Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial to interglacial climate variability in the southeastern African subtropics (25–20° S)
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Enno Schefuß
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Jeroen Groeneveld
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Alfred Wegener Institute, Helmholtz Center for Polar and Marine
Research, Potsdam, Germany
Charlotte Miller
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
now at: Leeds Trinity University, Brownberrie Ln, Horsforth,
Leeds, LS18 5HD, UK
Matthias Zabel
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Related authors
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Joely Marie Maak, Yu-Shih Lin, Enno Schefuß, Rebecca F. Aepfler, Li-Lian Liu, Marcus Elvert, and Solveig I. Bühring
EGUsphere, https://doi.org/10.5194/egusphere-2024-1356, https://doi.org/10.5194/egusphere-2024-1356, 2024
Short summary
Short summary
In acidic hot springs off Kueishantao, Campylobacteria fix CO2 by using the reductive tricarboxylic acid cycle (rTCA), causing them to have an isotopically heavier biomass. Here, we showcase extremely low isotopic fractionation (of almost 0 ‰,) which has never been reported in environmental samples. Moreover, the crab Xenograpsus testudinatus relies up to 34 % on Campylobacterial biomass, showcasing the dependency of complex life on microscopic bacteria in harsh environments.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Philipp M. Munz, Stephan Steinke, Anna Böll, Andreas Lückge, Jeroen Groeneveld, Michal Kucera, and Hartmut Schulz
Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, https://doi.org/10.5194/cp-13-491-2017, 2017
Short summary
Short summary
We present the results of several independent proxies of summer SST and upwelling SST from the Oman margin indicative of monsoon strength during the early Holocene. In combination with indices of carbonate preservation and bottom water redox conditions, we demonstrate that a persistent solar influence was modulating summer monsoon intensity. Furthermore, bottom water conditions are linked to atmospheric forcing, rather than changes of intermediate water masses.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
C. Häggi, C. M. Chiessi, and E. Schefuß
Biogeosciences, 12, 7239–7249, https://doi.org/10.5194/bg-12-7239-2015, https://doi.org/10.5194/bg-12-7239-2015, 2015
C. L. McKay, J. Groeneveld, H. L. Filipsson, D. Gallego-Torres, M. J. Whitehouse, T. Toyofuku, and O.E. Romero
Biogeosciences, 12, 5415–5428, https://doi.org/10.5194/bg-12-5415-2015, https://doi.org/10.5194/bg-12-5415-2015, 2015
Short summary
Short summary
We highlight the proxy potential of foraminiferal Mn/Ca determined by secondary ion mass spectrometry and flow-through inductively coupled plasma optical emission spectroscopy for recording changes in bottom-water oxygen conditions. Comparisons with Mn sediment bulk measurements from the same sediment core largely agree with the results. High foraminiferal Mn/Ca occurs in samples from times of high productivity export and corresponds with the benthic foraminiferal faunal composition.
A. Govin, C. M. Chiessi, M. Zabel, A. O. Sawakuchi, D. Heslop, T. Hörner, Y. Zhang, and S. Mulitza
Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, https://doi.org/10.5194/cp-10-843-2014, 2014
J. Groeneveld and H. L. Filipsson
Biogeosciences, 10, 5125–5138, https://doi.org/10.5194/bg-10-5125-2013, https://doi.org/10.5194/bg-10-5125-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
P. Pop Ristova, F. Wenzhöfer, A. Ramette, M. Zabel, D. Fischer, S. Kasten, and A. Boetius
Biogeosciences, 9, 5031–5048, https://doi.org/10.5194/bg-9-5031-2012, https://doi.org/10.5194/bg-9-5031-2012, 2012
Related subject area
Subject: Atmospheric Dynamics | Archive: Marine Archives | Timescale: Holocene
Signals of Holocene climate transition amplified by anthropogenic land-use changes in the westerly–Indian monsoon realm
Multi-decadal atmospheric and marine climate variability in southern Iberia during the mid- to late-Holocene
Extreme storms during the last 6500 years from lagoonal sedimentary archives in the Mar Menor (SE Spain)
Changes in East Asian summer monsoon precipitation during the Holocene deduced from a freshwater flux reconstruction of the Changjiang (Yangtze River) based on the oxygen isotope mass balance in the northern East China Sea
Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean
Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Julien Schirrmacher, Mara Weinelt, Thomas Blanz, Nils Andersen, Emília Salgueiro, and Ralph R. Schneider
Clim. Past, 15, 617–634, https://doi.org/10.5194/cp-15-617-2019, https://doi.org/10.5194/cp-15-617-2019, 2019
Laurent Dezileau, Angel Pérez-Ruzafa, Philippe Blanchemanche, Jean-Philippe Degeai, Otmane Raji, Philippe Martinez, Concepcion Marcos, and Ulrich Von Grafenstein
Clim. Past, 12, 1389–1400, https://doi.org/10.5194/cp-12-1389-2016, https://doi.org/10.5194/cp-12-1389-2016, 2016
Short summary
Short summary
Amongst the most devastating marine catastrophes that can occur in coastal areas are storms and tsunamis, which may seriously endanger human society. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism.
Y. Kubota, R. Tada, and K. Kimoto
Clim. Past, 11, 265–281, https://doi.org/10.5194/cp-11-265-2015, https://doi.org/10.5194/cp-11-265-2015, 2015
V. Bout-Roumazeilles, N. Combourieu-Nebout, S. Desprat, G. Siani, J.-L. Turon, and L. Essallami
Clim. Past, 9, 1065–1087, https://doi.org/10.5194/cp-9-1065-2013, https://doi.org/10.5194/cp-9-1065-2013, 2013
F. C. Bassinot, C. Marzin, P. Braconnot, O. Marti, E. Mathien-Blard, F. Lombard, and L. Bopp
Clim. Past, 7, 815–829, https://doi.org/10.5194/cp-7-815-2011, https://doi.org/10.5194/cp-7-815-2011, 2011
Cited articles
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven Upwelling in the
Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science, 323,
1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Baker, A., Pedentchouk, N., Routh, J., and Roychoudhury, A. N.: Climatic
variability in peatlands (South Africa) since the late Pleistocene, Quaternary
Sci. Rev., 160, 57–66, 2017.
Baray, J. L., Baldy, S., Diab, R. D., and Cammas, J. P.: Dynamical study of a
tropical cut-off low over South Africa, and its impact on tropospheric
ozone, Atmos. Environ., 37, 1475–1488, 2003.
Bard, E., Rostek, F., and Sonzogni, C.: Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry, Nature, 385,
707–710, 1997.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal Mg∕Ca paleothermometry, Geochem. Geophy.
Geosy., 4, 8407, https://doi.org/10.1029/2003gc000559, 2003.
Biastoch, A., Reason, C. J. C., Lutjeharms, J. R. E., and Boebel, O.: The
importance of flow in the Mozambique Channel to seasonality in the greater
Agulhas Current system, Geophys. Res. Lett., 26, 3321–3324, 1999.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an
autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Bond, G. C. and Lotti, R.: Iceberg Discharges into the North Atlantic on
Millennial Time Scales During the Last Glaciation, Science, 267,
1005–1010, 1995.
Bray, E. E. and Evans, E. D.: Distribution of n-paraffins as a clue to recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Burnett, A. P., Soreghan, M. J., Scholz, C. A., and Brown, E. T.: Tropical East
African climate change and its relation to global climate: a record from
Lake Tanganyika, Tropical East Africa, over the past 90+ kyr, Palaeogeogr.
Palaeocl., 303, 155–167, 2011.
Caley, T., Malaizé, B., Revel, M., Ducassou, E., Wainer, K., Ibrahim, M., Shoeaib, D., Migeon, S., and Marieu, V.: Orbital timing of the Indian,
East Asian and African boreal monsoons and the concept of a “global
monsoon”, Quaternary Sci. Rev., 30, 3705–3715, 2011.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L.,
Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., and
Jimenez-Espejo, F. J.: A two-million-year-long hydroclimatic context for
hominin evolution in southeastern Africa, Nature, 560, 76–79, https://doi.org/10.1038/s41586-018-0309-6, 2018.
Chapman, M. R. and Shackleton N. J.: Global ice-volume fluctuations, North
Atlantic ice-rafting events, and deep-ocean circulation changes between 130
and 70 ka, Geology, 27, 795–798, 1999.
Chase, B. M. and Meadows, M. E.: Late Quaternary dynamics of southern Africa's
winter rainfall zone, Earth Sci. Rev., 84, 103–138, 2007.
Chase, B., Meadows, M., Scott, L., Thomas, D., Marais, E., Sealy, J., and
Reimer, P.: A record of rapid Holocene climate change preserved in hyrax
middens from southwestern Africa, Geology, 37, 703–706, 2009.
Chase, B. M., Chevalier, M., Boom, A., and Carr, A. S.: The dynamic relationship
between temperate and tropical circulation systems across South Africa since
the last glacial maximum, Quaternary Sci. Rev., 174, 54–62, 2017.
Chase, B. M., Faith, J. T., Mackay, A., Chevalier, M., Carr, A. S., Boom, A., Lim, S., and Reimer, P. J.: Climatic controls on Later Stone Age human
adaptation in Africa's southern Cape, J. Hum. Evol., 114, 35–44, 2018.
Chevalier, M. and Chase, B. M.: Southeast African records reveal a coherent
shift from high- to low-latitude forcing mechanisms along the east African
margin across last glacial–interglacial transition, Quaternary Sci. Rev., 125,
117–130, 2015.
Chevalier, M., Brewer, S., and Chase, B. M.: Qualitative assessment of PMIP3
rainfall simulations across the eastern African monsoon domains during the
mid-Holocene and the Last Glacial Maximum, Quaternary Sci. Rev., 156, 107–120,
2017.
Chiang, J. C. H. and Bitz, C. M.: Influence of high latitude ice cover on the
marine Intertropical Convergence Zone, Clim. Dynam., 25, 477–496, 2005.
Chiang, J. C. H., Biasutti, M., and Battisti, D. S.: Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions, Paleoceanography, 18, 1094, https://doi.org/10.1029/2003PA000916, 2003.
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and
Calves, G.: Correlation of Himalayan exhumation rates and Asian monsoon
intensity, Nat. Geosci., 1, 875–880, 2008.
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.: Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627, 1994.
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A., Zabel, M., and Schefuß, E.: Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa, Quaternary Sci. Rev., 149, 215–229, https://doi.org/10.1016/j.quascirev.2016.07.028, 2016.
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J.-M., Achoundong, G., and Sachse, D.: Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa, Geochim. Cosmochim. Ac., 142, 482–500, https://doi.org/10.1016/j.gca.2014.07.004, 2014.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: Description and
evaluation of a new multi-function X-ray core scanner, Geol. Soc. Spec.
Publ., 267, 51–63, 2006.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
1964.
Dedekind, Z., Engelbrecht, F., and Merwe, J.: Model simulations of rainfall over southern Africa and its eastern escarpment, Water SA, 42, 129–143, https://doi.org/10.4314/wsa.v42i1.13, 2016
De Wit, M. J., De Ronde, C. E. J., Tredoux, M., Roering, C., Hart, R. J.,
Armstrong, R. A., Green, R. W. E., Peberdy, E., and Hart, R. A.: Formation
of an Archaean continent, Nature, 357, 553–562, https://doi.org/10.1038/357553a0, 1992.
Dickson, A., Leng, M., Maslin, M., and Röhl, U.: Oceanic, atmospheric and
ice-sheet forcing of Southeast Atlantic Ocean productivity and South African
monsoon intensity during MIS-12 to 10, Quaternary Sci. Rev., 29, 3936–3947, 2010.
Dupont, L. M., Caley, T., Kim, J.-H., CastaÑeda, I., Malaizé, B., and Giraudeau, J.: Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean, Clim. Past, 7, 1209–1224, https://doi.org/10.5194/cp-7-1209-2011, 2011.
Dupont, L. M., Caley, T., and CastaÑeda, I. S.: Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa, Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, 2019.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156,
1322–1335, 1967.
Engelbrecht, F. A., Marean, C. W., Cowling, R. M., Engelbrecht, C. J.,
Neumann, F. H., Scott, L., Nkoana, R., O'Neal, D., Fisher, E., Shook, E.,
Franklin, J., Thatcher, M., McGregor, J. L., Van der Merwe, J., Dedekind, Z., and Difford, M.: Downscaling Last Glacial Maximum climate over southern
Africa, Quaternary Science Reviews, 226, 105879,
https://doi.org/10.1016/j.quascirev.2019.105879, 2019.
EPICA Members: Stable oxygen isotopes of ice core EDML, PANGAEA, https://doi.org/10.1594/PANGAEA.754444, 2010.
Gasse, F., Chalié, F., Vincens, A., Williams M. A. J., and Williamson D.: Climatic patterns in equatorial and southern Africa from 30,000 to
10,000 years ago reconstructed from terrestrial and near-shore proxy data,
Quaternary Sci. Rev., 27, 2316–2340, 2008.
Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C., and Zuppi, G. M.:
The altitude effect on the isotopic composition of tropical rains, Chem.
Geol., 181, 147–167, 2001.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophy. Geosy., 13,
Q01013, https://doi.org/10.1029/2011GC003785, 2012.
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I.,
Clarke, L., Cooper, M., Daunt, C., and Delaney, M.: Interlaboratory
comparison study of calibration standards for foraminiferal Mg∕Ca
thermometry, Geochem. Geophy. Geosy., 9, Q08010, https://doi.org/10.1029/2008GC001974, 2008.
Groeneveld, J. and Filipsson, H. L.: Mg∕Ca and Mn∕Ca ratios in benthic
foraminifera: the potential to reconstruct past variations in temperature and
hypoxia in shelf regions, Biogeosciences, 10, 5125–5138,
https://doi.org/10.5194/bg-10-5125-2013, 2013.
Hahn, A., Schefuß, E., Andò, S., Cawthra, H. C., Frenzel, P., Kugel, M.,
Meschner, S., Mollenhauer, G., and Zabel, M.: Southern Hemisphere anticyclonic
circulation drives oceanic and climatic conditions in late Holocene
southernmost Africa, Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017,
2017.
Hahn, A., Schefuß, E., Miller, C., Zabel, M., and Groeneveld, J.: Age, biomarker, sea surface temperature, and stable isotopic records of sediment core GeoB20616-1, PANGAEA, https://doi.org/10.1594/PANGAEA.910537, 2020.
Hebbeln, D. and Cortés, J.:
Sedimentation in a tropical fjord: Golfo Dulce, Costa Rica, Geo-Mar.
Lett., 20, 142–148, 2001.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Johnson, T. C., Brown, E. T., McManus, J., Barry, S., Barker, P., and Gasse, F.: A high-resolution paleoclimate record spanning the past 25,000 years in
southern East Africa, Science, 296, 113–132, https://doi.org/10.1126/science.1070057, 2002.
Jury, M. R., Valentine, H. R., and Lutjeharms, J. R. E.: Influence of the
Agulhas Current on Summer Rainfall along the Southeast Coast of South
Africa, J. Appl. Meteorol., 32, 1282–1287, 1993.
Kersberg, H.: Vegetationsgeographie, Südafrika (Mosambik,
Swasiland, Republik Südafrika), Gebrüder Borntraeger, Stuttgart, Germany, 1996.
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall
variability in southern Chile: a marine record of latitudinal shifts of the
Southern Westerlies, Earth Planet. Sc. Lett., 185, 369–382,
2001.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: A new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89, https://doi.org/10.1051/0004-6361/201116836, 2011
Lea, D. W., Pak, D. K., Peterson, L. C., and Hughen, K. A.: Synchroneity of
tropical and high-latitude Atlantic temperatures over the last glacial
termination, Science, 301, 1361–1364, 2003.
Levi, C., Labeyrie, L., Bassinot, F., Guichard, F., Cortijo, E., Waelbroeck, C., Caillon, N., Duprat, J., de Garidel-Thoron, T., and Elderfield, H.:
Low-latitude hydrological cycle and rapid climate changes during the last
deglaciation, Geochem. Geophy. Geosys., 8, Q05N12, https://doi.org/10.1029/2006GC001514, 2007.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., Seidov, D., and Levitus, S.: World ocean atlas 2013, Volume 1, Temperature, National Oceanic and Atmospheric Administration, Silver Spring, USA, https://doi.org/10.7289/V55X26VD, 2013.
Lutjeharms, J. R. E. and Da Silva, A. J.: The Delagoa Bight eddy,
Deep-Sea Res. Pt. I., 35, 619–634, 1988.
Maboya, L., Meadows, M., Reimer, P., and Haberzettl, T.: Marine reservoir
correction ΔAR, for south and east coasts of South Africa, in: 21st
Biennial Conference of the South African Society of Quaternary Research,
Johannesburg, 3–7 April 2017, 25, 2017.
Mason, S. and Jury, M.: Climatic variability and change over southern Africa: a
reflection on underlying processes, Prog. Phys. Geog., 21, 23–50, 1997.
McGregor, H. V., Dupont, L., Stuut, J.-B. W., and Kuhlmann, H.: Vegetation
change, goats, and religion: a 2,000-year history of land use in southern
Morocco, Quaternary Sci. Rev., 28, 1434–1448, 2009.
Meadows, M. E. and Meadows, K. F.: Late Quaternary vegetation history of the Winterberg Mountains, eastern Cape, South Africa, S. Afr. J. Sci., 84, 253–259, 1988.
Miller, C., Finch, J., Hill, T., Peterse, F., Humphries, M., Zabel, M., and Schefuß, E.: Late Quaternary climate variability at Mfabeni peatland, eastern South Africa, Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, 2019.
Miller, C., Hahn, A., Liebrand, D., Zabel, M., and Schefuß, E.: Mid- and low latitude effects on eastern South African rainfall over the Holocene,
Quaternary Sci. Rev., 229, 106088, https://doi.org/10.1016/j.quascirev.2019.106088, 2020.
Neumann, F. H., Scott, L., Bousman, C. B., and Van As, L.: A Holocene
sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South
Africa, Rev. Palaeobot. Palyno., 162, 39–53,
https://doi.org/10.1016/j.revpalbo.2010.05.001, 2010.
NGRIP members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
2004.
Nicholson, S. E. and Flohn, H.: African environmental and climatic changes and
the general atmospheric circulation in late Pleistocene and Holocene, Climatic
Change, 2, 313–348, 1980.
Nizou, J., Hanebuth, T. J. J., and Vogt, C.: Deciphering signals of late
Holocene fluvial and aeolian supply from a shelf sediment depocenter off
Senegal (north-west Africa), J. Quaternary Sci., 26, 411–421, https://doi.org/10.1002/jqs.1467, 2010.
Norström, E., Scott, L., Partridge, T., Risberg, J., and Holmgren, K.:
Reconstruction of environmental and climate changes at Braamhoek wetland,
eastern escarpment South Africa, during the last 16,000 years with emphasis
on the Pleistocene–Holocene transition, Palaeogeogr. Palaeocl., 271, 240–258, 2009.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time – series analysis, EOS T. Am. Geophys. Un., 77,
379–379, 1996.
Partridge, T. C., Demenocal, P. B., Lorentz, S. A., Paiker, M. J., and Vogel, J. C.: Orbital forcing of climate over South Africa: A 200,000-year rainfall
record from the pretoria saltpan, Quaternary Sci. Rev., 16, 1125–1133, 1997.
Quartly, G. D. and Srokosz, M. A.: Eddies in the southern Mozambique
Channel, Deep-Sea Res. Pt. II, 51, 69–83, 2004.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J.,
Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M.,
Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and
Winstrup, M.: A stratigraphic framework for abrupt climatic changes during
the Last Glacial period based on three synchronized Greenland ice-core
records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci.
Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reason, C. and Mulenga, H.: Relationships between South African rainfall and
SST anomalies in the southwest Indian Ocean, Int. J. Climatol., 19,
1651–1673, 1999.
Reason, C. and Rouault, M.: Links between the Antarctic Oscillation and winter
rainfall over western South Africa, Geophys. Res. Lett., 32, L07705, https://doi.org/10.1029/2005GL022419, 2005.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.: IntCal13
and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP,
Radiocarbon, 55, 1869–1887, 2013.
Rogerson, M., Rohling, E., and Weaver, P.: Promotion of meridional overturning by Mediterranean-derived salt during the last deglaciation, Paleoceanography, 21, PA4101, https://doi.org/10.1029/2006PA001306, 2006.
Rothwell, R. G. and Rack, F. R.: New techniques in sediment core analysis: an
introduction, Geol. Soc. Spec. Publ., 267, 1–29,
https://doi.org/10.1144/GSL.SP.2006.267.01.01, 2006.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Patzold, J.:
Forcing of wet phases in southeast Africa over the past 17,000 years,
Nature, 480, 509–12, 2011.
Schüürman, J., Hahn, A., and Zabel, M.: In search of sediment deposits
from the Limpopo (Delagoa Bight, southern Africa): Deciphering the catchment
provenance of coastal sediments, Sediment. Geol., 380, 94–104, 2019.
Scott, L.: Climatic conditions in Southern Africa since the last glacial maximum, inferred from pollen analysis, Palaeogeogr. Palaeocl., 70, 345–353, https://doi.org/10.1016/0031-0182(89)90112-0, 1989.
Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E.,
and Metwally, A. A.: Terrestrial fossil-pollen evidence of climate change
during the last 26 thousand years in Southern Africa, Quaternary Sci. Rev., 32,
100–118, https://doi.org/10.1016/j.quascirev.2011.11.010, 2012.
Sessions, A. L., Burgoyne, T. W., Schimmelmann, A., and Hayes, J. M.:
Fractionation of hydrogen isotopes in lipid biosynthesis, Org. Geochem.,
30, 1193–1200, 1999.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, https://doi.org/10.1038/nature09149, 2010.
Simon, M. H., Ziegler, M., Bosmans, J., Barker, S., Reason, C. J. C., and
Hall, I. R.: Eastern South African hydroclimate over the past 270,000 years,
Sci. Rep.-UK, 5, 18153, https://doi.org/10.1038/srep18153, 2015.
Sonzogni, C., Bard, E., and Rostek, F.: Tropical sea-surface temperatures
during the last glacial period: a view based on alkenones in Indian Ocean
sediments, Quaternary Science Reviews, 17, 1185–1201, 1998.
Stager, J. C., Mayewski, P. A., White, J., Chase, B. M., Neumann, F. H.,
Meadows, M. E., King, C. D., and Dixon, D. A.: Precipitation variability in
the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies, Clim. Past, 8, 877–887, https://doi.org/10.5194/cp-8-877-2012, 2012.
Stuiver, M., Reimer, P., and Reimer, R.: CALIB 7.1, available at:
http://calib.org, last access: 23 August 2019.
Sweeney, R. J., Duncan, A. R., and Erlank, A. J.: Geochemistry and Petrogenesis
of Central Lebombo Basalts of the Karoo Igneous Province, J. Petrol., 35,
95–125, 1994.
Tierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E. C., and Cohen, A. S.: Northern Hemisphere Controls on Tropical Southeast
African Climate During the Past 60,000 Years, Science, 322, 252–255,
https://doi.org/10.1126/science.1160485, 2008.
Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M. E., Scott, L., Carr, A. S., Smith, G. F., and Chase, B. M.: Quantification of climate
change for the last 20,000 years from Wonderkrater, South Africa:
Implications for the long-term dynamics of the Intertropical Convergence
Zone, Palaeogeogr. Palaeocl., 386, 575–587,
https://doi.org/10.1016/j.palaeo.2013.06.024, 2013.
Tyson, P. D.: The atmospheric modulation of extended wet and dry spells over
South Africa, 1958–1978, Int. J. Climatol., 4, 621–635, https://doi.org/10.1002/joc.3370040606, 1984.
Tyson, P. D. and Preston-Whyte, R. A.: Weather and climate of southern Africa, Oxford University Press, Oxford, UK, 2000.
Walker, N. D.: Links between South African summer rainfall and temperature
variability of the Agulhas and Benguela Current systems, J. Geophys. Res.,
95, 3297–3319, 1990.
Wang, Y. V., Leduc, G., Regenberg, M., Andersen, N., Larsen, T., Blanz, T.,
and Schneider, R. R.: Northern and Southern Hemisphere controls on seasonal
sea surface temperatures in the Indian Ocean during the last deglaciation,
Paleoceanography, 28, 619–632, https://doi.org/10.1002/palo.20053, 2013.
White, F.: The vegetation of Africa, Natural Resources Research, UNESCO,
Paris, 20, 1983.
Xie, P. and Arkin, P. A.: Global precipitation: A 17-year monthly analysis
based on gauge observations, satellite estimates, and numerical model
outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Zabel, M.: Climate archives in coastal waters of southern Africa–Cruise No.
M123 – February 3–February 27, 2016 – Walvis Bay (Namibia) – Cape Town (Rep.
of South Africa), METEOR-Berichte M123, 50 pp., 2016.
Zhao, X., Dupont, L., Schefuß, E., Meadows, M., Hahn, A., and Wefer, G.:
Holocene vegetation and climate variability between winter and summer
rainfall zones of South Africa, Quatern. Int., 404, 185–186, 2016.
Zahn, R., Hall, I., Schneider, R., Barker S., Compton, J., Dupont, L.,
Flores, J.-A., Franzese, A., Goldstein,S., Hemming, S., Knorr, G., Marino, G., Mazaud, A., Peeters, F., Preu, B., Reichert, G.-J., Spiess, V.,
Uenzelmann-Neben, G., Weldcab, S., and Ziegler, M.: Southern African
Climates, Agulhas Warm Water Transports and Retroflection, and Interocean
Exchanges – SAFARI, IODP Past Achievements and Future Opportunities, EuroForum 2006, Cardiff, UK, 8–9 May 2012.
Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., and Zahn, R.: Development of Middle Stone Age innovation linked to rapid climate
change, Nat. Commun., 4, 1905, https://doi.org/10.1038/ncomms2897, 2013.