Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2415-2020
https://doi.org/10.5194/cp-16-2415-2020
Technical note
 | 
02 Dec 2020
Technical note |  | 02 Dec 2020

Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow

Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort

Viewed

Total article views: 2,494 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,559 844 91 2,494 112 78 74
  • HTML: 1,559
  • PDF: 844
  • XML: 91
  • Total: 2,494
  • Supplement: 112
  • BibTeX: 78
  • EndNote: 74
Views and downloads (calculated since 09 Jul 2020)
Cumulative views and downloads (calculated since 09 Jul 2020)

Viewed (geographical distribution)

Total article views: 2,494 (including HTML, PDF, and XML) Thereof 2,243 with geography defined and 251 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.