Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-2291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Different facets of dry–wet patterns in south-western China over the past 27 000 years
Mengna Liao
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, PR China
Kai Li
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, PR China
Weiwei Sun
State Key Laboratory of Lake Science and Environment, Nanjing
Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, PR China
Related authors
Mengna Liao, Kai Li, Yili Jin, Lina Liu, Xianyong Cao, and Jian Ni
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-71, https://doi.org/10.5194/essd-2025-71, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a modern pollen dataset of 555 pollen count records from 307 sites on the Tibetan Plateau (28–40° N and 75–103° E). Our open-access dataset holds various potential applications in paleoecological and paleoclimatic researches. It offers a scientific foundation for reconstructing changes in climate and vegetation over time and enables the assessment of the reliability of pollen assemblages in representing the dynamics of vegetation cover, functional traits, and plant diversity.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Mengna Liao, Kai Li, Yili Jin, Lina Liu, Xianyong Cao, and Jian Ni
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-71, https://doi.org/10.5194/essd-2025-71, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a modern pollen dataset of 555 pollen count records from 307 sites on the Tibetan Plateau (28–40° N and 75–103° E). Our open-access dataset holds various potential applications in paleoecological and paleoclimatic researches. It offers a scientific foundation for reconstructing changes in climate and vegetation over time and enables the assessment of the reliability of pollen assemblages in representing the dynamics of vegetation cover, functional traits, and plant diversity.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Yili Jin, Haoyan Wang, Jie Xia, Jian Ni, Kai Li, Ying Hou, Jing Hu, Linfeng Wei, Kai Wu, Haojun Xia, and Borui Zhou
Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, https://doi.org/10.5194/essd-15-25-2023, 2023
Short summary
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Cited articles
Ahn, J., Wahlen, M., Deck, B. L., Brook, E. J., Mayewski, P. A., Taylor, K.
C., and White, J. W.: A record of atmospheric CO2 during the last
40 000 years from the Siple Dome, Antarctica ice core, J. Geophys.
Res.-Atmos., 109, D13305, https://doi.org/10.1029/2003JD004415, 2004.
Aichner, B., Makhmudov, Z., Rajabov, I., Zhang, Q., Pausata, F. S., Werner,
M., Heinecke, L., Kuessner, M. L., Feakins, S. J., and Sachse, D.:
Hydroclimate in the Pamirs was driven by changes in
precipitation-evaporation seasonality since the Last Glacial Period,
Geophys. Res. Lett., 46, 13972–13983, https://doi.org/10.1029/2019GL085202,
2019.
Blaauw, M., Christen, J. A., and Lopez, M. A. A.: rbacon: Age-depth modelling
using Bayesian statistics, R package version 2.5.0 [code], available at:
https://CRAN.R-project.org/package=rbacon, last access date: 15 November 2020.
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D.,
Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., and Belnap, J.:
Regional vegetation die-off in response to global-change-type drought, P.
Natl. Acad. Sci. USA, 102, 15144–15148,
https://doi.org/10.1073/pnas.0505734102, 2005.
Cai, Y., Fung, I. Y., Edwards, R. L., An, Z., Cheng, H., Lee, J.-E., Tan,
L., Shen, C.-C., Wang, X., and Day, J. A.: Variability of
stalagmite-inferred Indian monsoon precipitation over the past 252 000 yrs, P. Natl. Acad. Sci. USA, 112, 2954–2959,
https://doi.org/10.1073/pnas.1424035112, 2015.
Cairns, M. A., Brown, S., Helmer, E. H., and Baumgardner, G. A.: Root
biomass allocation in the world's upland forests, Oecologia, 111, 1–11,
https://doi.org/10.1007/s004420050201, 1997.
Chen, X., Chen, F., Zhou, A., Huang, X., Tang, L., Wu, D., Zhang, X., and
Yu, J.: Vegetation history, climatic changes and Indian summer monsoon
evolution during the Last Glaciation (36,400–13,400 cal yr BP) documented
by sediments from Xingyun Lake, Yunnan, China, Palaeogeogr. Palaeocl., 410,
179–189, https://doi.org/10.1016/j.palaeo.2014.05.027, 2014.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S.,
Kelly, M., Kathayat, G., Wang, X., and Li, X.: The Asian monsoon over the
past 640,000 years and ice age terminations, Nature, 534, 640–646,
https://doi.org/10.1038/nature18591, 2016.
Cook, C. G., Jones, R. T., Langdon, P. G., Leng, M. J., and Zhang, E.: New
insights on Late Quaternary Asian palaeomonsoon variability and the timing
of the Last Glacial Maximum in southwestern China, Quaternary Sci. Rev., 30,
808–820, https://doi.org/10.1016/j.quascirev.2011.01.003, 2011.
Dai, A., Zhao, T., and Chen, J.: Climate change and drought: A precipitation
and evaporation perspective, Curr. Clim. Change Rep., 4, 301–312,
https://doi.org/10.1007/s40641-018-0101-6, 2018.
Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture, Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, 2017.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M.,
Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution,
absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave,
China, Earth Planet. Sc. Lett., 233, 71–86,
https://doi.org/10.1016/j.epsl.2005.01.036, 2005.
Faegri, K., Kaland, P. E., and Krzywinski, K. (Eds.): Textbook of pollen analysis, 4th edn.
John Wiley and Sons Ltd., Chichester, United Kingdom, ISBN: 0 471 92178 5, 1989.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The shuttle radar topography mission, Rev. Geophys., 45,
RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Feng, H. and Liu, Y.: Combined effects of precipitation and air temperature
on soil moisture in different land covers in a humid basin, J. Hydrol., 531,
1129–1140, https://doi.org/10.1016/j.jhydrol.2015.11.016, 2015.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains
partitioning of global terrestrial water fluxes, Science, 349, 175–177,
https://doi.org/10.1126/science.aaa5931, 2015.
Guzha, A., Rufino, M. C., Okoth, S., Jacobs, S., and Nóbrega, R.:
Impacts of land use and land cover change on surface runoff, discharge and
low flows: Evidence from East Africa, J. Hydrol.-Reg. Stud., 15, 49–67,
https://doi.org/10.1016/j.ejrh.2017.11.005, 2018.
Hancock, P. A. and Hutchinson, M.: Spatial interpolation of large climate
data sets using bivariate thin plate smoothing splines, Environ. Modell.
Softw., 21, 1684–1694, https://doi.org/10.1016/j.envsoft.2005.08.005, 2006.
Hillman, A. L., Abbott, M. B., Finkenbinder, M. S., and Yu, J.: An 8,600
year lacustrine record of summer monsoon variability from Yunnan, China,
Quaternary Sci. Rev., 174, 120–132,
https://doi.org/10.1016/j.quascirev.2017.09.005, 2017.
Hillman, A. L., O'Quinn, R. F., Abbott, M. B., and Bain, D. J.: A Holocene
history of the Indian monsoon from Qilu Lake, southwestern China, Quaternary
Sci. Rev., 227, 106051, https://doi.org/10.1016/j.quascirev.2019.106051,
2020.
Hodell, D. A., Brenner, M., Kanfoush, S. L., Curtis, J. H., Stoner, J. S.,
Xueliang, S., Yuan, W., and Whitmore, T. J.: Paleoclimate of southwestern
China for the past 50 000 yr inferred from lake sediment records, Quaternary
Res., 52, 369–380, https://doi.org/10.1006/qres.1999.2072, 1999.
Huang, C., Wei, G., Ma, J., and Liu, Y.: Evolution of the Indian summer
monsoon during the interval 32.7–11.4 cal. ka BP: Evidence from the Baoxiu
peat, Yunnan, southwest China, J. Asian Earth Sci., 131, 72–80,
https://doi.org/10.1016/j.jseaes.2016.09.008, 2016.
Hutchinson, M. (Ed.): ANUSPLIN version 4.36 user guide, Centre for Resource
and Environmental Studies, the Australian National University, Canberra,
Australia, 54 pp. ISBN: 086740 512 0, 2006.
Juggins, S.: rioja: Analysis of Quaternary Science Data, R package version
(0.9-15.1) [code], available at: http://cran.r-project.org/package=rioja Last access date: 26 October 2020, 2017.
Lawrence, D. M. and Slingo, J. M.: An annual cycle of vegetation in a GCM.
Part I: implementation and impact on evaporation, Clim. Dynam., 22, 87–105,
https://doi.org/10.1007/s00382-003-0366-9, 2004.
Leng, M. J. and Marshall, J. D.: Palaeoclimate interpretation of stable
isotope data from lake sediment archives, Quaternary Sci. Rev., 23,
811–831, https://doi.org/10.1016/j.quascirev.2003.06.012, 2004.
Li, Y., Chen, X., Xiao, X., Zhang, H., Xue, B., Shen, J., and Zhang, E.:
Diatom-based inference of Asian monsoon precipitation from a volcanic lake
in southwest China for the last 18.5 ka, Quaternary Sci. Rev., 182,
109–120, https://doi.org/10.1016/j.quascirev.2017.11.021, 2018.
Luo, C., Zheng, Z., Tarasov, P., Pan, A., Huang, K., Beaudouin, C., and An,
F.: Characteristics of the modern pollen distribution and their relationship
to vegetation in the Xinjiang region, northwestern China, Rev. Palaeobot.
Palyno., 153, 282–295, https://doi.org/10.1016/j.revpalbo.2008.08.007,
2009.
Markewitz, D., Devine, S., Davidson, E. A., Brando, P., and Nepstad, D. C.:
Soil moisture depletion under simulated drought in the Amazon: impacts on
deep root uptake, New Phytol., 187, 592–607,
https://doi.org/10.1111/j.1469-8137.2010.03391.x, 2010.
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380,
https://doi.org/10.1126/science.aaf7891, 2016.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Mohammad, A. G. and Adam, M. A.: The impact of vegetative cover type on
runoff and soil erosion under different land uses, Catena, 81, 97–103,
https://doi.org/10.1016/j.catena.2010.01.008, 2010.
Ni, J., Cao, X., Jeltsch, F., and Herzschuh, U.: Biome distribution over the
last 22,000 yr in China, Palaeogeogra. Palaeocl., 409, 33–47,
https://doi.org/10.1016/j.palaeo.2014.04.023, 2014.
Ning, D., Zhang, E., Sun, W., Chang, J., and Shulmeister, J.: Holocene
Indian Summer Monsoon variation inferred from geochemical and grain size
records from Lake Ximenglongtan, southwestern China, Palaeogeogra.
Palaeocl., 487, 260–269, https://doi.org/10.1016/j.palaeo.2017.09.008,
2017.
Ohlendorf, C., Fey, M., Gebhardt, C., Haberzettl, T., Lücke, A., Mayr,
C., Schäbitz, F., Wille, M., and Zolitschka, B.: Mechanisms of
lake-level change at Laguna Potrok Aike (Argentina) – insights from
hydrological balance calculations, Quaternary Sci. Rev., 71, 27–45,
https://doi.org/10.1016/j.quascirev.2012.10.040, 2013.
Peng, J., Yang, X., Toney, J. L., Ruan, J., Li, G., Zhou, Q., Gao, H., Xie,
Y., Chen, Q., and Zhang, T.: Indian Summer Monsoon variations and competing
influences between hemispheres since ∼ 35 ka recorded in
Tengchongqinghai Lake, southwestern China, Palaeogeogra. Palaeocl., 516,
113–125, https://doi.org/10.1016/j.palaeo.2018.11.040, 2019.
Peng, Y., Xiao, J., Nakamura, T., Liu, B., and Inouchi, Y.: Holocene East
Asian monsoonal precipitation pattern revealed by grain-size distribution of
core sediments of Daihai Lake in Inner Mongolia of north-central China,
Earth Planet. Sc. Lett., 233, 467–479,
https://doi.org/10.1016/j.epsl.2005.02.022, 2005.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke,
A., Gerten, D., Gosling, S. N., Grillakis, M., and Gudmundsson, L.: Global
terrestrial water storage and drought severity under climate change, Nat.
Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w,
2021.
Prentice, I. C.: Multidimensional scaling as a research tool in Quaternary
palynology: a review of theory and methods, Rev. Palaeobot. Palyno., 31,
71–104, https://doi.org/10.1016/0034-6667(80)90023-8, 1980.
Prentice, I. C., Sykes, M. T., and Cramer, W.: A simulation model for the
transient effects of climate change on forest landscapes, Ecol. Model., 65,
51–70, https://doi.org/10.1016/0304-3800(93)90126-D, 1993.
Qiu, J.: China drought highlights future climate threats: Yunnan's worst
drought for many years has been exacerbated by destruction of forest cover
and a history of poor water management, Nature, 465, 142–144,
https://doi.org/10.1038/465142a, 2010.
Raidt, H. and Koschel, R.: Morphology of calcite crystals in hardwater
lakes, Limnologica, 19, 3–12, 1988.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing [code], available at: https://www.R-project.org/ (last access: 15 November 2020),
2018.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon
age calibration curve (0–55 cal. ka BP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Robbins, L. and Blackwelder, P.: Biochemical and ultrastructural evidence
for the origin of whitings: A biologically induced calcium carbonate
precipitation mechanism, Geology, 20, 464–468,
https://doi.org/10.1130/0091-7613(1992)020<0464:BAUEFT>2.3.CO;2, 1992.
Scheff, J., Seager, R., Liu, H., and Coats, S.: Are glacials dry?
Consequences for paleoclimatology and for greenhouse warming, J. Climate,
30, 6593–6609, https://doi.org/10.1175/JCLI-D-16-0854.1, 2017.
Schlesinger, W. H. and Jasechko, S.: Transpiration in the global water
cycle, Agr. Forest Meteorol., 189, 115–117,
https://doi.org/10.1016/j.agrformet.2014.01.011, 2014.
Sheng, E., Yu, K., Xu, H., Lan, J., Liu, B., and Che, S.: Late holocene
Indian summer monsoon precipitation history at Lake Lugu, northwestern
Yunnan Province, southwestern China, Palaeogeogra. Palaeocl., 438, 24–33,
https://doi.org/10.1016/j.palaeo.2015.07.026, 2015.
Stabel, H.-H.: Calcite precipitation in Lake Constance: Chemical
equilibrium, sedimentation, and nucleation by algae, Limnol. Oceanogr., 31,
1081–1093, https://doi.org/10.4319/lo.1986.31.5.1081, 1986.
Sun, S., Chen, H., Ju, W., Wang, G., Sun, G., Huang, J., Ma, H., Gao, C.,
Hua, W., and Yan, G.: On the coupling between precipitation and potential
evapotranspiration: contributions to decadal drought anomalies in the
Southwest China, Clim. Dynam., 48, 3779–3797,
https://doi.org/10.1007/s00382-016-3302-5, 2017.
Sun, W., Zhang, E., Shulmeister, J., Bird, M. I., Chang, J., and Shen, J.:
Abrupt changes in Indian summer monsoon strength during the last
deglaciation and early Holocene based on stable isotope evidence from Lake
Chenghai, southwest China, Quaternary Sci. Rev., 218, 1–9,
https://doi.org/10.1016/j.quascirev.2019.06.006, 2019.
ter Braak, C. J. and Juggins, S.: Weighted averaging partial least squares
regression (WA-PLS): an improved method for reconstructing environmental
variables from species assemblages, Twelfth international diatom symposium,
Renesse, the Netherlands, 30 August–5 September 1992, 485–502, https://doi.org/10.1007/BF00028046, 1993.
The Editorial Committee of Vegetation Map of China, Chinese Academy of
Sciences (Ed.): Vegetation Map of the People's Republic of China (1:1 000 000), Geological Publishing House, Beijing, ISBN: 978-7-116-05146-1, 10–11, 2007.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Wang, G., Wang, Y., Wei, Z., He, W., Ma, X., Sun, Z., Xu, L., Gong, J.,
Wang, Z., and Pan, Y.: Paleoclimate changes of the past 30 cal ka BP
inferred from lipid biomarkers and geochemical records from Qionghai Lake,
southwest China, J. Asian Earth Sci., 172, 346–358,
https://doi.org/10.1016/j.jseaes.2018.09.019, 2019.
Wang, G., Wang, Y., Wei, Z., He, W., Ma, X., and Zhang, T.: Reconstruction
of temperature and precipitation spanning the past 28 000 yrs based on branched
tetraether lipids from Qionghai Lake, southwestern China, Palaeogeogra.
Palaeocl., 562, 110094, https://doi.org/10.1016/j.palaeo.2020.110094, 2020.
Wang, L., Yuan, X., Xie, Z., Wu, P., and Li, Y.: Increasing flash droughts
over China during the recent global warming hiatus, Sci. Rep-UK, 6,
30571, https://doi.org/10.1038/srep30571, 2016.
Wang, S. and Dou, H. (Eds.): The lake inventory of China, Science Press,
Beijing, 379–381, ISBN 7-203-006706-1, 1998.
Watras, C., Read, J., Holman, K., Liu, Z., Song, Y. Y., Watras, A., Morgan,
S., and Stanley, E.: Decadal oscillation of lakes and aquifers in the upper
Great Lakes region of North America: Hydroclimatic implications, Geophys.
Res. Lett., 41, 456–462, https://doi.org/10.1002/2013GL058679, 2014.
Wei, G., Xie, L., Sun, Y., Lu, Y., and Liu, Y.: Major and trace elements of
a peat core from Yunnan, Southwest China: implications for paleoclimatic
proxies, J. Asian Earth Sci., 58, 64–77,
https://doi.org/10.1016/j.jseaes.2012.06.021, 2012.
Whitmore, T. J., Brenner, M., Jiang, Z., Curtis, J. H., Moore, A., Engstrom,
D. R., and Wu, Y.: Water quality and sediment geochemistry in lakes of
Yunnan Province, southern China, Environ. Geol., 32, 45–55,
https://doi.org/10.1007/s002540050192, 1997.
Wu, D., Zhou, A., Liu, J., Chen, X., Wei, H., Sun, H., Yu, J., Bloemendal,
J., and Chen, F.: Changing intensity of human activity over the last 2,000
years recorded by the magnetic characteristics of sediments from Xingyun
Lake, Yunnan, China, J. Paleolimnol., 53, 47–60,
https://doi.org/10.1007/s10933-014-9806-2, 2015.
Wu, D., Chen, X., Lv, F., Brenner, M., Curtis, J., Zhou, A., Chen, J.,
Abbott, M., Yu, J., and Chen, F.: Decoupled early Holocene summer
temperature and monsoon precipitation in southwest China, Quaternary Sci.
Rev., 193, 54–67, https://doi.org/10.1016/j.quascirev.2018.05.038, 2018.
Xiao, J., Fan, J., Zhou, L., Zhai, D., Wen, R., and Qin, X.: A model for
linking grain-size component to lake level status of a modern clastic lake,
J. Asian Earth Sci., 69, 149–158,
https://doi.org/10.1016/j.jseaes.2012.07.003, 2013.
Xiao, X., Haberle, S. G., Yang, X., Shen, J., Han, Y., and Wang, S.: New
evidence on deglacial climatic variability from an alpine lacustrine record
in northwestern Yunnan Province, southwestern China, Palaeogeogr. Palaeocl.,
406, 9–21, https://doi.org/10.1016/j.palaeo.2014.04.008, 2014a.
Xiao, X., Haberle, S. G., Shen, J., Yang, X., Han, Y., Zhang, E., and Wang,
S.: Latest Pleistocene and Holocene vegetation and climate history inferred
from an alpine lacustrine record, northwestern Yunnan Province, southwestern
China, Quaternary Sci. Rev., 86, 35–48,
https://doi.org/10.1016/j.quascirev.2013.12.023, 2014b.
Xiao, X., Haberle, S. G., Shen, J., Xue, B., Burrows, M., and Wang, S.: Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China, Clim. Past, 13, 613–627, https://doi.org/10.5194/cp-13-613-2017, 2017.
Xiao, X., Haberle, S. G., Li, Y., Liu, E., Shen, J., Zhang, E., Yin, J., and
Wang, S.: Evidence of Holocene climatic change and human impact in
northwestern Yunnan Province: High-resolution pollen and charcoal records
from Chenghai Lake, southwestern China, Holocene, 28, 127–139,
https://doi.org/10.1177/0959683617715692, 2018.
Xu, H., Lan, J., Zhang, G., and Zhou, X.: Arid Central Asia saw mid-Holocene
drought, Geology, 47, 255–258, https://doi.org/10.1130/G45686.1, 2019.
Xu, Q., Li, Y., Yang, X., and Zheng, Z.: Quantitative relationship between
pollen and vegetation in northern China, Sci. China Ser. D, 50, 582–599,
https://doi.org/10.1007/s11430-007-2044-y, 2007.
Zhang, E., Chang, J., Cao, Y., Sun, W., Shulmeister, J., Tang, H., Langdon,
P. G., Yang, X., and Shen, J.: Holocene high-resolution quantitative summer
temperature reconstruction based on subfossil chironomids from the southeast
margin of the Qinghai-Tibetan Plateau, Quaternary Sci. Rev., 165, 1–12,
https://doi.org/10.1016/j.quascirev.2017.04.008, 2017.
Zhang, E., Chang, J., Shulmeister, J., Langdon, P., Sun, W., Cao, Y., Yang,
X., and Shen, J.: Summer temperature fluctuations in Southwestern China
during the end of the LGM and the last deglaciation, Earth Planet. Sc.
Lett., 509, 78–87, https://doi.org/10.1016/j.epsl.2018.12.024, 2019.
Zhang, L., Zhang, H., Chang, F., Duan, L., Hu, J., Li, T., Cai, M., and
Zhang, Y.: Spatial variation characteristics of sediment size and its
environmental indication significance in Lake Yilong, Yunnan Province,
Quaternary Sci., 39, 1159–1170,
https://doi.org/10.11928/j.issn.1001-7410.2019.05.08, 2019 (in Chinese
with English abstract).
Zhang, Y.-K. and Schilling, K.: Effects of land cover on water table, soil
moisture, evapotranspiration, and groundwater recharge: a field observation
and analysis, J. Hydrol., 319, 328–338,
https://doi.org/10.1016/j.jhydrol.2005.06.044, 2006.
Zhao, M., Li, H.-C., Liu, Z.-H., Mii, H.-S., Sun, H.-L., Shen, C.-C., and
Kang, S.-C.: Changes in climate and vegetation of central Guizhou in
southwest China since the last glacial reflected by stalagmite records from
Yelang Cave, J. Asian Earth Sci., 114, 549–561,
https://doi.org/10.1016/j.jseaes.2015.07.021, 2015.
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
The long-term trajectories of precipitation, hydrological balance and soil moisture are not...