Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1973-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1973-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extending and understanding the South West Western Australian rainfall record using a snowfall reconstruction from Law Dome, East Antarctica
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China
Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
Lenneke M. Jong
Australian Antarctic Division, Kingston, Tasmania, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Steven J. Phipps
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Ikigai Research, Hobart, Tasmania, Australia
Jason L. Roberts
Australian Antarctic Division, Kingston, Tasmania, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Andrew D. Moy
Australian Antarctic Division, Kingston, Tasmania, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Mark A. J. Curran
Australian Antarctic Division, Kingston, Tasmania, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Tas D. van Ommen
Australian Antarctic Division, Kingston, Tasmania, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Related authors
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Felix Pollak, Frédéric Parrenin, Emilie Capron, Zanna Chase, Lenneke Jong, and Etienne Legrain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2233, https://doi.org/10.5194/egusphere-2025-2233, 2025
Short summary
Short summary
The Mid-Pleistocene Transition (MPT) marked a shift towards extended glacial periods and amplitudes, while its underlying mechanisms are still disputed. Here, we present a new conceptual model capable of simulating the global ice volume over the last 2.6 Ma and reconstructing the MPT. We find that a long-lasting, gradual trend in the climate system is most favourable in reconstructing the MPT and that for the last 900 ka, precession was more important for glacial terminations than obliquity.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Nicky M. Wright, Claire E. Krause, Steven J. Phipps, Ghyslaine Boschat, and Nerilie J. Abram
Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022, https://doi.org/10.5194/cp-18-1509-2022, 2022
Short summary
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Short summary
Ice sheet and ice shelf models rely on data from experiments to accurately represent the way ice moves. Performing experiments at the temperatures and stresses that are generally present in nature takes a long time, and so there are few of these datasets. Here, we test the method of speeding up an experiment by running it initially at a higher temperature, before dropping to a lower target temperature to generate the relevant data. We show that this method can reduce experiment time by 55 %.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Anna L. Flack, Anthony S. Kiem, Tessa R. Vance, Carly R. Tozer, and Jason L. Roberts
Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, https://doi.org/10.5194/hess-24-5699-2020, 2020
Short summary
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Syed Abdul Salam, Jason L. Roberts, Felicity S. McCormack, Richard Coleman, and Jacqueline A. Halpin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-146, https://doi.org/10.5194/essd-2020-146, 2020
Publication in ESSD not foreseen
Short summary
Short summary
Accurate estimates of englacial temperature and geothermal heat flux are incredibly important
for constraining model simulations of ice dynamics (e.g. viscosity is temperature-dependent) and sliding. However, we currently have few direct measurements of vertical temperature (i.e. only at boreholes/ice domes) and geothermal heat flux in Antarctica. This method derives attenuation rates, that can then be mapped directly to englacial temperatures and geothermal heat flux.
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.:
Evolution of the Southern Annular Mode during the past millennium,
Nat. Clim. Change,
4, 564–569, https://doi.org/10.1038/NCLIMATE2235, 2014. a
Ansell, T., Reason, C., Smith, I., and Keay, K.:
Evidence for decadal variability in southern Australian rainfall and relationships with regional pressure and sea surface temperature,
Int. J. Climatol.,
20, 1113–1129, 2000. a
Ashok, K., Guan, Z., and Yamagata, T.:
Influence of the Indian Ocean Dipole on the Australian winter rainfall,
Geophys. Res. Lett.,
30, 1821, https://doi.org/10.1029/2003GL017926, 2003. a
Australian Government:
Local Government Area [data set],
available at: https://data.gov.au/data/dataset/8a8e0037-e474-422f-8026-241c7c88551f (last access: 30 September 2021), 2020. a, b
Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G., Overpeck, J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J. C., McGregor, G. B., Hua, Q., and McRobie, F. H.:
Holocene El Niño-Southern Oscillation variability reflected in subtropical Australian precipitation,
Sci. Rep.-UK,
9, 1627, https://doi.org/10.1038/s41598-019-38626-3, 2019. a
Bromwich, D. H.:
Snowfall in high southern latitudes,
Rev. Geophys.,
26, 149–168, 1988. a
Cai, W. and Cowan, T.:
SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction?,
Geophys. Res. Lett.,
33, L24708, https://doi.org/10.1029/2006GL028037, 2006. a, b, c, d
Cai, W., Collier, M. A., Gordon, H. B., and Waterman, L. J.:
Strong ENSO Variability and a Super-ENSO Pair in the CSIRO Mark 3 Coupled Climate Model,
Mon. Weather Rev.,
131, 1189–1210, https://doi.org/10.1175/1520-0493(2003)131<1189:SEVAAS>2.0.CO;2, 2003. a, b
Cai, W., Van Rensch, P., Cowan, T., and Hendon, H. H.:
Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall,
J. Climate,
24, 3910–3923, 2011. a
Chiew, F. H., Piechota, T. C., Dracup, J. A., and McMahon, T. A.:
El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting,
J. Hydrol.,
204, 138–149, 1998. a
Feng, J., Li, J., and Li, Y.:
A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia,
J. Climate,
23, 1334–1353, 2010. a
French, R. and Schultz, J.:
Water use efficiency of wheat in a Mediterranean-type environment. II. Some limitations to efficiency,
Aust. J. Agr. Res.,
35, 765–775, 1984. a
Gallant, A. J., Reeder, M. J., Risbey, J. S., and Hennessy, K. J.:
The characteristics of seasonal-scale droughts in Australia, 1911–2009,
Int. J. Climatol.,
33, 1658–1672, 2013. a
Gillett, N. P. and Thompson, D. W. J.:
Simulation of Recent Southern Hemisphere Climate Change,
Science,
302, 273–275, https://doi.org/10.1126/science.1087440, 2003. a
Gong, D. and Wang, S.:
Definition of Antarctic oscillation index,
Geophys. Res. Lett.,
26, 459–462, 1999. a
Goodwin, I., Van Ommen, T., Curran, M., and Mayewski, P.:
Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD,
Clim. Dynam.,
22, 783–794, 2004. a
Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E. A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I.:
The CSIRO Mk3 Climate System Model, Technical Paper 60, CSIRO Atmospheric Research,
available at: http://www.cmar.csiro.au/e-print/open/gordon_2002a.pdf (last access: 30 September 2021), 2002. a
Hennessy, K. J., Suppiah, R., and Page, C. M.:
Australian rainfall changes, 1910–1995,
Aust. Meteorol. Mag.,
48, 1–13, 1999. a
Hope, P. K., Drosdowsky, W., and Nicholls, N.:
Shifts in the synoptic systems influencing southwest Western Australia,
Clim. Dynam.,
26, 751–764, 2006. a
Jones, D. A., Wang, W., and Fawcett, R.:
High-quality spatial climate data-sets for Australia,
Aust. Meteorol. Ocean. J.,
58, 233–248, 2009 (data available at: https://doi.org/10.4227/166/5a8647d1c23e0, last access: 30 September 2021). a, b, c
Kampata, J. M., Parida, B. P., and Moalafhi, D.:
Trend analysis of rainfall in the headstreams of the Zambezi River Basin in Zambia,
Phys. Chem. Earth Pt. A/B/C,
33, 621–625, 2008. a
Li, Y., Cai, W., and Campbell, E.:
Statistical modeling of extreme rainfall in southwest Western Australia,
J. Climate,
18, 852–863, 2005. a
Ludwig, F., Milroy, S. P., and Asseng, S.:
Impacts of recent climate change on wheat production systems in Western Australia,
Clim. Change,
92, 495–517, 2009. a
Moy, A.: A 2000-year annual record of snow accumulation rates for Law Dome, East Antarctica, in: Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.4225/15/57468B15E1E2B, 2016. a
Mudelsee, M.:
Break function regression,
Eur. Phys. J.-Spec. Top.,
174, 49–63, 2009 (code available at: https://doi.org/10.1140/epjst/e2009-01089-3, last access: 30 September 2021). a
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation, Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011, 2011. a, b, c, d
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings, Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012, 2012. a, b
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R., Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and van Ommen, T. D.: Paleoclimate Data-Model Comparison and the Role of Climate Forcings over the Past 1500 Years, in: Journal of Climate (Vol. 26, Number 18, pp. 6915–6936), Zenodo [data set], https://doi.org/10.5281/zenodo.3908927, 2013b. a
Samuel, J. M., Verdon, D. C., Sivapalan, M., and Franks, S. W.:
Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall,
Water Resour. Res.,
42, W08402, https://doi.org/10.1029/2005WR004672, 2006. a, b
Siddique, K., Loss, S., Regan, K., and Jettner, R.:
Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia,
Aust. J. Agr. Res.,
50, 375–388, 1999. a
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M.:
Climate change 2013: The physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change,
1535 pp., 2013. a, b
Thompson, D. W. and Solomon, S.:
Interpretation of recent Southern Hemisphere climate change,
Science,
296, 895–899, 2002. a
Thompson, D. W., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.:
Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change,
Nat. Geosci.,
4, 741–749, 2011. a
Trenberth, K. E. and Hoar, T. J.:
El Niño and climate change,
Geophys. Res. Lett.,
24, 3057–3060, 1997. a
Ward, P. and Dunin, F.:
Growing season evapotranspiration from duplex soils in south-western Australia,
Agr. Water Manage.,
50, 141–159, 2001. a
Watson, E. and Lapins, P.:
Losses of nitrogen from urine on soils from south western Australia,
Aust. J. Exp. Agr.,
9, 85–91, 1969. a
Wright, P. B.:
Temporal variations in seasonal rainfalls in southwestern Australia,
Mon. Weather Rev.,
102, 233–243, 1974b. a
Yu, B. and Neil, D.:
Long-term variations in regional rainfall in the south-west of Western Australia and the difference between average and high intensity rainfalls,
Int. J. Climatol.,
13, 77–88, 1993. a
Zheng, Y., Phipps, S., Roberts, J., and Jong, L. M.: Extending and understanding the South West Western Australian rainfall record using the Dome Summit South ice core, East Antarctica, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS) [data set], https://doi.org/10.25959/5f4c50b7b661f, 2020. a
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
South West Western Australia has experienced a prolonged drought in recent decades. The causes...