Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2533-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2533-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula
Marine Chemistry & Geochemistry, Woods Hole Oceanographic
Institution, Woods Hole, MA 02543, USA
Liviu Giosan
Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Yongsong Huang
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Related authors
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Virgil Drăgușin, Nicolaie Alexandru, Mihai Caminschi, Florina Chitea, Vasile Ersek, Alina Floroiu, Liviu Giosan, Georgiana Alexandra Grigore, Diana Hanganu, Maria Ilie, Dumitru Ioane, Marius Mocuța, Adrian Iulian Pantia, Iulian Popa, Gabriela Sava, Tiberiu Sava, Răsvan Stochici, and Constantin Ungureanu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2385, https://doi.org/10.5194/egusphere-2024-2385, 2024
Short summary
Short summary
We discovered marine sediments on the Black Sea coast in eastern Romania at an altitude of 10 m and reveal that a tectonic block quickly descended 4 m below sea level, allowed for the deposition of sediments, and was then suddenly raised by 10 m sometimes during the last 200–300 years. This type of displacement needs to be taken into account when calculating past sea levels, while their recent and strong character should be seen as hazardous for coastal settlements.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Jaap H. Nienhuis, Andrew D. Ashton, Albert J. Kettner, and Liviu Giosan
Earth Surf. Dynam., 5, 585–603, https://doi.org/10.5194/esurf-5-585-2017, https://doi.org/10.5194/esurf-5-585-2017, 2017
Short summary
Short summary
The Ebro Delta in Spain has a distinctive coastline shape, the origin of which has been debated. Here we show with two simple models, one of the Ebro River and one of its delta, that is it possible to reproduce this distinctive shape under constant sediment supply, wave climate, and sea-level conditions. We also find that the majority of the delta grew in the last 2000 years, when a great increase in sediment supply from the Ebro River allowed it to accelerate its growth.
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Impact of terrestrial biosphere on the atmospheric CO2 concentration across Termination V
Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479)
Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa
Increased aridity in southwestern Africa during the warmest periods of the last interglacial
Gabriel Hes, María F. Sánchez Goñi, and Nathaelle Bouttes
Clim. Past, 18, 1429–1451, https://doi.org/10.5194/cp-18-1429-2022, https://doi.org/10.5194/cp-18-1429-2022, 2022
Short summary
Short summary
Termination V (TV, ~ 404–433 kyr BP) marks a transition in the climate system towards amplified glacial–interglacial cycles. While the associated atmospheric CO2 changes are mostly attributed to the Southern Ocean, little is known about the terrestrial biosphere contribution to the carbon cycle. This study provides the first (model- and pollen-based) reconstruction of global forests highlighting the potential role of temperate and boreal forests in atmospheric CO2 sequestration during TV.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Lydie M. Dupont, Thibaut Caley, and Isla S. Castañeda
Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, https://doi.org/10.5194/cp-15-1083-2019, 2019
Short summary
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
D. H. Urrego, M. F. Sánchez Goñi, A.-L. Daniau, S. Lechevrel, and V. Hanquiez
Clim. Past, 11, 1417–1431, https://doi.org/10.5194/cp-11-1417-2015, https://doi.org/10.5194/cp-11-1417-2015, 2015
Short summary
Short summary
We present a new pollen-based palaeoclimatic reconstruction covering the period between 190,000 and 24,000 years ago from a marine sediment core located off the Namibian coast. Our work identifies increased dryness during the three warmest periods of the last interglacial involving atmospheric and oceanic reorganisations in southern Africa that are linked to precession minima.
Cited articles
An, Z., Huang, Y., Liu, W., Guo, Z., Clemens, S., Li, L., Prell, W.,
Youfeng, N., Yanjun, C., Weijian, Z., Benhai, L., Qingle, Z., Yunning, C.,
Xiaoke, Q., Hong, C., and Zhenkun, W.: Multiple expansions of C4 plant
biomass in East Asia since 7Ma coupled with strengthened monsoon
circulation, Geology, 33, 705, https://doi.org/10.1130/g21423.1, 2005.
Andrae, J. W., McInerney, F. A., Polissar, P. J., Sniderman, J. M. K.,
Howard, S., Hall, P. A., and Phelps, S. R.: Initial Expansion of C4
Vegetation in Australia During the Late Pliocene, Geophys. Res. Lett.,
45, 4831–4840, https://doi.org/10.1029/2018GL077833, 2018.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline
during the Pliocene intensification of Northern Hemisphere glaciations,
Paleocean., 26, 253–14, https://doi.org/10.1029/2010PA002055, 2011.
Behrensmeyer, A. K., Quade, J., Cerling, T. E., Kappelman, J., Khan, I. A.,
Copeland, P., Roe, L., Hicks, J., Stubblefield, P., Willis, B. J., and
Latorre, C.: The structure and rate of late Miocene expansion of C-4 plants:
Evidence from lateral variation in stable isotopes in paleosols of the
Siwalik Group, northern Pakistan, Geol. Soc. Am. Bull., 119,
1486–1505, https://doi.org/10.1130/B26064.1, 2007.
Blaauw, M.: Methods and code for `classical' age-modeling of radiocarbon
sequences, Quat. Geochron., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002,
2010.
Burls, N. J. and Fedorov, A. V.: Wetter subtropics in a warmer world:
Contrasting past and future hydrological cycles, P. Natl. Acad. Sci. USA, 114,
12888–12893, https://doi.org/10.1073/pnas.1703421114, 2017.
Cane, M. A. and Molnar, P.: Closing of the Indonesian seaway as a precursor
to east African aridification around 3–4 million years ago, Nature,
411, 157–162, https://doi.org/10.1038/35075500, 2001.
Cerling, T. E., Wang, Y., and Quade, J.: Expansion of C4 ecosystems as an
indicator of global ecological change in the late Miocene, Nature,
361, 344–345, https://doi.org/10.1038/361344a0, 1993.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J.,
Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153–158, https://doi.org/10.1038/38229,
1997.
Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K.,
Levin, N. E., Mace, W., Macharia, A. N., Quade, J., and Remien, C. H.: Woody
cover and hominin environments in the past 6 million years, Nature Geosci.,
476, 51–56, https://doi.org/10.1038/nature10306, 2011.
Chakrapani, G. J. and Subramanian, V.: Factors controlling sediment
discharge in the Mahanadi River Basin, India, J. Hydrol.,
117, 169–185, https://doi.org/10.1016/0022-1694(90)90091-b, 1990.
Chikaraishi, Y. and Naraoka, H.: δD13C and δD relationships
among three n-alkyl compound classes (n-alkanoic acid, n-alkane and
n-alkanol) of terrestrial higher plants, Org. Geochem., 38, 198–215,
https://doi.org/10.1016/j.orggeochem.2006.10.003, 2007.
Chikaraishi, Y., Naraoka, H., and Poulson, S. R.: Hydrogen and carbon
isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and
CAM) and aquatic plants, Phytochemistry, 65, 1369–1381,
https://doi.org/10.1016/j.phytochem.2004.03.036, 2004.
Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D.,
Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G.,
Ishiwa, T., McHugh, C. M., Gallagher, S. J., Fulthorpe, C. S., and IODP
Expedition 356 Scientists: Indonesian Throughflow drove Australian climate
from humid Pliocene to arid Pleistocene, Geophys. Res. Lett., 44,
6914–6925, https://doi.org/10.1002/2017GL072977, 2017.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M.,
Romero, O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K.,
Uramoto, G., Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Indian Monsoon
Rainfall, Proc. of IODP, 353, 101, https://doi.org/10.14379/iodp.proc.353.101.2016, 2016.
Daniels, W. C., Russell, J. M., Giblin, A. E., Welker, J. M., Klein, E. S.,
and Huang, Y.: Hydrogen isotope fractionation in leaf waxes in the Alaskan
Arctic tundra, Geochim. Cosmochim. Ac., 213, 216–236,
https://doi.org/10.1016/j.gca.2017.06.028, 2017.
De Schepper, S., Gibbard, P. L., Salzmann, U., and Ehlers, J.: A global
synthesis of the marine and terrestrial evidence for glaciation during the
Pliocene Epoch, Earth-Sci. Rev., 135, 83–102,
https://doi.org/10.1016/j.earscirev.2014.04.003, 2014.
Dunlea, A. G., Murray, R. W., Sauvage, J., Spivack, A. J., Harris, R. N., and
D'Hondt, S.: Dust, volcanic ash, and the evolution of the South Pacific Gyre
through the Cenozoic, Paleocean., 30, 1078–1099, https://doi.org/10.1002/2015PA002829,
2015.
Dunlea, A. G., Giosan, L., and Huang, Y.: Organic geochemistry of Pliocene sediments in the core monsoon zone on the Indian Peninsula, PANGAEA, https://doi.org/10.1594/PANGAEA.925085, 2020.
Edwards, E. J., Osborne, C. P., Strömberg, C., Smith, S. A., and
Consortium, C. G.: The origins of C4 grasslands: integrating evolutionary
and ecosystem science, Science, 328, 587–591,
https://doi.org/10.1126/science.1177216, 2010.
Eglinton, T. I. and Eglinton, G.: Molecular proxies for paleoclimatology,
Earth Planet. Sci. Lett., 275, 1–16, https://doi.org/10.1016/j.epsl.2008.07.012,
2008.
Ehleringer, J. R. and Cerling, T. E.: Atmospheric CO2 and the ratio of
intercellular to ambient CO2 concentrations in plants, Tree Physiology, 15, 105–111, 1995.
Ehleringer, J. R., Sage, R. F., Flanagan, L. B., and Pearcy, R. W.: Climate
change and the evolution of C4 photosynthesis, Mar. Geol., 6, 95–99,
https://doi.org/10.1016/0169-5347(91)90183-X, 1991.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol.
Biol., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Feakins, S. J., DeMenocal, P. B., and Eglinton, T. I.: Biomarker records of
late Neogene changes in northeast African vegetation, Geology, 33,
977–4, https://doi.org/10.1130/G21814.1, 2005.
Feakins, S. J., Levin, N. E., Liddy, H. M., Sieracki, A., Eglinton, T. I.,
and Bonnefille, R.: Northeast African vegetation change over 12 m.y,
Geology, 41, 295–298, https://doi.org/10.1130/G33845.1, 2013.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and
Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature
Geosci., 496, 43–49, https://doi.org/10.1038/nature12003, 2013.
Ford, H. L., Ravelo, A. C., and Hovan, S.: A deep Eastern Equatorial Pacific
thermocline during the early Pliocene warm period, Earth Planet. Sci. Lett.,
355/356, 152–161, https://doi.org/10.1016/j.epsl.2012.08.027, 2012.
France-Lanord, C. and Derry, L. A.: δD13C of organic carbon in the
Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to
marine sediments, Geochim. Cosmochim. Ac., 58, 4809–4814,
https://doi.org/10.1016/0016-7037(94)90210-0, 1994.
Freeman, K. H. and Colarusso, L. A.: Molecular and isotopic records of C4
grassland expansion in the late miocene, Geochim. Cosmochim. Ac., 65,
1439–1454, https://doi.org/10.1016/s0016-7037(00)00573-1, 2001.
Gadgil, S.: The Indian Monsoon and its Variability, Annu. Rev. Earth Planet.
Sci., 31, 429–467, https://doi.org/10.1146/annurev.earth.31.100901.141251, 2003.
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G.: The
mean composition of ocean ridge basalts, Geochem. Geophy. Geosy., 14,
489–518, https://doi.org/10.1029/2012GC004334, 2013.
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H.,
Palhol, F., and Singh, S. K.: Quaternary Sci. Rev., 27, 1396–1409,
https://doi.org/10.1016/j.quascirev.2008.04.005, 2008.
Galy, V., France-Lanord, C., Peucker-Ehrenbrink, B., and Huyghe, P.:
Sr-Nd-Os evidence for a stable erosion regime in the Himalaya during the
past 12 Myr, Earth Planet. Sci. Lett., 290, 474–480,
https://doi.org/10.1016/j.epsl.2010.01.004, 2010.
Ghosh, S., Sanyal, P., and Kumar, R.: Evolution of C4 plants and controlling
factors: Insight from n-alkane isotopic values of NW Indian Siwalik
paleosols, Org. Geochem., 110, 110–121,
https://doi.org/10.1016/j.orggeochem.2017.04.009, 2017.
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D. Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., and Eglinton, T. I.: Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation, Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, 2017.
Hein, C. J., Galy, V., Galy, A., France-Lanord, C., Kudrass, H., and Schwenk,
T.: Post-glacial climate forcing of surface processes in the
Ganges-Brahmaputra river basin and implications for carbon sequestration,
Earth Planet. Sci. Lett., 478, 89–101, https://doi.org/10.1016/j.epsl.2017.08.013, 2017.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847,
https://doi.org/10.1038/ngeo2813, 2016.
Huang, Y., Clemens, S. C., Liu, W., Wang, Y., and Prell, W. L.: Large-scale
hydrological change drove the late Miocene C4 plant expansion in the
Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534,
https://doi.org/10.1130/G23666A.1, 2007.
Karas, C., Nürnberg, D., Gupta, A. K., Tiedemann, R., Mohan, K., and
Bickert, T.: Mid-Pliocene climate change amplified by a switch in Indonesian
subsurface throughflow, Nat. Geosci., 2, 434–438, https://doi.org/10.1038/ngeo520,
2009.
Koutsodendris, A., Allstädt, F. J., Kern, O. A., Kousis, I., Schwarz,
F., Vannacci, M., Woutersen, A., Appel, E., Berke, M. A., Fang, X.,
Friedrich, O., Hoorn, C., Salzmann, U., and Pross, J.: Late Pliocene
vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by
early Northern Hemisphere glaciation, Glob. Planet. Change, 180, 117–125,
https://doi.org/10.1016/j.gloplacha.2019.06.001, 2019.
Levin, N. E., Quade, J., Simpson, S. W., Semaw, S., and Rogers, M.: Isotopic
evidence for Plio-Pleistocene environmental change at Gona, Ethiopia, Earth
Planet. Sci. Lett., 219, 93–110, https://doi.org/10.1016/S0012-821X(03)00707-6,
2004.
Liddy, H. M., Feakins, S. J., and Tierney, J. E.: Cooling and drying in
northeast Africa across the Pliocene, Earth Planet. Sci. Lett., 449,
430–438, https://doi.org/10.1016/j.epsl.2016.05.005, 2016.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δD18O records, Paleocean., 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Miao, Y., Warny, S., Clift, P. D., Liu, C., and Gregory, M.: Evidence of
continuous Asian summer monsoon weakening as a response to global cooling
over the last 8 Ma, Gondwana Res., 52, 48–58,
https://doi.org/10.1016/j.gr.2017.09.003, 2017.
Murray, R., Miller, D. J., and Kryc, K.: Analysis of major and trace elements
in rocks, sediments, and interstitial waters by inductively coupled
plasma-atomic emission spectrometry (ICP-AES), ODP Tech. Note, 29, 1–27,
2000.
Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system
climate sensitivity determined from Pliocene carbon dioxide concentrations,
Nat. Geosci., 3, 27–30, https://doi.org/10.1038/ngeo724, 2009.
Passey, B. H., Ayliffe, L. K., Kaakinen, A., Zhang, Z., Eronen, J. T., Zhu,
Y., Zhou, L., Cerling, T. E., and Fortelius, M.: Strengthened East Asian
summer monsoons during a period of high-latitude warmth? Isotopic evidence
from Mio-Pliocene fossil mammals and soil carbonates from northern China,
Earth Planet. Sci. Lett., 277, 443–452, https://doi.org/10.1016/j.epsl.2008.11.008,
2009.
Phillips, S. C., Johnson, J. E., Giosan, L., and Rose, K.: Monsoon-influenced
variation in productivity and lithogenic sediment flux since 110 ka in the
offshore Mahanadi Basin, northern Bay of Bengal, Mar. Petrol.
Geol., 58, 502–525, https://doi.org/10.1016/j.marpetgeo.2014.05.007, 2014.
Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R., and deMenocal, P.:
Synchronous rise of African C4 ecosystems 10 million years ago in the
absence of aridification, Nat. Geosci., 12, 657–660,
https://doi.org/10.1038/s41561-019-0399-2, 2019.
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E.,
Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res.
Lett., 39, L03704, https://doi.org/10.1029/2011GL050722, 2012.
Quade, J. and Cerling, T. E.: Expansion of C4 grasses in the Late Miocene of
Northern Pakistan: evidence from stable isotopes in paleosols, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 115, 91–116, https://doi.org/10.1016/0031-0182(94)00108-K,
1995.
Quade, J., Cater, J. M. L., Ojha, T. P., Adam, J., and Harrison, T. M.: Late
Miocene environmental change in Nepal and the northern Indian subcontinent:
Stable isotopic evidence from paleosols, Geol. Soc. Am. Bull., 107,
1381–1397, https://doi.org/10.1130/0016-7606(1995)107<1381:LMECIN>2.3.CO;2, 1995.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in:
Treatise on Geochemistry, edited by: Holland, H. and Turekian, K., Elsevier, Amsterdam, The Netherlands, 1–51, 2014.
Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K., and Sangode, S. J.:
Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian
Siwalik) and its relation to vegetational change, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 205, 23–41,
https://doi.org/10.1016/j.palaeo.2003.11.013, 2004.
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N.,
and Sachse, D.: Monsoon source shifts during the drying mid-Holocene:
Biomarker isotope based evidence from the core `monsoon zone' (CMZ) of
India, Quat. Sci. Rev., 123, 144–157,
https://doi.org/10.1016/j.quascirev.2015.06.020, 2015.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth
Planet. Sci. Lett., 292, 201–211, https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Sharma, R. S.: Cratons of the Indian Shield, in: Cratons and Fold Belts of
India, edited by: Sharma, R. S., Springer, Berlin and Heidelberg, Germany, 41–115, 2009.
Smith, F. A. and Freeman, K. H.: Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses, Geochim. Cosmochim.
Ac., 70, 1172–1187, https://doi.org/10.1016/j.gca.2005.11.006, 2006.
Strömberg, C. A. E.: Evolution of Grasses and Grassland Ecosystems,
Annu. Rev. Earth Planet. Sci., 39, 517–544,
https://doi.org/10.1146/annurev-earth-040809-152402, 2011.
Taylor, S. R. and McLennan, S. M.: The Continental Crust: Its Composition
and Evolution, Blackwell Scientific Publications, Oxford, UK, 1985.
Tierney, J. E., Ummenhofer, C. C., and DeMenocal, P. B.: Past and future
rainfall in the Horn of Africa, Science Advances, 1, e1500682,
https://doi.org/10.1126/sciadv.1500682, 2015.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope ratio of
Cenozoic CO2: A comparative evaluation of available geochemical proxies,
Paleocean., 25, 129–11, https://doi.org/10.1029/2009PA001851, 2010.
Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO2 and Ice
Sheet Stability Over Major Climate Transitions of the Last 20 Million Years,
Science, 326, 1394–1397, https://doi.org/10.1126/science.1178296, 2009.
Tripathy, G. R., Singh, S. K., and Ramaswamy, V.: Major and trace element
geochemistry of Bay of Bengal sediments: Implications to provenances and
their controlling factors, Palaeogeogr. Palaeoclimatol. Palaeoecol., 397,
20–30, https://doi.org/10.1016/j.palaeo.2013.04.012, 2014.
Ummenhofer, C. C., Sen Gupta, A., Taschetto, A. S., and England, M. H.:
Modulation of Australian Precipitation by Meridional Gradients in East
Indian Ocean Sea Surface Temperature, J. Climate, 22, 5597–5610,
https://doi.org/10.1175/2009JCLI3021.1, 2009.
Ummenhofer, C. C., Sen Gupta, A., Briggs, P. R., England, M. H., McIntosh,
P. C., Meyers, G. A., Pook, M. J., Raupach, M. R., and Risbey, J. S.: Indian
and Pacific Ocean Influences on Southeast Australian Drought and Soil
Moisture, J. Climate, 24, 1313–1336, https://doi.org/10.1175/2010JCLI3475.1, 2011a.
Ummenhofer, C. C., Sen Gupta, A., Li, Y., Taschetto, A. S., and England, M.
H.: Multi-decadal modulation of the El Niño-Indian monsoon relationship
by Indian Ocean variability, Environ. Res. Lett., 6, 034006,
https://doi.org/10.1088/1748-9326/6/3/034006, 2011b.
Wang, P. X., Bin Wang, Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., and Liu,
Z.: The global monsoon across time scales: Mechanisms and outstanding
issues, Earth-Sci. Rev., 174, 84–121, https://doi.org/10.1016/j.earscirev.2017.07.006,
2017.
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Permanent El Nino-Like
Conditions During the Pliocene Warm Period, Science, 309, 758–761,
https://doi.org/10.1126/science.1112596, 2005.
White, S. M. and Ravelo, A. C.: Dampened El Niño in the Early Pliocene
Warm Period, Geophys. Res. Lett., 47, 40–15, https://doi.org/10.1029/2019GL085504,
2020.
Whiteside, J. H., Olsen, P. E., Eglinton, T. I., Cornet, B., McDonald, N. G.,
and Huber, P.: Pangean great lake paleoecology on the cusp of the
end-Triassic extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 301,
1–17, https://doi.org/10.1016/j.palaeo.2010.11.025, 2011.
Williams, A. P. and Funk, C.: A westward extension of the warm pool leads to
a westward extension of the Walker circulation, drying eastern Africa,
Clim. Dynam., 37, 2417–2435, https://doi.org/10.1007/s00382-010-0984-y,
2011.
Xie, S.-P., Xu, H., Saji, N. H., Wang, Y., and Liu, W. T.: Role of Narrow
Mountains in Large-Scale Organization of Asian Monsoon Convection, J.
Climate, 19, 3420–3429, https://doi.org/10.1175/jcli3777.1, 2006.
Yang, W., Seager, R., Cane, M. A., and Lyon, B.: The Annual Cycle of East
African Precipitation, J. Climate, 28, 2385–2404,
https://doi.org/10.1175/JCLI-D-14-00484.1, 2015.
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-Million-Year Temperature History
of the Tropical Pacific Ocean, Science, 344, 84–87,
https://doi.org/10.1126/science.1246172, 2014.
Zhou, B., Shen, C., Sun, W., Bird, M., Ma, W., Taylor, D., Liu, W., Peterse,
F., Yi, W., and Zheng, H.: Late Pliocene-Pleistocene expansion of C4
vegetation in semiarid East Asia linked to increased burning, Geology,
42, 1067–1070, https://doi.org/10.1130/g36110.1, 2014.
Zorzi, C., Goñi, M. F. S., Anupama, K., Prasad, S., Hanquiez, V.,
Johnson, J., and Giosan, L.: Indian monsoon variations during three
contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last
interglacial-glacial transition, Quaternary Sci. Rev., 125, 50–60,
https://doi.org/10.1016/j.quascirev.2015.06.009, 2015.
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
Over the past 20 Myr, there has been a dramatic global increase in plants using C4...