Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2415-2020
https://doi.org/10.5194/cp-16-2415-2020
Technical note
 | 
02 Dec 2020
Technical note |  | 02 Dec 2020

Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow

Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (07 Sep 2020) by Pierre Francus
AR by Martin Tetard on behalf of the Authors (09 Sep 2020)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (18 Sep 2020) by Pierre Francus
AR by Martin Tetard on behalf of the Authors (22 Sep 2020)  Author's response   Manuscript 
ED: Publish as is (05 Oct 2020) by Pierre Francus
AR by Martin Tetard on behalf of the Authors (09 Oct 2020)  Manuscript 
Download
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.