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Abstract. Identification of microfossils is usually done
by expert taxonomists and requires time and a significant
amount of systematic knowledge developed over many years.
These studies require manual identification of numerous
specimens in many samples under a microscope, which is
very tedious and time-consuming. Furthermore, identifica-
tion may differ between operators, biasing reproducibility.
Recent technological advances in image acquisition, pro-
cessing and recognition now enable automated procedures
for this process, from microscope image acquisition to taxo-
nomic identification.

A new workflow has been developed for automated radio-
larian image acquisition, stacking, processing, segmentation
and identification. The protocol includes a newly proposed
methodology for preparing radiolarian microscopic slides.
We mount eight samples per slide, using a recently developed
3D-printed decanter that enables the random and uniform set-
tling of particles and minimizes the loss of material. Once
ready, slides are automatically imaged using a transmitted
light microscope. About 4000 specimens per slide (500 per
sample) are captured in digital images that include stacking
techniques to improve their focus and sharpness. Automated
image processing and segmentation is then performed using
a custom plug-in developed for the ImageJ software. Each
individual radiolarian image is automatically classified by a
convolutional neural network (CNN) trained on a Neogene
to Quaternary radiolarian database (currently 21 746 images,
corresponding to 132 classes) using the ParticleTrieur soft-
ware.

The trained CNN has an overall accuracy of about 90 %.
The whole procedure, including the image acquisition, stack-

ing, processing, segmentation and recognition, is entirely
automated via a LabVIEW interface, and it takes approx-
imately 1 h per sample. Census data count and classi-
fied radiolarian images are then automatically exported and
saved. This new workflow paves the way for the analysis
of long-term, radiolarian-based palaeoclimatic records from
siliceous-remnant-bearing samples.

1 Introduction

The term radiolarians currently refers to the polycystine ra-
diolarian orders of Spumellaria and Nassellaria (whose shell
is made of opaline silica) that are relatively well preserved
in the fossil record by comparison with the Acantharia and
Phaeodaria groups. Radiolarians are marine micro-organisms
whose siliceous shells are found in the sedimentary record
dating back to their appearance during the Cambrian period
(Boltovskoy, 1999; Lazarus et al., 2005; Suzuki and Not,
2015). While they have been neglected for a long time in
biostratigraphical studies due to several documented cases of
recurrent evolution in the overall morphology of some taxa
(e.g. Schrock and Twenhofel, 1953; Campbell, 1954; Bjørk-
lund and Goll, 1979), radiolarian taxonomy and stratigra-
phy have significantly progressed due to Deep Sea Drilling
Project (DSDP) studies since 1968 (Sanfilippo et al., 1985)
and are currently of major interest. Radiolarians are com-
monly used in biostratigraphy by documenting the presence
or absence of key marker species as well as in palaeoceano-
graphic reconstructions of the past productivity, temperature
and variability of water masses, wherein these approaches
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instead rely on relative species abundances. For both of
these approaches, radiolarians are particularly useful in high-
latitude settings (e.g. the Southern Ocean) where both the
preservation and species diversity of calcareous microfossils
are very low.

Indeed, radiolarian’s delicate siliceous remains have been
proven to be important for decades in micropalaeontologi-
cal studies focusing on palaeoenvironmental reconstructions
from various oceanic areas to investigate primary and ex-
port productivity (e.g. Welling et al., 1992; Lazarus, 2002;
Abelmann and Nimmergut, 2005; Lazarus et al., 2006;
Hernández-Almeida et al., 2013; Matsuzaki et al., 2019), sea
surface temperature (e.g. Abelmann et al., 1999; Lazarus,
2002; Cortese and Abelmann, 2002; Lüer et al., 2008; Panitz
et al., 2015; Kamikuri, 2017; Hernández-Almeida et al.,
2017; Matsuzaki et al., 2019), water masses (e.g. Welling et
al., 1992; Kamikuri et al., 2009; Kamikuri, 2017; Hernández-
Almeida et al., 2017; Matsuzaki et al., 2019) and oxygena-
tion (e.g. Matsuzaki et al., 2019) across the Cenozoic. At
present, radiolarian assemblages are considered to be con-
sistent and valuable micropalaeontological bioindicators, as
they are largely distributed in all oceans dating back to their
appearance and can be very abundant in sediments (e.g. San-
filippo et al., 1985; Boltovskoy, 1998; Hernández-Almeida
et al., 2017).

However, despite their usefulness for such investigations,
radiolarians are not as utilized in the same way as other mi-
crofossil groups, such as benthic and planktic foraminifera,
or nannofossils, such as coccolithophorids. Experts on living
and fossil radiolarians are relatively scarce, and some radi-
olarian species still lack a satisfactory taxonomy, especially
for taxa within the order Spumellaria (Riedel, 1967; Sanfil-
ippo et al., 1985). Identification of a substantial and suffi-
cient number of specimens per sample (usually about 300
for reliable assemblage composition estimations; Fatela and
Taborda, 2002) is very time-consuming and requires a con-
sistent and detailed taxonomic knowledge. Moreover, it is
common for the determination and taxonomy of recovered
specimens of all microfossil groups to be different between
studies; this is especially true for radiolarians, as the above-
mentioned factors can be biased by the subjective appreci-
ation of the operator, influencing the reproducibility of the
census counts.

Recent technological advances in image acquisition, pro-
cessing and recognition have enable automated procedures,
from microscopic slide field-of-view acquisition to taxo-
nomic identification, that can ease radiolarian studies. In the
early 1980s, some authors had already proposed the auto-
matic analysis of the size and shape of a large number of dig-
itized images of assemblages of microfossils (Budai et al.,
1980) in order to investigate the variability of their morphol-
ogy and use it as a palaeoenvironmental descriptor. For more
than 20 years now, the CEREGE laboratory has been a pio-
neer in automated image acquisition and recognition for sev-
eral microfossil groups. Dollfus and Beaufort (1999) devel-

oped a structured multilayer fat neural network for coccolith
recognition, which was first applied in 2001 to Late Pleis-
tocene primary productivity reconstructions (Beaufort et al.,
2001). This formed the base for the following Système de Re-
connaissance Automatique de Coccolithes (SYRACO) work-
flow, which used dynamic neural networks (Beaufort and
Dollfus, 2004) and is still operating today. For the past few
years, the field of computer vision has seen the emergence
and development of convolutional neural networks (CNNs),
a deep-learning approach that enables the automated classifi-
cation of large sets of images. Convolutional neural networks
are a class of deep neural networks that consist of an input
and an output layer as well as multiple convolutional layers.
This architecture is similar to the organization of the visual
cortex in the human brain.

Several workflows inspired by SYRACO and now using
CNNs have been successively developed at CEREGE and ap-
plied to microfossil taxa (e.g. Marchant et al., 2020; Bourel
et al., 2020). Regarding radiolarians, previous attempts have
mainly focused on the identification step. Apostol et al.
(2016) used morphometrical measurements and support vec-
tor machine methods on four radiolarian species recovered
from Triassic sediments. In 2017, Keceli et al. (2017) in-
vestigated scanning electron microscope (SEM) images of
27 selected Triassic species. Renaudie et al. (2018) recently
achieved promising results focusing on the automated iden-
tification of species from the same genus with transmitted
light microscope images. They obtain an overall identifica-
tion accuracy of 73 %, achieved over 16 species from 2 gen-
era, where the morphological difference between species can
be very tricky.

In this paper, we also propose a workflow for the auto-
mated identification of radiolarians. Our approach differs in
that we wanted to generate a neural network that could rec-
ognize most of the common radiolarian species, rather than
those of a specific genus, in order to investigate their abun-
dance (relative and absolute) and diversity and, thus, use
them as bioindicators to reconstruct palaeoenvironmental pa-
rameters. It is necessary to obtain a large database of im-
ages covering the common species in order to train the net-
work. Of the modern living 400 to 500 polycystine species,
about 100 are relatively common (Boltovskoy, 1998); how-
ever, they have yet to be imaged to create a database for au-
tomated recognition purposes. Some online Cenozoic radi-
olarian databases have already existed for a few years (e.g.
WoRaD – Boltovskoy et al., 2010; radiolaria.org – Dolven
and Skjerpen, 2006; and Radworld – Caulet et al., 2006); the
reader is referred to Lazarus et al. (2015) for an extensive
review of the existing databases. However these databases
are more directed toward creating a catalogue for taxonomic
purposes. As such, we created an exhaustive and interac-
tive database specifically for CNN training and automated
recognition purposes – AutoRadio (Automated Radiolarian
database, visible at https://autoradio.cerege.fr, last access:
17 November 2020). To achieve this goal, a new protocol
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for obtaining standard images for inclusion in the database
was required (square images of individual white specimens
on a black background, using a stacking technique if possi-
ble) and was also developed in this study.

2 Material and methods

2.1 Material

Radiolarian microfossils to be used in this study were ex-
tracted from several sediment cores. Core MD97-2140 was
retrieved from the centre of the West Pacific Warm Pool
(WPWP; 2◦02′ N, 141◦46′ E) at a water depth of 2547 m
during the Marion Dufresne IMAGES III-IPHIS cruise in
1997 (Beaufort et al., 1997). This core is currently stored
at the CEREGE laboratory, France. The sediments consist
of a greyish and compact calcareous nannofossil ooze, also
containing abundant radiolarian and foraminiferal faunas (de
Garidel-Thoron et al., 2005).

Several samples were chosen to extract siliceous micro-
fossils and, thus, construct a radiolarian image database.
Their depths within the recovered core are as follows:
3–4 cm, (6.3 ka; de Garidel-Thoron et al., 2005), 48–
49 cm (11.8 ka), 82–83 cm (16.4 ka), 98–99 cm (18.8 ka),
245–246 cm (38.0 ka), 363–364 cm (53.3 ka), 405–406 cm
(63.0 ka), 417–418 cm (67.8 ka), 487–488 cm (77.7 ka), 648–
650 cm (120.4 ka) and 727–728 cm (141.4 ka). For details on
the sample processing and slide preparation, the reader is re-
ferred to Sect. 2.2.

Middle Miocene to Quaternary samples retrieved from the
WPWP were subsequently used to increase the number of
rare and absent species in the database. These cores were
also taken during the Marion Dufresne IMAGES III-IPHIS
cruise, Core MD97-2138 (1◦25′ S, 146◦24′ E; 1960 m b.s.l.;
samples 1760–1761, 2670–2671 and 3151–3152 cm), and
from IODP Expedition 363 (Rosenthal et al., 2018), Holes
U1483A (13◦05.24′ S, 121◦48.25′ E; samples from sections
9H-4W and 14H-5W), U1483B (samples 6H-6W and 18H-
2W), U1486B (2◦22.34′ S, 144◦36.08′ E; samples 3H-3W,
6H-4W and 13H-4W), and U1486C (21H-4W) as well
as about 150 samples from Hole U1488A (2◦02.59′ N,
141◦45.29′ S; samples 6H-3W to 35F-2W).

2.2 Random settling protocol

A new protocol was developed as a proposed standard
methodology for preparing radiolarian microscopic slides. It
places eight samples per standard 76 mm× 26 mm slide us-
ing 12 mm× 12 mm cover slides on which radiolarians are
randomly and uniformly decanted using a new 3D-printed
decanter (Fig. 1a–b). The 3D file for this new decanter
was designed online using the Autodesk, Inc. 3D design
platform Tinkercad (https://www.tinkercad.com/, last access:
17 November 2020), and it is available for free at https://
github.com/microfossil/Decanter (last access: 17 November

Figure 1. (a) Upper view of the new 3D-printed decanter, showing
eight tanks. (b) Cross section of a single tank of the new 3D-printed
decanter. (c) Upper view of the slide guide.

2020). Two other versions of the decanter were designed for
standard 32 mm× 24 mm and 40 mm× 22 mm cover slides,
which are also commonly used in micropalaeontology, and
are also available online. Custom-sized decanters can also
be designed on demand. Our decanters were printed on a
Raise3D fused-deposition-layer-type printer using 1.75 mm
R3D Premium PLA filament and had a material cost of about
EUR 1. Approximately 30 g of filament was used, and 4.5 h
were needed to print the model using a standard resolution
layer height of at least 0.20 mm.

A random settling technique was preferred to a standard
smear slide preparation, as the objective of this study is a de-
tailed quantitative faunal analysis with investigation of the
relative abundances of each taxon (Sanfilippo et al., 1985).
Indeed, a random settling technique provides a more uniform
distribution of the residue, resulting in less clumped particles,
which make it easier to capture digital images of each spec-
imen. The new decanter minimizes the loss of material, and
a slide guide (Fig. 1c) can also be used to align cover slides.
During development, various shapes and sizes of tank were
tested, and the one presented herein was the best compromise
between the quantity of sample material required, the loss of
residue that would not settle on the slide and the quantity of
microfossil residue recovered. This method is an improved
version of the original random settling method developed by
Moore (1973); adapted to radiolarian studies by Boltovskoy
(1998), which provided an even and random distribution of
the shells on a slide; and modified by Beaufort et al. (2014)
to mount up to eight samples on a single micropalaeonto-
logical glass slide. The use of this new device is simple: a
12 mm× 12 mm cover slide is placed in the middle of each
tank and maintained centred by the fins; a solution contain-
ing radiolarians in suspension for each sample is then poured
onto each tank; and after a few minutes of settling on the
cover slides, water is vacuumed out from each hole.

The new radiolarian slide preparation protocol is carried
out using the following steps (nos. 2 to 7 have been adapted
from a similar procedure used to process limestone and cal-
careous sediments):
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1. weigh the sediment;

2. put about 1 g of sediment (depending on the abundance
of radiolarians) in a 200 mL beaker and add a few drops
of distilled water to disaggregate it;

3. add a few millilitres of 37 % hydrochloric acid (HCl)
until the end of the effervescence;

4. add a more few drops of 37 % HCl to ensure the end of
the effervescence;

5. pour the solution and rinse the beaker over a 50 µm
sieve;

6. clean the residues in the sieve using a pressure sprayer
until they appear whitish;

7. rinse the residues using distilled water;

8. weigh a clean glass storage vial;

9. pour the residues from the sieve to the vial using dis-
tilled water;

10. once the residues have decanted, remove the excess wa-
ter using a pipette;

11. place the vial into the oven (about 50 ◦C) until the
residues are dry;

12. weigh the vial again to calculate the weight of the re-
covered residues;

13. gently tap the vial to unstick the residues from the bot-
tom of the vial;

14. put a 12 mm× 12 mm licked or flame-burned cover
slide into one tank of the decanter;

15. take about 0.6 to 1 mg of siliceous residue and drop it
onto 3.5 mL of distilled water;

16. shake this solution to suspend the residue and quickly
pour it into the corresponding tank;

17. wait until the residues have decanted (a few seconds to
minutes) and slowly vacuum out the water from the hole
(Fig. 1b);

18. place the decanter in the oven (about 50 ◦C) to dry the
cover slide;

19. when dry, remove the cover slide from the tank using
plastic tweezers and glue it to a standard glass slide
(76 mm× 26 mm) using optical glue (e.g. NOA81, re-
fractive index of 1.56).

Regarding step no. 2, the reader should consider the fact
that the absolute abundance of radiolarians varies massively
in sediment samples from various parts of the ocean. Thus,
the amount of sediment dissolved into HCl should be cus-
tomized according to the expected abundance.

Regarding step no. 15, for a 12 mm× 12 mm cover slide,
0.6 mg of residue corresponds to the best compromise be-
tween having a sufficient number of radiolarian specimens
and them touching or overlapping too much (see Fig. S1 in
the Supplement). This is desirable as touching specimens can
often not be individually segmented from images, leading to
“double” images containing two or more specimens, which
cannot be easily classified or assigned to a species count.
Distilled water was preferred to ethanol as it leads to less
clustering of specimens.

The volume above the cover slide in the tank corresponds
to about 45 % of the total volume of the tank. According to
the average weight of a radiolarian specimen (about 0.5 µg
Takahashi and Honjo, 1983), the 0.6 mg of siliceous residue
after chemical treatment should then contain about 1200 ra-
diolarians, if it is not “contaminated” by other siliceous par-
ticles, of which about 600 should fall on the cover slide,
thereby resulting in at least 300 specimens that should be
available for identification (the minimum required to charac-
terize an assemblage by most of the statistical studies, e.g.
Fatela and Taborda, 2002). This was confirmed by our tests
that showed an average of 473 complete identifiable radio-
larian specimens per sample (or at least exhibiting more than
50 % of their shell), including at least the medullary shells
for spumellarians, and the cephalis and thorax for nassel-
larians (excluding specimens touching each other and bro-
ken specimens). Depending on the goal and accuracy of your
study, this issue can be easily addressed in the sample prepa-
ration by pouring a solution of the same sample into the
eight tanks of the decanter (or more or less tanks according
to the abundance of radiolarian in the sediment). This way,
no changes are required for the image acquisition part of the
workflow Other testing found that Norland Optical Adhesive
NOA81 glue was preferred to other mounting media, such as
NOA74 or Naphrax, due to its refractive index, consistency
and long-term preservation. Due to the glue’s viscosity, air
bubbles can be trapped in some perforated-type shells, which
are common in Collosphaeridae for example. Although not
ideal, images of specimens containing bubbles that were still
recognizable were retained in the database in order to inte-
grate this variability into the neural network. Although time-
consuming, metal coating (using C or Au/Pd, for example)
is also a very efficient way of increasing contrast prior to
mounting specimens on the slides. The darkfield illumina-
tion technique was too inconsistent in the images produced,
meaning that further tests were not carried out.
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2.3 Automated image acquisition

Particular emphasis was placed on acquiring high-quality
slide images, as being able to recognize different radiolar-
ian species depends on having clearly visible features. How-
ever, it has to be noted that, no matter the image quality, very
small features that can be taxonomically important (for ex-
ample bladed vs. cylindrical spines) are likely to be difficult
for the network to learn, as the morphological variability be-
tween every picture of each class is likely to play a more
important role before the network can focus on such small
features. For each radiolarian microscopic slide, the eight
cover slides (corresponding to eight samples) are automat-
ically and consecutively imaged using a Leica DMR6000
B automated transmitted light microscope (200× magnifi-
cation using a HCX PL FLUOTAR 20× magnification Le-
ica lens) and a Hamamatsu ORCA-Flash4.0 LT camera, con-
trolled via a LabVIEW (National Instruments) interface. The
microscope parameters were set as follows: an intensity of
10, a depth of field of 38, an aperture of 33 and the condenser
was lowered by 9 mm from the glass slide. The LabVIEW
acquisition software parameters were set as follows: an ex-
posure of 9 ms and a gain of 1. These settings provided the
maximum contrast between the glass shells and their mount-
ing medium.

For each sample, 324 fields of view (18× 18 FOVs of
660 µm × 660 µm each within each 12 mm× 12 mm cover
glass) were imaged using a multifocal technique (Fig. 2).
For each FOV, 15 images were acquired by incrementally
stepping the Z focus position through the microscopic slide
(step size of 10 µm) to cover a total focal distance of
150 µm, which corresponds to the thickness of most radiolar-
ian species. This acquisition step takes exactly 1 h per sam-
ple, equating to 8 h per slide.

2.4 Automated image processing and segmentation

Image processing and segmentation is performed via a sec-
ond LabVIEW interface. For each FOV, the batch of 15 im-
ages is automatically stacked using Helicon Focus 7 (Heli-
con Soft) and saved following a CoreName-SampleName-
FOVNumber.jpg pattern (Fig. 2). As the shells are outlined
by the different refractive indices between the shell and the
mounting medium, we did not experienced any identifica-
tion issue with regard to the stacking step, even with small
and/or delicate shells. Every stacked FOV image is then pro-
cessed and segmented into individual specimen images using
a custom plug-in (AutoRadio_Segmenter.ijm) developed for
the ImageJ/Fiji software (V1.52n Schneider et al., 2012). Re-
garding specimens that are cut between two FOVs, if a part of
the shell contains the first chambers (usually for Nasselaria)
it would be identified as the correct class, and the second part
would be identified as “broken”, in order to prevent a double
identification in the correct class. The processing steps are as
follows:

1. open a stacked FOV image;

2. subtract its background;

3. adjust the minimum and maximum greyscale value to
increase its contrast;

4. invert the image and create a mask;

5. threshold it in order to binarize it;

6. blur it and threshold it again to obtain the overall shape
of each particle;

7. separate particles that are in contact with each other
(require the configurable BioVoxxel “Water Irregu-
lar Features” plug-in, available at https://github.com/
biovoxxel/BioVoxxel_Toolbox, last access: 17 Novem-
ber 2020);

8. define regions of interest (ROIs) for each particle;

9. restore ROIs corresponding to every particle on the orig-
inal FOV image;

10. create a square vignette for each particle;

11. save it into the corresponding “Core” folder and “Sam-
ple” subfolder.

Each sample results in approximately 1000 to 3000 indi-
vidual segmented vignettes after the automated image pro-
cessing and segmentation step.

2.5 Database building and CNN training

ParticleTrieur is a dedicated software program developed
at CEREGE (Marchant et al., 2020) that enables the oper-
ator to visualize and assign vignettes to manually defined
classes; the program uses the k-NN (k-nearest-neighbours)
algorithm to aid in identification by self-learning and pro-
gressively suggesting identification once enough radiolarian
pictures are identified (the reader is referred to Marchant
et al. (2020) for more information). Using this software, a
large dataset of radiolarian taxa images (called the AutoRa-
dio Database) was progressively built (the current version
of the database used in this study can be downloaded from
http://microautomate.cerege.fr/dat, last access: 17 Novem-
ber 2020, and is freely accessible online as a catalogue at
https://autoradio.cerege.fr/database/, last access: 17 Novem-
ber 2020). It is currently composed of 21 746 images, corre-
sponding to 132 classes/taxa. Each class contains between 1
and about 1000 images.

Once labelled, this database was used to train a CNN (con-
volutional neural network) for the automated taxonomical
identification of radiolarian vignettes resulting from the au-
tomated microscope image acquisition, processing and seg-
mentation steps. The best results were obtained using a
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Figure 2. Automated radiolarian image acquisition, processing and identification workflow. Panels 1 and 2 (red rectangle) show the auto-
mated acquisition steps. Panel 3 (orange rectangle) shows the automated FOV image stacking step. Panels 4, 5 and 6 (purple rectangle) show
the automated FOV image processing and segmentation steps. Panel 7 (blue rectangle) shows the automated recognition step. Panel 8 (green
rectangle) shows the automated export of classified images, census counts and morphometric measurements.

ResNet50 topology (residual nets with a depth of 50 lay-
ers; He et al., 2015) with added cyclic (Dieleman, 2016)
and gain layers (resnet50_cyclic_gain_tl; see Marchant et al.,
2020, for a detailed description of the network), greyscale
images resized to 256 px× 256 px, a batch size (number
of images presented per training iteration) of 64, 30 epochs
and four drops for the adaptive learning rate (ALR) system,
and augmentation (Marchant et al., 2020). This training pro-
cess lasts about 30 min and generates two files that can then
be used for automated recognition (network_info.xml and
frozen_model.pb files).

2.6 Automated taxonomic identification

Once individual vignettes of radiolarian specimens are gen-
erated and saved during the ImageJ processing and segmen-

tation step, they are automatically opened in ParticleTrieur
using its server mode, which is controlled by the second Lab-
VIEW interface. These vignettes are then automatically as-
signed to a class using the trained CNN. Following this, in-
dividual vignettes are automatically moved into folders cor-
responding to their core and sample and into subfolders cor-
responding to their assigned class. Using one microscope,
about 8000 individuals from two slides (16 cover slides cor-
responding to 16 samples) can be imaged per day (about 500
specimens per sample, from the original 1000 to 3000 vi-
gnettes per sample). This fully automated stacking, process-
ing, segmentation and identification step takes about 50 min
per sample and operates in parallel to the image acquisition
step.

Two types of data are then automatically exported (Fig. 2):
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1. For each sample, a “sample results” file is generated that
assembles metadata and morphometric measurements.
Each taxonomic ID is then returned to the LabVIEW
interface and indexed with its corresponding vignette
name (also containing the core, sample, FOV and vi-
gnette numbers in each column) into a .txt file for each
vignette (in each row). For each specimen, morphome-
tric measurements, such as “Area”, “Diameter”, “Ma-
jor Axis”, “Minor Axis”, “Circularity”, “Roundness”,
“Solidity” and “Eccentricity” are also automatically ap-
pended to the .txt file.

2. For each core, census data counts of each sample are au-
tomatically compiled. A “core results” file is generated
during this process where the abundance of each taxon
(in column) for each sample (in row) is automatically
incremented.

3 Results and discussion

3.1 Description of the database

Of the 21 746 images used to construct the database, 132
morphoclasses (morphological classes) were created. Of all
these classes, 124 belong to Neogene to Quaternary radio-
larian taxa (116 classes corresponding to species or groups
of two to three species and containing 11 126 images, 7
classes corresponding to genera and containing 1932 im-
ages, and 1 corresponding to family and containing 677 im-
ages) and are part of the Spumellaria families Actinommidae,
Coccodiscidae, Heliodiscidae, Litheliidae, Pyloniidae, Spon-
godiscidae, and Tholoniidae; and of the Nassellaria fami-
lies Artostrobiidae, Cannobotryidae, Carpocaniidae, Collo-
zoidae, Plagiacanthidae, Pterocorythidae, Theoperidae and
Trissocyclidae (see Fig. 3, which includes some example im-
ages). Eight non-radiolarian classes (corresponding to “back-
ground”, “broken” specimens, air “bubble”, “diatom”, “dou-
ble”, “porous fragments”, siliceous “particles”, and “spicule”
and containing 8011 images) were also defined to train the
network to recognize these non-radiolarian images that usu-
ally represent half to four-fifths of the total vignettes.

An extensive overview of the existing Neogene to Qua-
ternary literature was used for the taxonomy and identifi-
cation of each class as well as to define our assemblages
and the observed taxa as accurately as possible (including
Ling and Anikouchine, 1967; Nigrini and Moore, 1979; Ni-
grini and Lombari, 1984; Boltovskoy and Jankilevich, 1985;
Caulet and Nigrini, 1988; Takahashi, 1991; Abelmann, 1992;
Boltovskoy, 1998, 1999; Sharma et al., 1999; Nigrini and
Sanfilippo, 2001; Itaki et al., 2003; Kamikuri et al., 2009;
Zhang et al., 2009; Lazarus et al., 2015; Matsuzaki et al.,
2015; Motoyama et al., 2016; Boltovskoy et al., 2017; Mat-
suoka, 2017; Zhang and Suzuki, 2017; Sandoval, 2018). Syn-
onymies were also taken into account, especially regarding
the work of Boltovskoy (1998, 1999). This means that a few

Figure 3. Examples of radiolarian vignettes generated by the
automated acquisition, processing and recognition workflow for
(a) Lamprocyclas maritalis, (b) Lamprocyrtis hannai, (c) Theo-
corythium trachelium, (d) Pterocanium trilobum, (e) Pterocanium
praetextum, (f) Eucecryphalus sestrodiscus, (g) Eucyrtidium acumi-
natum/hexagonatum, (h) Acrosphaera spinosa, (i) Solenosphaera
chierchiae, (j) Collosphaera tuberosa, (k) Didymocyrtis tetratha-
lamus tetrathalamus, (l) Hexacontium spp., (m) Stylatractus nep-
tunus, (n) Heliodiscus asteriscus and (o) the Tetrapyle octacantha
group. The scale bar represents 100 µm.

species were regrouped into a single class when a significant
morphological gradation was observed and when the limit
between the considered species was blurry (e.g. Eucyrtidium
acuminatum and E. hexagonatum; Sithocampe arachnea and
S. lineata; Actinomma henningsmoeni and A. leptodermum).
Conversely, ontogenetic stages are clearly visible in numer-
ous species-level classes and, once sufficiently imaged, could
be distinguished into separated classes. All manual taxo-
nomic IDs during the building of the database were reviewed
by a radiolarian taxonomy expert (Giuseppe Cortese) to en-
sure consistent and accurate identifications.

3.2 Results of the CNN training

One of the best ways to assess the efficiency of a trained CNN
is to look at its confusion matrix (Fig. 4; the original excel
spreadsheet is available in the Supplement, see Table S1).
Right before the training step, the dataset is automatically
split into two subsets: one is the training set, and the other is
the test set. The data split chosen for this study is one-fifth.
This means that four-fifths of the original images are used for
training (training set) while the remaining one-fifth (test set)
of the original images is used for testing the CNN efficiency
by calculating several indices. The efficiency results are then
represented by the overall accuracy Eq. (1), precision Eq. (2),
recall Eq. (3) and the individual recall for each class, with
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these terms defined as follows:

Accuracy=
number of images correctly classified

total number of images
(1)

The accuracy is the overall performance of the system re-
gardless of class. If you select a random image from the
dataset and classify it, the overall accuracy is the probabil-
ity (in percent) that the returned classification is correct.

Precision=
number of images that were classified as class N and actually belong to class N

total number of images classified as class N
(2)

Precision is a metric for a specific class: it is the probabil-
ity (in percent) that an image classified as class N is actually
from class N , divided by the total number of images classi-
fied as class N .

Recall=
number of images in class N that were correctly classified

total number of images in class N
(3)

For a specific class, recall is the probability (in percent)
that a random image from class N is correctly classified, di-
vided by the number of images belonging to class N . Re-
call is basically the accuracy of a single class. Individual re-
call scores for each class are visible in the confusion matrix
(Fig. 4) as the percentage of class N (row) that was identified
as various classes (column). For example, for the first row
“Acanthodesmia vinculata”, 95 % of the images belonging to
this class were correctly identified, whereas 5 % were clas-
sified as “Lophospyris pentagona pentagona”. If the CNN
training was perfect, the diagonal should only exhibit “100”
values. The single overall recall and precision scores are the
respective values averaged across all the classes.

During the CNN training, all classes containing less than
10 images (corresponding to rare species that currently lack
images) were automatically fused into a single “other” class.
Of the original 132 classes, 109 classes (including 101 ra-
diolarian classes from the middle Miocene to the Quater-
nary, and 8 non-radiolarian classes) were then trained to be
recognized with a current overall precision accuracy of just
above 90 % (90.1 %) over every class. The average precision
is above 85 % (85.6 %), and the average recall is about 81 %
(80.7 %). A closer look at the matrix shows that classes with
a low recall score usually correspond to classes containing
an insufficient number of images (rare species, difficult to
get on slide, that would require a significant amount of sam-
ples to be processed before enough individual images were
generated), usually less than 30 images (e.g. Axoprunum ac-
quilonium: 20 %, contains only 25 images; Clathrocanium
coarctatum: 50 %, contains only 12 images), while several
hundred images per class are usually recommended. More
images, at least 150 (ideally 300) in total for each class, as
defined above, are then likely to increase the recall and ac-
curacy of these under-represented classes. To this end, the

database will be updated and populated gradually through
the automated processing of new samples. As the objective
of this database is to be open-access and interactive, people
are encouraged to send and/or add pictures of these under-
represented classes and to send any suggestion to improve the
taxonomical framework of the database (see the online con-
tact form at https://autoradio.cerege.fr/contact/, last access:
17 November 2020).

While the ability of the network to distinguish between
morphologically and taxonomically very dissimilar taxa is
very strong (Fig. 4: almost every value outside of the squares
corresponds to family groupings in the confusion matrix that
are 0; most of the specimens are usually assigned to their
correct family: Actinommidae: 93 %; Coccodiscidae: 93 %;
Heliodiscidae: 100 %; Lithelidae: 88 %; Pyloniidae: 95 %;
Spongodiscidae: 96 %; Artostrobiidae: 97 %; Cannobotryi-
dae: 95 %; Carpocaniidae: 93 %; Collozoidae: 99 %; Plagia-
canthidae: 87 %; Pterocorythidae: 98 %; Theoperidae: 96 %;
Trissocyclidae: 99 %), we also tested its ability to distin-
guish between morphologically very similar forms, usu-
ally corresponding to closely related taxa (species or gen-
era) by computing the accuracy of each radiolarian fam-
ily present in the database (using the number of specimens
of the test set and recall score for each class). Overall, the
intra-family accuracy for each family is very high (Actinom-
midae: 80 %; Coccodiscidae: 89 %; Heliodiscidae: 100 %;
Lithelidae: 84 %; Pyloniidae: 90 %; Spongodiscidae: 89 %;
Artostrobiidae: 93 %; Cannobotryidae: 95 %; Carpocaniidae:
93 %; Collozoidae: 91 %; Plagiacanthidae: 85 %; Pterocory-
thidae: 92 %; Theoperidae: 93 %; Trissocyclidae: 94 %). For
each class, the top three classes that were most often con-
fused with it are summarized in Table S2. Most of the mis-
classification usually occurs with classes of the same family
or with the “broken” class, where a specific part of the inves-
tigated class might be recognized (e.g. part of a cephalis or
part of a thorax, although always incomplete).

As attempts to use genus- or higher-level taxa as radiolar-
ian proxies in palaeoenvironmental research have yielded al-
most no useful signals, we tried to integrate as many classes
corresponding to species-level taxa in our network as pos-
sible. However, the whole workflow is a compromise be-
tween distinguishing as many species as possible and trying
to maintain good accuracy for each class, which mostly de-
pends on the growing number of images in each of them. The
more images that are progressively added to the database, the
more accurate the identification will be, and the closer to the
species-level we will be able to go for each class. It should
be noted that geographic variation in morphology that might
affect the system’s performance has not yet been taken into
account, although the addition of samples from other loca-
tions to cover the species-specific variation in morphology
linked with spatial distribution is planned. The morphologi-
cal variation over time (within lineages, for example) should
not affect the system’s performance, as each class contains
images of specimens usually covering the species’ lifespan.
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Figure 4. Confusion matrix showing the overall and individual accuracy, precision and recall for the 109 trained classes. Squared groupings
correspond to radiolarian families. This figure is also available as a scrollable Excel spreadsheet in the Supplement (Table S1).

3.3 Accuracy of the trained CNN on a random set of
samples

In order to test the reliability and reproducibility of our
trained CNN on actual samples, a slide with eight cover
slides containing siliceous particles from eight random sam-
ples with variable radiolarian abundances was selected. Four
Quaternary samples (400 to 6400 years BP) from Core
U1488A and four Miocene samples (10.116 to 10.694 Ma)
from Core U1483 (both from IODP Expedition 363) were
then prepared, and their identification scores were computed.
This slide was automatically imaged, FOV pictures were au-
tomatically segmented and individual vignettes were auto-
matically identified using the trained CNN. After a man-
ual verification of every automated identification, six indices

were computed: (1) the percentage of radiolarian images rec-
ognized as radiolarians (Fig. 5a); (2) the percentage of ra-
diolarian images recognized as the correct radiolarian taxa
(Fig. 5c); (3) the percentage of non-radiolarian images rec-
ognized as non-radiolarian particles (Fig. 5b); (4) the per-
centage of non-radiolarian images recognized as the correct
particle class (Fig. 5d); (5) the percentage of non-radiolarian
images recognized as radiolarian (non-radiolarian false pos-
itive; Fig. 5e); and (6) the percentage of radiolarian recog-
nized as non-radiolarian (radiolarian false positive; Fig. 5f).

Overall, 7800 vignettes were identified and manually
checked among the eight samples containing between 444
and 1502 images each. The abundance of radiolarians ranged
from 176 to 697 specimens per sample. The results show that
the six indices exhibit very close values between the eight
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Figure 5. Identification indices evaluated on eight Quaternary and Miocene random samples recovered from cores U1483 and U1488A
(IODP Expedition 363).

samples. On average, the proportion of radiolarians actually
recognized as radiolarian is very high, about 100 % (Fig. 5a),
and the proportion of radiolarians identified as the correct
radiolarian taxa is about 93 % (Fig. 5b). Thus, almost all ra-
diolarian images are recognized as radiolarian with a 7 % er-
ror regarding their species identification. Regarding the non-
radiolarian images, more than 95 % are recognized as non-

radiolarian (Fig. 5c) and, again, about 95 % are assigned to
the correct class (Fig. 5d).

False positive identifications were also investigated and
are relatively low. Among all of the images identified as non-
radiolarians, only 0.08 % should be assigned to radiolarians,
and among all the images automatically recognized as radi-
olarians, about 6 % are non-radiolarian images. Within these
6 %, most of the non-radiolarian images confused with radio-
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larians exhibit radiolarian features and correspond to the non-
radiolarian classes “broken” and “double” that either contain
incomplete radiolarians or radiolarians touching each other
and cannot be assigned to a single species. These false posi-
tives are then usually assigned, in the “broken” class case, to
the species partially present in the image, or in the “double”
class case, to one of the species that can be distinguished.

3.4 Interest for biostratigraphic studies

The new automated radiolarian identification workflow is
also of interest for biostratigraphic studies, as radiolarian fau-
nal events, such as first occurrences (FOs) and last occur-
rences (LOs) of radiolarian taxa (about 30 zones were de-
fined for the Cenozoic; Sanfilippo et al., 1985) are commonly
used for biostratigraphic studies of the Neogene to Quater-
nary interval (Nigrini, 1971; Lazarus et al., 1985; Johnson
et al., 1989; Moore, 1995; Sanfilippo and Nigrini, 1998; Ni-
grini and Sanfilippo, 2001; Vigour and Lazarus, 2002; Ni-
grini et al., 2005; Kamikuri et al., 2009; Kamikuri, 2017).
The known stratigraphic ranges of the 101 middle Miocene to
Quaternary radiolarian classes included in our database can
then be used to automatically assign an age to any sample,
according to the composition of its radiolarian assemblage.
This operative workflow, which is automated from the image
acquisition to the census counts and can suggest an age for
the processed sample, could thus significantly contribute to
the field of biostratigraphy.

3.5 Application to other datasets and other studies

To test the potential application and limits of our trained
CNN on existing sets of images, we compiled various in-
dividual images of radiolarians from the literature including
un-stacked optical microscope images and SEM images. We
then performed a simple colour inversion of the optical mi-
croscope image to obtain white specimens on a dark back-
ground. Of the hundred images tested, about half were cor-
rectly recognized, whereas the others were mostly assigned
to the “background” class, likely due to the blurry shell edges
of the un-stacked images, and to the “broken” class, as only
part of the shell was probably recognized. While this 50 %
accuracy on a random set of un-stacked optical microscope
and SEM images may seem relatively low and arbitrary, it is
very encouraging and promising for the development of fu-
ture and extensive neural networks for automated radiolarian
recognition regardless of the imaging method.

4 Conclusions

A new automated radiolarian workflow was developed and
consists of a sequence of six steps:

1. a new microscopic slide preparation protocol to enable
an efficient automated image acquisition on transmitted

light microscopes and decrease the loss of material, as
this can limit the investigation of samples where radio-
larians are scarce;

2. automated microscope image acquisition that can auto-
matically image microscopic slides bearing up to eight
samples (324 FOV images per sample) at different focal
depths (15 images per FOV, every 10 µm in depth);

3. automated stacking of each batch of FOV images (using
depth maps) to generate a single clear FOV with clearly
distinct radiolarian specimens;

4. automated FOV image processing (contrast enhance-
ment, B&W inversion) and segmentation to generate in-
dividual images for every radiolarian specimen;

5. automated radiolarian recognition using a CNN, as well
as calculating morphometric measurements;

6. automated export of census data per sample (usually
about 500 radiolarian images per sample) and storage
of radiolarian images in folders corresponding to their
taxonomic identification for every sample.

The whole procedure is then entirely automated from the
image acquisition to the census counts and only requires
the operator to prepare the micropalaeontological slides and
put them under the microscope. Thus, the operative work-
flow described in this study can perform complex, tedious,
time-consuming tasks such as taxonomic identification and
census counts by producing reliable, reproducible and ac-
curate results. Moreover, as the system can identify most
of the common Miocene to Quaternary species, taxonomic
specialists can focus on unknown and poorly documented
forms. This workflow is achieved using a polyvalent and ex-
tensive radiolarian image database (currently 21 746 images)
and a ResNet CNN trained using transfer learning for mod-
ern and Neogene radiolarian identification. The CNN is cur-
rently able to recognize 109 classes with an average preci-
sion of about 90 %, which is an overall score that was also
obtained on a test performed on eight random samples con-
taining about 7800 images.

Although the database already incorporates 124 radiolar-
ian taxa, the main limitation of our system is that it does
not yet cover the entire scope of radiolarian diversity, which
can be relatively high in tropical and subtropical areas (about
500 species), but only equatorial sediments, although these
sediments exhibit numerous worldwide species. In order to
continue to increase its efficiency, more images are required,
particularly for rare species and from other oceanic regions.
The more samples that are processed using the automated
workflow, the more images will be progressively added to
the database. To this end, the database was also made open-
access and interactive in order to rapidly increase the num-
ber of images (see online at https://autoradio.cerege.fr), espe-
cially for rare species where the recall score is relatively low,
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which is most likely due to low numbers of training images
for these taxa.

This new workflow and associated CNN has the potential
to make palaeoclimate studies more approachable and fea-
sible, along with biostratigraphy for very long sequences. It
can be easily installed in other laboratories equipped with
an automated microscope, as most of our developments are
made open-access. The radiolarian census data can then be
used to investigate the radiolarian assemblages’ variability
for biostratigraphical purposes and to develop, apply and im-
prove existing assemblage-based palaeoenvironmental prox-
ies such as SSTs (e.g. radiolarian-based palaeotemperatures
for the late Quaternary, Cortese and Abelmann, 2002; sub-
tropical (ST) index, Lüer et al., 2008; radiolarian temper-
ature index (RTI), applied to Miocene samples, Kamikuri,
2017) and palaeoproductivity (e.g. upwelling radiolarian in-
dex (URI), Caulet et al., 1992; water depth ecology index
(WADE), Lazarus et al., 2006). It also enables the investi-
gation of evolutionary trends, the appearance of new species
and the rate of evolutionary change, which are fascinating
topics regarding radiolarians and other microfossil groups.

This dataset and following studies also enable the fast and
accurate measurement of numerous morphometric parame-
ters for each vignette that was assigned a class in the auto-
mated recognition step. In addition to the previous research
applications, the morphometry aspect provides the possibil-
ity to investigate the link between the morphological variabil-
ity of a species or an assemblage through time along a sedi-
mentary record and elaborate and/or test scenarios to explain
such variability. This new workflow will now be used on two
Neogene to Holocene sedimentary records from IODP Expe-
dition 363 (Hole U1483A and Hole U1488A), recovered in
the West Pacific Warm Pool.

Code availability. A semi-automated version of the AutoRa-
dio_Segmenter.ijm plug-in (automated image processing per-
formed on ImageJ/Fiji), developed to process a root folder
(“Core”), containing subfolders (“Samples”) of images (“FOVs”)
is available online for free at https://github.com/microfossil/
ImageJ-LabView-Scripts (Tetard and Marchant, 2020). To use it,
download the .ijm file and save it into the ImageJ/plug-ins folder; it
will then be available for use after restarting ImageJ/Fiji.

Data availability. The original version of the AutoRadio database
used in this study can be downloaded from http://microautomate.
cerege.fr/dat (Tetard et al., 2020). It is currently composed of 21 746
images, corresponding to 132 classes/taxa.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-16-2415-2020-supplement.
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