Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene vegetation dynamics in response to climate change and hydrological processes in the Bohai region
Chen Jinxia
CORRESPONDING AUTHOR
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Shi Xuefa
CORRESPONDING AUTHOR
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Liu Yanguang
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Qiao Shuqing
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Yang Shixiong
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Key Laboratory of Coastal Wetland Biogeosciences, China Geological
Survey, Qingdao 266071, China
Yan Shijuan
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Lv Huahua
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Li Jianyong
Shanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, College of Urban and Environmental Sciences, Northwest
University, Xi'an 710127, China
Institute of Earth Surface System and Hazards, College of Urban and
Environmental Sciences, Northwest University, Xi'an 710127, China
Li Xiaoyan
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Li Chaoxin
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, MNR, Qingdao 266061, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao 266237, China
Related authors
No articles found.
Liang Su, Jian Ren, Marie-Alexandrine Sicre, Youcheng Bai, Ruoshi Zhao, Xibing Han, Zhongqiao Li, Haiyan Jin, Anatolii S. Astakhov, Xuefa Shi, and Jianfang Chen
Clim. Past, 19, 1305–1320, https://doi.org/10.5194/cp-19-1305-2023, https://doi.org/10.5194/cp-19-1305-2023, 2023
Short summary
Short summary
We reconstructed sea ice and organic carbon composition variabilities based on biomarkers and carbon stable isotopes in the northern Chukchi Sea, western Arctic Ocean, over the past 200 years. Under permanent ice cover, organic carbon was dominated by land sources transported by sea ice and ocean currents, while local primary productivity was suppressed by light limitation. Since ice retreated in 20th century, organic carbon from primary production gradually overtook the terrestrial component.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Sergey A. Gorbarenko, Xuefa Shi, Galina Yu. Malakhova, Aleksandr A. Bosin, Jianjun Zou, Yanguang Liu, and Min-Te Chen
Clim. Past, 13, 1063–1080, https://doi.org/10.5194/cp-13-1063-2017, https://doi.org/10.5194/cp-13-1063-2017, 2017
Linsen Dong, Yanguang Liu, Xuefa Shi, Leonid Polyak, Yuanhui Huang, Xisheng Fang, Jianxing Liu, Jianjun Zou, Kunshan Wang, Fuqiang Sun, and Xuchen Wang
Clim. Past, 13, 511–531, https://doi.org/10.5194/cp-13-511-2017, https://doi.org/10.5194/cp-13-511-2017, 2017
Short summary
Short summary
In this manuscript, we present the results of our study conducted for a sediment core (ARC4-BN05) collected in the Arctic Ocean. Detailed examination of clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktonic foraminiferal numbers in core ARC4–BN05 provides important new information about sedimentary environments and provenance. Based on these proxies, we try to reveal late to middle Pleistocene glacial history.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Holocene
Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea)
Deglacial and Holocene vegetation and climatic changes in the southern Central Mediterranean from a direct land–sea correlation
Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data
N. Combourieu-Nebout, O. Peyron, V. Bout-Roumazeilles, S. Goring, I. Dormoy, S. Joannin, L. Sadori, G. Siani, and M. Magny
Clim. Past, 9, 2023–2042, https://doi.org/10.5194/cp-9-2023-2013, https://doi.org/10.5194/cp-9-2023-2013, 2013
S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon
Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, https://doi.org/10.5194/cp-9-767-2013, 2013
N. Combourieu Nebout, O. Peyron, I. Dormoy, S. Desprat, C. Beaudouin, U. Kotthoff, and F. Marret
Clim. Past, 5, 503–521, https://doi.org/10.5194/cp-5-503-2009, https://doi.org/10.5194/cp-5-503-2009, 2009
Cited articles
An, S. I., Kim, H. J., Park, W., and Schneider, B.: Impact of ENSO on East Asian winter monsoon during interglacial periods: Effect of orbital forcing, Clim. Dynam., 49, 3209–3219, 2017.
Bao, R., Alonso, A., Delgado, C., and Pagés, J.L.: Identification of the
main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 cal yr BP, Palaeogeogr. Palaeocl., Palaeoecol., 247, 296–312, 2007.
Baker, J. L., Lachniet, M. S., Chervyatsova, O., Asmerom, Y., and Polyak, V.:
Holocene warming in western continental Eurasia driven by glacial retreat
and greenhouse forcing, Nat. Geosci., 10, 430–435, https://doi.org/10.1038/NGEO2953,
2017.
Bi, N. S., Yang, Z. S., Wang, H. J., Hu, B. Q., and Ji, Y. J.: Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period, Estuar. Coast. Shelf. S., 86, 352–362, 2010.
Bi, N. S., Yang, Z. S., Wang, H. J., Fan, D. J., Sun, X. X., and Lei, K.: Seasonal variation of suspended-sediment transport through the southern Bohai Strait, Estuar. Coast. Shelf. S., 93, 239–247, 2011.
Cheddadi, R. and Rossignol-Strick, M.: Improved preservation of organic matter and pollen in Eastern Mediterranean sapropels, Paleoceanography, 10, 301–309, 1995.
Chen, J. X., Nan, Q. Y., Li, T. G., Sun, R. T., Sun, H. J., and Lu, J.: Variations in the East Asian winter monsoon from 3500 to 1300?cal. yr BP in northern China and their possible societal impacts, J. Asian. Earth. Sci., 181, 103912, https://doi.org/10.1016/j.jseaes.2019.103912, 2019a.
Chen, J. X., Li, T. G., Nan, Q. Y., Shi, X. F., Liu, Y. G., Jiang, B., Zou, J.J., Selvaraj, K., Li, D. L., and Li, C. S.: Mid-late Holocene rainfall variation in Taiwan: A high-resolution multiproxy record unravels the dual influence of the Asian monsoon and ENSO, Palaeogeogr. Palaeocl., 516, 139–151, 2019b.
Chen, W. and Wang, W. M.: Middle-Late Holocene vegetation history and
environment changes revealed by pollen analysis of a core at Qingdao of
Shandong Province, East China, Quatern. Int., 254, 68–72, 2012.
Cheung, H. N., Zhou, W., Mok, H. Y., and Wu, M. C.: Relationship between
Ural-Siberian blocking and the East Asian winter monsoon in relation to the
Arctic Oscillation and the El Niño-Southern Oscillation, J. Climate., 25, 4242–4257, 2012.
Cohen, M. C. L., Lara, R. J., Smith, C. B., Angélica, R. S., Dias, B. S., and Pequeno, T.: Wetland dynamics of Marajó Island, northern Brazil, during the last 1000 years, Catena, 76, 70–77, 2008.
Cohen, M. C. L., Pessenda, L. C. R., Behling, H., Rossetti, D. d. F., França, M. C., Guimarães, J. T. F., Friaes, Y., and Smith, C. B.: Holocene palaeoenvironmental history of the Amazonian mangrove belt, Quaternary Sci. Rev., 55, 50–58, 2012.
Cui, B. S., Yang, Q. C., Yang, Z. F., and Zhang, K. J.: Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China, Ecol. Eng., 35, 1090–1103, 2009.
Dai, L. and Weng, C. Y.: Marine palynological record for tropical climate
variations since the late last glacial maximum in the northern South China
Sea, Deep-Sea Res. Pt. II., 122, 153–162, 2015.
Dai, L., Weng, C. Y., Lu, J., and Mao, L. M.: Pollen quantitative distribution in marine and fluvial surface sediments from the northern South China Sea: new insights into pollen transportation and deposition mechanisms, Quatern. Int., 325, 136–149, 2014.
Engelhart, S. E., Horton, B. P., Roberts, D. H., Bryant, C. L., and Corbett, D. R.: Mangrove pollen of Indonesia and its suitability as a sea-level indicator, Mar. Geol., 242, 65–81, 2007.
Faegri, K. and Iversen, J.: Textbook of Pollen Analysis, John Wiley & Sons, Chichester, p. 328, 1989.
Feng, Z. D., Sun, A. Z., Abdusalih, N., Ran, M., Kurban, A., Lan, B., Zhang,
D. L., and Yang, Y. P.: Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene, Holocene, 27,
683–693, 2017.
França, M. C., Francisquini, M. I., Cohen, M. C. L., Pessenda, L. C. R.,
Rossetti, D. F., Guimarães, J. T. F., and Smith, C. B.: The last mangroves of Marajó Island–Eastern Amazon: Impact of climate and/or relative sea-level changes, Rev. Palaeobot. Palyno., 187, 50–65, 2012.
França, M. C., Alves, I. C. C., Castro, D. F., Cohen, M. C. L., Rossetti,
D. F., Pessenda, L. C. R., Lorente, F. L., Fontes, N. A., Junior, A. Á. B., Giannini, P. C. F., and Francisquini, M. I.: A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes,
Southeastern Brazil, due to climatic and sea-level changes during the late
Holocene, Catena, 128, 155–166, 2015.
Friedman, G. M. and Sanders, J. E.: Principles of sedimentology, John Wiley and Sons, Inc, 1–792, 1978.
Gao, M. S., Guo, F., Hou, G. H., Qiu, J. D., Kong, X. H., Liu, S., Huang, X. Y., and Zhuang, H. H.: The evolution of sedimentary environment since late
Pleistocene in Laizhou Bay, Bohai Sea, Geol. Chin., 45, 59–68, 2018 (in
Chinese with English abstract).
Giraldo-Giraldo, M. J., Velásquez-Ruiz, C. A., and Pardo-Trujillo, A.:
Late-Holocene pollen-based paleoenvironmental reconstruction of the El
Triunfo wetland, Los Nevados National Park (Central Cordillera of Colombia),
Holocene, 28, 183–194, 2018.
González, C. and Dupont, L. M.: Tropical salt marsh succession as sea-level indicator during Heinrich events, Quaternary Sci. Rev., 28, 939–946, 2009.
Grimm, E. C.: CONISS: a Fortran 77 program for stratigraphically constrained
cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13–35, 1987.
Gu, Y. H. and Xiu, R. C.: On the current and storm flow in the Bohai Sea and
their role in transporting deposited silt of the Yellow River, J. Oceanogr.
Huanghai & Bohai Seas., 14, 1–6, 1996.
Hao, T., Liu, X. J., Ogg, J., Liang, Z., Xiang, R., Zhang, X. D., Zhang, D. H., Zhang, C., Liu, Q. L., and Li, X. G.: Intensified episodes of East Asian Winter Monsoon during the middle through late Holocene driven by North Atlantic cooling events: High-resolution lignin records from the South Yellow Sea, China, Earth. Planet. Sci. Lett., 479, 144–155, 2017.
Havinga, A. J.: Palynology and pollen preservation, Rev. Palaeobot. Palyno.,
2, 81–98, 1967.
He, L., Xue, C. T., Ye, S. Y., Amorosi, A., Yuan, H. M., Yang, S. X., and Laws, E. A.: New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex, Quaternary Sci. Rev., 214, 117–138, 2019.
Hemavathi, S., Manjula, R., and Ponmani, N.: Numerical Modelling and Experimental Investigation on the Effect of Wave Attenuation Due to Coastal Vegetation, in: Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), edited by: Murali, K., Sriram, V., Samad, A., and Saha, N., Springer, Singapore, Lecture Notes in Civil Engineering, 23, 99–110, https://doi.org/10.1007/978-981-13-3134-3_9, 2019.
Hendy, I. L., Minckley, T. A., and Whitlock, C.: Eastern tropical Pacific
vegetation response to rapid climate change and sea level rise: A new pollen
record from the Gulf of Tehuantepec, southern Mexico, Quaternary Sci. Rev., 145, 152–160, 2016.
Heusser, L. E.: Pollen distribution in marine sediments on the continental
margin off northern California, Mar. Geol., 80, 131–147, 1988.
Hoerling, M., Kumar, A., Eischeid, J., and Jha, B.: What is causing the
variability in global mean land temperature?, Geophys. Res. Lett., 35,
L23712, https://doi.org/10.1029/2008GL035984, 2008.
Hou, J. Z., Huang, Y. S., Zhao, J. T., Liu, Z. H., Colman, S., and An, Z. S.: Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau, Geophys. Res. Lett., 43, 1323–1330, 2016.
Hou, X. Y.: Vegetation Atlas of China, Science Press, 1–280, 2001 (in
Chinese).
Hou, W. and Hou, X. Y.: Spatial–temporal changes in vegetation coverage in the global coastal zone based on GIMMS NDVI3g data, Int. J. Remote. Sens., 41, 1118–1138, 2020.
Hu, L. M., Guo, Z. G., Shi, X. F., Qin, Y. W., Lei, K., and Zhang, G.: Temporal trends of aliphatic and polyaromatic hydrocarbons in the Bohai Sea, China: Evidence from the sedimentary record, Org. Geochem., 42, 1181–1193, 2011.
Huang, D. J., Su, J. L., and Backhaus, J. O.: Modelling the seasonal thermal
stratification and baroclinic circulation in the Bohai Sea, Cont. Shelf.
Res., 19, 1485–1505, 1999.
Jia, Y. H., Li, D. W., Yu, M., Zhao, X. C., Xiang, R., Li, G. X., Zhang, H. L., and Zhao, M. X.: High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene, Global Planet. Change, 182, 103025, https://doi.org/10.1016/j.gloplacha.2019.103025, 2019.
Jiang, D. J., Fu, X. F., and Wang, K.: Vegetation dynamics and their response to freshwater inflow and climate variables in the Yellow River Delta, China,
Quatern. Int., 304, 75–84, 2013.
Jiang, W. Y., Guo, Z. T., Sun, X. J., Wu, H. B., Chu, G. Q., Yuan, B. Y., Hatte, C., and Guiot, J.: Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the east Asian
monsoon, Quaternary Res., 65, 411–420, 2006.
Kirchner, G. and Ehlers, H.: Sediment Geochronology in Changing Coastal
Environments: Potentials and Limitations of the 137Cs and 210Pb Methods, J. Coast. Res., 14, 483–492, 1998.
Koutavas, A. and Joanides, S.: El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum, Paleoceanography, 27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
Li, C. H., Wu, Y. H., and Hou, X. H.: Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment, Quatern. Int., 229, 67–73, 2011.
Li, C. Y., Yan, L. Q., and Han, T. X.: Research on composition of wetland
vegetation in Shandong, Shandong Forest Sci. Tech., 4, 27–29, 2007 (in
Chinese with English abstract).
Li, G. G., Hu, B. Q., Bi, J. Q., Song, Z. L., Bu, R. Y., and Li, J. M.: Stratigraphic evolution of the Huanghe Delta (Bohai Sea) since the Late Quaternary and its paleoenvironmental implications: evidence from core ZK1,
Acta Sedimentologica Sinica, 31, 1050–1058, 2013 (in Chinese with English abstract).
Li, M. Y., Zhang, S. R., Xu, Q. H., Xiao, J., and Wen, R. L.: Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum, Sci. China. Earth. Sci., 62, 1279–1287, 2019.
Li, X. Q., Zhou, J., Shen, J., Weng, C. Y., Zhao, H. L., and Sun, Q. L.: Vegetation history and climatic variations during the last 14 ka BP inferred from a pollen record at Daihai Lake, north-central China, Rev. Palaeobot. Palyno., 132, 195–205, 2004.
Liu, D. Y., Li, X., Emeis, K. C., Wang, Y. J., and Richard, P.: Distribution and sources of organic matter in surface sediments of Bohai Sea near the Yellow River Estuary, China, Estuar. Coast. Shelf. S., 165, 128–136, 2015.
Liu, J., Saito, Y., Wang, H., Zhou, L., and Yang, Z.: Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea, J. Asian. Earth. Sci., 36, 318–331, 2009.
Liu, S., Feng, A., Du, J., Xia, D., Li, P., Xue, Z., Hu, W., and Yu, X.:
Evolution of the buried channel systems under the modern Yellow River delta
since the last glacial maximum, Quatern. Int., 349, 327–338, 2014.
Liu, W. Z., Zhang, Q. F., and Liu, G. H.: Seed banks of a river–reservoir wetland system and their implications for vegetation development, Aquat. Bot., 90, 7–12, 2009.
Lu, J. J., He, W. S., Tong, C. F., and Wang, W.: Wetland Ecology, Higher Education Press, Beijing, 2006.
Luo, C. X., Chen, M. H., Xiang, R., Liu, J. G., Zhang, L. L., Lu, J., and Yang, M. X.: Characteristics of modern pollen distribution in surface sediment samples for the northern South China Sea from three transects, Quatern. Int., 286, 148–158, 2013.
Luo, C. X., Chen, M. H., Xiang, R., Liu, J. G., Zhang, L. L., Lu, J., and Yang, M. X.: Modern pollen distribution in marine sediments from the northern part of the South China Sea, Mar. Micropaleontol., 108, 41–56, 2014.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years, Science, 339,
1198–1201, 2013.
Meyer, H., Opel, T., Laepple, T., Dereviagin, A. Y., Hoffmann, K., and Werner, M.: Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene, Nat. Geosci., 8, 122–125, https://doi.org/10.1038/NGEO2349, 2015.
Milliman, J. D. and Meade, R. H.: World-wide delivery of river sediment to
oceans, J. Geol., 91, 1–21, 1983.
Milliman, J. D., Qin, Y. S., Ren, M. E., and Saito, Y.: Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River
(Huanghe) example, J. Geol., 95, 751–762, 1987.
Montade, V., Nebout, N. C., Kissel, C., and Mulsow, S.: Pollen distribution in marine surface sediments from Chilean Patagonia, Mar. Geol., 282, 161–168, 2011.
Mudie, P. J.: Pollen distribution in recent marine sediments, Eastern Canada,
Can. J. Earth Sci., 19, 729–747, 1982.
Mudie, P. J. and McCarthy, F. M. G.: Pollen transport processes in the western North Atlantic: evidence from cross margin and north–south transects, Mar. Geol., 118, 79–105, 1994.
Neumann, F. H., Scott, L., Bousman, C. B., and As, L. V.: A Holocene sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South Africa, Rev.
Palaeobot. Palyno., 162, 39–53, 2010.
Pan, Y. and Xu, J. W.: Studies on Resource and Flora of Aquatic Vascular Plants
in Wetland of Yellow River Delta, J. Anhui. Agr. Sci., 39, 1642–1644,
2011 (in Chinese with English abstract).
Palinkas, C. M. and Nittrouer, C. A.: Modern sediment accumulation on the Po
shelf, Adriatic Sea, Cont. Shelf. Res., 27, 489–505, 2007.
Park, J. and Kim, M.: Pollen-inferred late Holocene agricultural developments in the vicinity of Woljeong-ri, southwestern Korea, Quatern. Int., 384, 13–21, 2015.
Pessenda, L. C. R., Vidotto, E., De Oliveira, P. E., Busso Jr., A. A., Cohen, M. C. L., Rossetti, D. d. F., Ricardi-Branco, F., and Bendassolli, J. A.: Late Quaternary vegetation and coastal environmental changes at Ilha do Cardoso mangrove, southeastern Brazil, Palaeogeogr. Palaeocl., 363–364, 57–68, 2012.
Qiao, F. L., Gan, Z. J., and Sun, X. P.: Regional oceanography of China
seas-physical oceanography, China Ocean Press, Beijing, 2012.
Qiao, S. Q., Shi, X. F., Zhu, A. M., Liu, Y. G., Bi, N. S., Fang, X. S., and Yang, G.: Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea, Estuar. Coast. Shelf. S., 86,
337–344, 2010.
Qiao, S. Q., Shi, X. F., Wang, G. Q., Zhou, L., Hu, B. Q., Hu, L. M., Yang, G., Liu, Y. G., Yao, Z. Q., and Liu, S. F.: Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea, Mar. Geol., 390, 270–281, 2017.
Rao, Z. G., Huang, C., Xie, L. H., Shi, F. X., Zhao, Y., Cao, J. T., Gou, X. H., Chen, J. H., and Chen, F. H.: Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record, Quaternary Sci. Rev., 203, 56–67, 2019.
Rao, Z. G., Shi, F. X., Li, Y. X., Huang, C., Zhang, X. Z., Yang, W., Liu, L. D., Zhang, X. P., and Wu, Y.: Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O∕δ13C
records from an alpine peat core from central Asia. Quaternary Sci. Rev., 232, 106217, https://doi.org/10.1016/j.quascirev.2020.106217, 2020.
Ren, G. Y.: Changes in forest cover in China during the Holocene, Veget. Hist. Archaeobot., 16, 119–126, 2007.
Ren, G. Y. and Zhang, L. S.: A preliminary mapped summary of Holocene pollen data for northeast China, Quaternary Sci. Rev., 17, 669–688, 1998.
Ren, G. Y. and Beug, H. J.: Mapping Holocene pollen data and vegetation of China, Quaternary Sci. Rev., 21, 1395–1422, 2002.
Saito, Y., Wei, H. L., Zhou, Y. Q., Nishimura, A., Sato, Y., and Yokota, S.: Delta progradation and chenier formation in the Huanghe (Yellow River) delta,
China, J. Asian. Earth. Sci., 18, 489–497, 2000.
Sander, V. D. K.: Pollen distribution in marine sediments from the
south-eastern Indonesian waters, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
171, 341–361, 2001.
Serrano, O., Lovelock, C. E., Atwood, T. B., Macreadie, P.I., Canto, R.,
Phinn, S., Arias-Ortiz, A., Bai, L., Baldock, J., Bedulli, C., Carnell, P., Connolly, R. M., Donaldson, P., Esteban, A., Ewers Lewis, C. J., Eyre, B. D., Hayes, M. A., Horwitz, P., Hutley, L. B., Kavazos, C. R. J., Kelleway, J. J., Kendrick, G. A., Kilminster, K., Lafratta, A., Lee, S., Lavery, P. S., Maher, D. T., Marbà, N., Masque, P., Mateo, M. A., Mount, R., Ralph, P. J., Roelfsema, C., Rozaimi, M., Ruhon, R., Salinas, C., Samper-Villarreal, J., Sanderman, J., Sanders, C. J., Santos, I., Sharples, C., Steven, A. D. L., Cannard, T., Trevathan-Tackett, S. M., and Duarte, C. M.: Australian vegetated coastal ecosystems as global hotspots for climate
change mitigation, Nat. Commun., 10, 4313, doi10.1038/s41467-019-12176-8, 2019.
Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., and Hopkinson, C. S.: Global-change controls on soil-carbon accumulation and loss in coastal
vegetated ecosystems, Nat. Geosci., 12, 685–692, 2019.
Stebich, M., Rehfeld, K., Schlütz, F., Tarasov, P. E., Liu, J. Q., and
Mingram, J.: Holocene vegetation and climate dynamics of NE China based on
the pollen record from Sihailongwan Maar Lake, Quaternary Sci. Rev., 124,
275–289, 2015.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.1, WWW program, available at: http://calib.org/calib/, last access: 19 February 2019.
Thompson, L. G., Yao, T. D., Davis, M. E., Henderson, K. A., Mosley-Thompson,
E., Lin, P. N., Beer, J., Synal, H. A., Cole-Dai, J., and Bolzan, J. F.: Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core, Science, 276, 1821–1825, 1997.
Triacca, U., Pasini, A., Attanasio, A., Giovannelli, A., and Lippi, M.:
Clarifying the Roles of Greenhouse Gases and ENSO in Recent Global Warming
through Their Prediction Performance, J. Climate, 27, 7903–7910, 2014.
Wang, H., Yang, Z., Li, Y., Guo, Z., Sun, X., and Wang, Y.: Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth, Cont. Shelf. Res., 27, 854–871, 2007.
Wang, H. J., Wang, A. M., Bi, N. S., Zeng, X. M., and Xiao, H. H.: Seasonal
distribution of suspended sediment in the Bohai Sea, China, Cont. Shelf.
Res., 90, 17–32, 2014.
Wang, K. F.: Spore-pollen and algal assemblages in the sediments
of the Bohai Sea and palaeoenvironments, Geological Publishing House,
Beijing, 1993.
Woodroffe, S. A., Long, A. J., Milne, G. A., Bryant, C. L., and Thomas, A. L.: New constraints on late Holocene eustatic sea-level changes from Mahe,
Seychelles, Quaternary Sci. Rev., 115, 1–16, 2015.
Wu, P., Xiao, X., Tao, S., Yang, Z., Zhang, H., Li, L., and Zhao, M.: Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene, Sci. China. Earth. Sci., 59, 1216–1224, 2016.
Wu, X., Bi, N. S., Kanai, Y., Saito, Y., Zhang, Y., Yang, Z. S., Fan, D. J., and Wang, H. J.: Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years, J. Asian. Earth. Sci., 108, 68–80, 2015.
Wu, X., Bi, N. S., Xu, J. P., Nittrouer, J. A., Yang, Z. S., Saito, Y., and Wang, H. J.: Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size, Geomorphology, 292, 115–127, https://doi.org/10.1016/j.geomorph.2017.04.042, 2017.
Wu, J., Liu, Q., Cui, Q. Y., Xu, D. K., Wang, L., Shen, C. M., Chu, G. Q., and Liu, J. Q.: Shrinkage of East Asia winter monsoon associated with increased ENSO events since the mid-Holocene, J. Geophys. Res., 124, 3839–3848, 2019.
Xing, G. P., Wang, H. J., Yang, Z. S., and Bi, N. S.: Spatial and temporal variation in erosion and accumulation of the subaqueous Yellow River delta
(1976–2004), J. Coast. Res., 74, 32–47, 2016.
Xing, S. Y., Xi, J. B., Zhang, J. F., Song, Y. M., and Ma, B. Y.: The basic
characteristics and the main types of vegetation in the Yellow River delta
region, J. Northeast. Forest. Univ., 31, 85–86, 2003 (in Chinese).
Xu, D. K., Lu, H. Y., Chu, G. Q., Wu, N. Q., Shen, C. M., Wang, C., and Mao, L. M.: 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record, Sci. Rep.-UK., 4, 3611, https://doi.org/10.1038/srep03611, 2014.
Xu, J. X.: Grain-size characteristics of suspended sediment in the Yellow
River, China, Catena, 38, 243–263, 1999.
Xu, J. W.: Research on Diversity of Aquatic Vascular Plants in Wetland of
Yellow River Delta, Heilongjiang, Agr. Sci., 1, 36–38, 2011 (in Chinese with English abstract).
Xu, W. C., Ma, J. S., and Wang, W.: A review of studys on the influence of ENSO events on the climate in China, Sci. Meteorol. Sin., 25, 212–220, 2005.
Xu, Y. P., Zhou, S. Z., Hu, L. M., Wang, Y. H., and Xiao, W. J.: Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication, J. Marine. Syst., 180, 1–8, 2018.
Xu, Z. J., Zhang, X. L., Zhang, Z. H., and Zhang, W.: Analysis of the biodiversity characters of coastal wetlands in southern Laizhou Bay, Ecol. Env. Sci., 19, 367–372, 2010 (in Chinese with English abstract).
Xue, C., Cheng, G. D., and Zhou, Y. Q.: Relationship between Late Pleistocene and Early Holocene terrestrial deposits and sea level changes in Yellow River
Delta area, Mar. Geol. Quat. Geol., 8, 63–73, 1988 (in Chinese with
English abstract).
Xue, C. T.: Historical changes in the Yellow River delta, China, Mar. Geol.,
113, 321–329, 1993.
Xue, C. T. and Cheng, G. D.: Shelly ridges in west coast of Bohai Sea and
Holocene Yellow River Delta system, in: Quaternary Processes and Events in China Offshore and Onshore Areas, edited by: Yang, Z. G. and Lin, H. M., China Ocean Press, Beijing, 1989 (in Chinese with English abstract).
Xue, C. T., Zhu, X. H., and Lin, H. M.: Holocene sedimentary sequence, foraminifera and ostracoda in west coastal lowland of Bohai Sea, China, Quaternary Sci. Rev., 14, 521–530, 1995.
Yang, S. X., Li, J., Mao, L.M., Liu, K., Gao, M. S., Ye, S. Y., Yi, S., Zhou,
L. Y., and Wang, F. F.: Assessing pollen distribution patterns and provenance
based on palynological investigation on surface sediments from Laizhou Bay,
China: an aid to palaeoecological interpretation, Palaeogeogr.
Palaeocl., 457, 209–220, 2016.
Yang, S. X., Song, B., Ye, S. Y., Laws, E. A., He, L., Li, J., Chen, J. X.,
Zhao, G. M., Zhao, J. T., Mei, X., and Behling, H.: Large-scale pollen
distribution in marine surface sediments from the Bohai Sea, China: Insights
into pollen provenance, transport, deposition, and coastal-shelf
paleoenvironment, Prog. Oceanog., 178, 102183, https://doi.org/10.1016/j.pocean.2019.102183, 2019.
Yang, Z. S., Ji, Y. J., Bi, N. S., Lei, K., and Wang, H. J.: Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison, Estuar. Coast. Shelf. S., 93, 173–181, 2011.
Yi, S., Saito, Y., Oshima, H., Zhou, Y. Q., and Wei, H. L.: Holocene environmental history inferred from pollen assemblages in the Huanghe (Yellow River) delta, China: climatic change and human impact, Quaternary Sci. Rev., 22, 609–628, 2003.
Zhang, G. S., Wang, R. Q., and Song, B. M.: Plant community succession in modern Yellow River Delta, China, J. Zhejiang Univ. Sci., 8, 540–548, 2007.
Zhang, H. X., Zhang, M. L., Xu, T. P., and Tang, J.: Numerical Investigations of Tsunami Run-Up and Flow Structure on Coastal Vegetated Beaches, Water, 10, 1776, https://doi.org/10.3390/w10121776, 2018.
Zhang, J. Y., Li, J., Yan, Y., Li, J. J., and Wan, X. Q.: A 1000-year record of centennial-scale cyclical vegetation change from Maar Lake Sanjiaolongwan in northeastern China, J. Asian. Earth. Sci., 176, 315–324, 2019.
Zhang, P., Hu, R. J., Zhu, L. H., Wang, P., Yin, D. X., and Zhang, L. J.:
Distributions and contamination assessment of heavy metals in the surface
sediments of western Laizhou Bay: Implications for the sources and
influencing factors, Mar. Pollut. Bull., 119, 429-438, https://doi.org/10.1016/j.marpolbul.2017.03.046, 2017.
Zhang, X. L., Ye, S. Y., Yin, P., and Chen, D. J.: Characters and successions of
natural wetland vegetation in Yellow River Delta, Ecol. Env. Sci., 18,
292–298, 2009a (in Chinese with English abstract).
Zhang, X. L., Ye, S. Y., Yin, P., and Yuan, H. M.: Flora characteristics of
vascular plants of coastal wetlands in Yellow River Delta, Ecol. Env. Sci.,
18, 600–607, 2009b (in Chinese with English abstract).
Zhang, Z. H., Leduc, G., and Sachs, J. P.: El Niño evolution during the
Holocene revealed by a biomarker rain gauge in the Galápagos Islands,
Earth. Planet. Sc. Lett., 404, 420–434, 2014.
Zheng, Z., Yang, S. X., Deng, Y., Huang, K. Y., Wei, J. H., Berne, S., and Suc, J. P.: Pollen record of the past 60 ka BP in the Middle Okinawa Trough:
Terrestrial provenance and reconstruction of the paleoenvironment,
Palaeogeogr. Palaeocl., 307, 285–300, 2011.
Zhou, L. Y., Liu, J., Saito, Y., Gao, M. S., Diao, S. B., Qiu, J. D., and Pei, S. F.: Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe), Geo-Mar. Lett., 36, 247–258, 2016.
Zhou, W., Wang, X., Zhou, T.J., Li, C., and Chan, J. C. L.: Interdecadal
variability of the relationship between the East Asian winter monsoon and
ENSO, Meteorol. Atmos. Phys., 98, 283–293, 2007.
Zhou, Z., Bian, C., Wang, C., Jiang, W., and Bi, R.: Quantitative assessment on multiple timescale features and dynamics of sea surface suspended sediment
concentration using remote sensing data, J. Geophys. Res.-Oceans., 122,
8739–8752, 2017.
Short summary
In this study, we present pollen and grain size data obtained from the Bohai Sea. The results reveal that soil development and salinity gradients are the main factors determining the vegetation dynamics of coastal wetland. Moreover, our pollen-based temperature index revealed a warm Early Holocene, a cool Middle Holocene and then a relatively warm Late Holocene. The main driving factors of temperature variation in this region are insolation, greenhouse gases and ENSO.
In this study, we present pollen and grain size data obtained from the Bohai Sea. The results...