., and Rajan, R. S.: Changing sedimentary environment
during the Late Quaternary: Sedimentological and isotopic evidence from the
distal Bengal Fan, Deep-Sea Res. Pt. I, 52, 1591–1615, https://doi.org/10.1016/j.dsr.2005.01.009, 2005.
Khan, M. H. R., Liu, J., Liu, S., Seddique, A. A., Cao, L., and Rahman, A.:
Clay mineral compositions in surface sediments of the Ganges-Brahmaputra-Meghna river system of Bengal Basin, Bangladesh, Mar.
Geol., 412, 27–36, https://doi.org/10.1016/j.margeo.2019.03.007, 2019.
Li, J., Liu, S., Shi, X., Feng, X., Fang, X., Cao, P., Sun, X.Q., Ye, W.X.,
Khokiattiwong, S., and Kornkanitnan, N.: Distributions of clay minerals in
surface sediments of the middle Bay of Bengal: Source and transport pattern,
Continent. Shelf Res., 145, 59–67, https://doi.org/10.1016/j.csr.2017.06.017, 2017.
Li, J., Liu, S., Shi, X., Zhang, H., Fang, X., Chen, M.-T., Cao, P., Sun, X.
Q., Ye, W. X., Wu, K. K., Khokiattiwong, S., and Kornkanitnan, N.: Clay
minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments:
Implications for sediment provenance and climate control since 40 ka, Quatern. Int., 493, 50–58, https://doi.org/10.1016/j.quaint.2018.06.044, 2018.
Licht, A. France-Lanord, C., Reisberg, L., Fontaine, C., Soe, A. N., and
Jaeger, J. J.: A palaeo Tibet-Myanmar connection? Reconstructing the Late
Eocene drainage system of central Myanmar using a multi-proxy approach, J.
Geol. Soc., 170, 929–939, https://doi.org/10.1144/jgs2012-126, 2013.
Liu, J., He, W., Cao, L., Zhu, Z., Xiang, R., Li, T., Shi, X., and Liu, S.:
Staged fine-grained sediment supply from the Himalayas to the Bengal Fan in
response to climate change over the past 50,000 years, Quaternary Sci. Rev., 212, 164–177, https://doi.org/10.1016/j.quascirev.2019.04.008, 2019.
Liu, J. P., Kuehl, S. A., Pierce, A. C., Williams, J., Blair, N. E., Harris, C., Aung, D. W., and Aye, Y. Y.: Fate of Ayeyarwady and Thanlwin Rivers Sediments in the Andaman Sea and Bay of Bengal, Mar. Geol., 423, 106137, https://doi.org/10.1016/j.margeo.2020.106137, 2020.
Liu, S., Li, J., Zhang, H., Cao, P., Mi, B., Khokiattiwong, S.,
Kornkanitnan, N., and Shi, X.: Complex response of weathering intensity
registered in the Andaman Sea sediments to the Indian Summer Monsoon over
the last 40 kyr, Mar. Geol., 426, 106206, https://doi.org/10.1016/j.margeo.2020.106206, 2020.
Liu, S., Ye, W., Cao, P., Zhang, H., Chen, M.-T., Li, X., Li, J., Pan,
H.-J., Khokiattiwong, S., Kornkanitnan, N., and Shi, X.: Paleoclimatic
responses in the tropical Indian Ocean to regional monsoon and global
climate change over the last 42 kyr, Mar. Geol., 438, 106542, https://doi.org/10.1016/j.margeo.2021.106542, 2021.
Liu, Z., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y.,
and Li, J.: Climatic and tectonic controls on chemical weathering in tropical
Southeast Asia (Malay Peninsula, Borneo, and Sumatra), Chem. Geol., 291,
1–12, https://doi.org/10.1016/j.chemgeo.2011.11.015, 2012.
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., and Kudrass, H.:
Increasing chemical weathering in the Himalayan system since the Last
Glacial Maximum, Earth Planet. Sc. Lett., 365, 243–252, https://doi.org/10.1016/j.epsl.2013.01.038, 2013.
Marzin, C., Kallel, N., Kageyama, M., Duplessy, J.-C., and Braconnot, P.: Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments, Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, 2013.
McGee, D.: Glacial-Interglacial Precipitation Changes, Annu. Rev. Mar. Sci.,
12, 525–557, https://doi.org/10.1146/annurev-marine-010419-010859, 2020.
McGee, D., Moreno-Chamarro, E., Green, B., Marshall, J., Galbraith, E., and
Bradtmiller, L.: Hemispherically asymmetric trade wind changes as signatures
of past ITCZ shifts, Quaternary Sci. Rev., 180, 214–228, https://doi.org/10.1016/j.quascirev.2017.11.020, 2018.
Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang,
X., Steinke, S., and Luckge, A.: North Atlantic forcing of tropical Indian
Ocean climate, Nature, 509, 76–80, https://doi.org/10.1038/nature13196, 2014.
Mohtadi, M., Prange, M., and Steinke, S.: Palaeoclimatic insights into forcing and response of monsoon rainfall, Nature, 533, 191–199, https://doi.org/10.1038/nature17450, 2016.
Mohtadi, M., Prange, M., Schefuss, E., and Jennerjahn, T. C.: Late Holocene
slowdown of the Indian Ocean Walker circulation, Nat. Commun., 8, 1015, https://doi.org/10.1038/s41467-017-00855-3, 2017.
Niedermeyer, E. M., Sessions, A. L., Feakins, S. J., and Mohtadi, M.:
Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000
years, P. Natl. Acad. Sci. USA, 111, 9402–9406, https://doi.org/10.1073/pnas.1323585111, 2014.
Ota, Y., Kawahata, H., Kuroda, J., Suzuki, A., Abe-Ouchi, A., and
Jimenez-Espejo, F. J.: Millennial-scale variability of Indian summer monsoon
constrained by the western Bay of Bengal sediments: Implication from
geochemical proxies of sea surface salinity and river runoff, Global Planet.
Change, 208, 103719, https://doi.org/10.1016/j.gloplacha.2021.103719, 2022.
Peng, J., Yang, X., Toney, J.L., Ruan, J., Li, G., Zhou, Q., Gao, H., Xie,
Y., Chen, Q., and Zhang, T.: Indian Summer Monsoon variations and competing
influences between hemispheres since ∼35 ka recorded in
Tengchongqinghai Lake, southwestern China, Palaeogeogr. Palaeocl., 516, 113–125, https://doi.org/10.1016/j.palaeo.2018.11.040, 2019.
Prajith, A., Tyagi, A., and John Kurian, P.: Changing sediment sources in
the Bay of Bengal: Evidence of summer monsoon intensification and ice-melt
over Himalaya during the Late Quaternary, Palaeogeogr. Palaeocl., 511, 309–318, https://doi.org/10.1016/j.palaeo.2018.08.016, 2018.
Rashid, H., England, E., Thompson, L., and Polyak, L.: Late Glacial to
Holocene Indian Summer Monsoon Variability Based upon Sediment Records Taken
from the Bay of Bengal, Terr. Atmos. Ocean. Sci., 22, 215–228, https://doi.org/10.3319/TAO.2010.09.17.02(TibXS), 2011.
Rayaroth, M. K., Peter, B. N., and Mahmud, M. R.: High-resolution surface
circulation of the Bay of Bengal derived from satellite observation data, J.
Mar. Sci. Technol., 24, 656–668, https://doi.org/10.6119/JMST-015-1215-2, 2016.
Raza, T. and Ahmad, S. M.: Surface and deep water variations in the
northeast Indian Ocean during 34-6 ka BP: evidence from carbon and oxygen
isotopes of fossil foraminifera, Quatern. Int., 298, 37–44, https://doi.org/10.1016/j.quaint.2012.05.005, 2013.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The intcal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rodolfo, K. S.: Sediments of Andaman Basin, northeastern Indian Ocean, Mar.
Geol., 7, 371–380, https://doi.org/10.1016/0025-3227(69)90014-0, 1969.
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the
intertropical convergence zone, Nature, 513, 45–53, https://doi.org/10.1038/nature13636, 2014.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123, https://doi.org/10.1016/s0079-6611(01)00083-0, 2001.
Seo, I., Khim, B.-K., Cho, H.G., Huh, Y., Lee, J., and Hyeong, K.: Origin of
the Holocene Sediments in the Ninetyeast Ridge of the Equatorial Indian
Ocean, Ocean Sci. J., https://doi.org/10.1007/s12601-021-00052-w, 2022.
Shankar, D., Vinayachandran, P. N., and Unnikrishnan, A. S.: The monsoon
currents in the north Indian Ocean, Prog. Oceanogr., 52, 63–120, https://doi.org/10.1016/s0079-6611(02)00024-1, 2002.
Stoll, H. M., Vance, D., and Arevalos, A.: Records of the Nd isotope
composition of seawater from the Bay of Bengal: Implications for the impact
of Northern Hemisphere cooling on ITCZ movement, Earth Planet. Sc. Lett.,
255, 213–228, https://doi.org/10.1016/j.epsl.2006.12.016, 2007.
Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., and An, Z.:
Influence of Atlantic meridional overturning circulation on the East Asian
winter monsoon, Nat. Geosci., 5, 46–49, https://doi.org/10.1038/ngeo1326, 2011.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Tan, L., Shen, C. C., Lowemark, L., Chawchai, S., Edwards, R. L., Cai, Y.,
Breitenbach, S. F. M., Cheng, H., Chou, Y. C., Duerrast, H., Partin, J. W., Cai, W., Chabangborn, A., Gao, Y., Kwiecien, O., Wu, C. C., Shi, Z., Hsu, H. H., and Wohlfarth, B.: Rainfall variations in central Indo-Pacific over the past 2,700 y, P. Natl. Acad. Sci. USA, 116, 17201–17206, https://doi.org/10.1073/pnas.1903167116, 2019.
Thompson, W. G. and Goldstein, S. L.: A radiometric calibration of the
SPECMAP timescale, Quaternary Sci. Rev., 25, 3207–3215, https://doi.org/10.1016/j.quascirev.2006.02.007, 2006.
Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M., and Mohtadi, M.: An El Niño Mode in the Glacial Indian Ocean?, Paleoceanogr. Paleocl., 34,
1316–1327, https://doi.org/10.1029/2019pa003669, 2019.
Tierney, J. E., Pausata, F. S. R., and deMenocal, P.: Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling, Nat. Geosci., 9, 46–50, https://doi.org/10.1038/ngeo2603, 2015.
Tripathy, G. R., Singh, S. K., and Bhushan, R.: Sr-Nd isotope composition of
the Bay of Bengal sediment: Impact of climate on erosion in the Himalaya,
Geochem. J., 45, 175–186, 2011.
Tripathy, G. R., Singh, S. K., and Ramaswamy, V.: Major and trace element
geochemistry of Bay of Bengal sediments: Implications to provenances and
their controlling factors, Palaeogeogr., Palaeocl., 397, 20–30, https://doi.org/10.1016/j.palaeo.2013.04.012, 2014.
Turner, S. and Foden, J.: U, Th and Ra disequilibria, Sr, Nd and Pb isotope
and trace element variations in Sunda arc lavas: predominance of a subducted
sediment component, Contrib. Mineral. Petr., 142, 43–57, https://doi.org/10.1007/s004100100271, 2001.
Waelbroecka, C., Labeyrieab, L., Michela, E., Duplessya, J. C., McManusc,
J. F., Lambeckd, K., Balbona, E., and Labracherie, M.: Sea-level and deep
water temperature changes derived from benthic foraminifera isotopic
records, Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/s0277-3791(01)00101-9, 2002.
Wang, Y. V., Larsen, T., Lauterbach, S., Andersen, N., Blanz, T.,
Krebs-Kanzow, Gierz, P., and Schneider, R. R.: Higher sea surface temperature
in the Indian Ocean during the Last Interglacial weakened the South Asian
monsoon, P. Natl. Acad. Sci. USA, 119, e2107720119, https://doi.org/10.1073/pnas.2107720119, 2022.
Weber, M. E., Lantzsch, H., Dekens, P., Das, S. K., Reilly, B. T., Martos,
Y. M., Meyer-Jacob, C., Agrahari, S., Ekblad, A., Titschack, J., Holmes, B.,
and Wolfgramm, P.: 200,000 years of monsoonal history recorded on the lower
Bengal Fan – strong response to insolation forcing, Global Planet. Change,
166, 107–119, https://doi.org/10.1016/j.gloplacha.2018.04.003, 2018.
Weldeab, S., Rühlemann, C., Bookhagen, B., Pausata, F. S. R., and Perez-Lua, F. M.: Enhanced Himalayan Glacial Melting During YD and H1 Recorded in the Northern Bay of Bengal, Geochem. Geophy. Geosy., 20, 2449–2461, https://doi.org/10.1029/2018GC008065, 2019.
Weldeab, S., Rühlemann, C., Ding, Q., Khon, V., Schneider, B., and Gray,
W. R.: Impact of Indian Ocean surface temperature gradient reversals on the
Indian Summer Monsoon, Earth Planet. Sc. Lett., 578, 117327, https://doi.org/10.1016/j.epsl.2021.117327, 2022.
Winkler, A., Wolf-Welling, T., Stattegger, K., and Thiede, J.: Clay mineral
sedimentation in high northern latitude deep-sea basins since the Middle
Miocene (ODP Leg 151, NAAG), Int. J. Earth Sci., 91, 133–148, https://doi.org/10.1007/s005310100199, 2002.
Xu, X., Liu, J., Huang, Y., Tan, L., and Cao, L.: Northeast Indian Ocean Marine Sediment core 17I106, Science Data Bank [data set], https://doi.org/10.11922/sciencedb.01188, 2021.
Yan, Q., Owen, L. A., Zhang, Z., Jiang, N., and Zhang, R.: Deciphering the
evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan
orogen during the past 20,000 years, Earth Planet. Sc. Lett., 541, 116295, https://doi.org/10.1016/j.epsl.2020.116295, 2020.
Ye, W., Liu, S., Fan, D., Zhang, H., Cao, P., Pan, H.-J., Li, J., Li, X.,
Fang, X., Khokiattiwong, S., Kornkanitnan, N., and Shi, X.: Evolution of
sediment provenances and transport processes in the central Bay of Bengal
since the Last Glacial Maximum, Quatern. Int., https://doi.org/10.1016/j.quaint.2020.12.007, in press, 2020.
Yu, Z., Colin, C., Wan, S., Saraswat, R., Song, L., Xu, Z., Clift, P., Lu,
H., Lyle, M., Kulhanek, D., Hahn, A., Tiwari, M., Mishra, R., Miska, S., and
Kumar, A.: Sea level-controlled sediment transport to the eastern Arabian
Sea over the past 600 kyr: clay minerals and Sr-Nd isotopic evidence from
IOD site U1457, Quaternary Sci. Rev., 205, 22–34, https://doi.org/10.1016/j.quascirev.2018.12.006, 2019.
Zhang, E., Chang, J., Shulmeister, J., Langdon, P., Sun, W., Cao, Y., Yang,
X., and Shen, J.: Summer temperature fluctuations in Southwestern China
during the end of the LGM and the last deglaciation, Earth Planet. Sc. Lett., 509, 78–87, https://doi.org/10.1016/j.epsl.2018.12.024, 2019.
Zhang, X., Zheng, Z., Huang, K., Yang, X., and Tian, L.: Sensitivity of
altitudinal vegetation in southwest China to changes in the Indian summer
monsoon during the past 68000 years, Quaternary Sci. Rev., 239, 106359, https://doi.org/10.1016/j.quascirev.2020.106359, 2020.
Zhuravleva, A., Hüls, M., Tiedemann, R., and Bauch, H. A.: A 125-ka
record of northern South American precipitation and the role of high-to-low
latitude teleconnections, Quaternary Sci. Rev., 270, 107159, https://doi.org/10.1016/j.quascirev.2021.107159, 2021.
Zorzi, C., Sanchez Goñi, M. F., Anupama, K., Prasad, S., Hanquiez, V.,
Johnson, J., and Giosan, L.: Indian monsoon variations during three
contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last
interglacial–glacial transition, Quaternary Sci. Rev., 125, 50–60, https://doi.org/10.1016/j.quascirev.2015.06.009, 2015.
Short summary
Terrestrial materials in marine environments record source information and help us understand how climate and ocean impact sediment compositions. Here, we use evidence on the Ninetyeast Ridge to analyze the relationship between terrestrial material supplementation and climatic change. We find that the ITCZ controlled the rainfall in the Burman source area and that closer connections occurred between the Northern–Southern Hemisphere in the eastern Indian Ocean during the late LGM.
Terrestrial materials in marine environments record source information and help us understand...