Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface paleothermometry using low-temperature thermoluminescence of feldspar
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne,
Switzerland
Frédéric Herman
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne,
Switzerland
Georgina E. King
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne,
Switzerland
Benjamin Lehmann
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne,
Switzerland
Ashok K. Singhvi
Atomic, Molecular and Optical Physics, Physical Research Laboratory,
Ahmedabad, India
Related authors
No articles found.
Benny Guralnik and Georgina Elizabeth King
EGUsphere, https://doi.org/10.5194/egusphere-2025-4186, https://doi.org/10.5194/egusphere-2025-4186, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Luminescence dating of feldspar minerals is widely applied in geology and archaeology. However, the luminescence of feldspar is prone to signal loss termed anomalous fading, which must be accounted for to avoid age underestimation. Here, we critically review the different mathematical approaches for anomalous fading correction, and present new, computationally efficient, analytical expressions for the two most ubiquitous fading correction schemes.
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology, 6, 665–682, https://doi.org/10.5194/gchron-6-665-2024, https://doi.org/10.5194/gchron-6-665-2024, 2024
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Melanie Bartz, Jasquelin Peña, Stéphanie Grand, and Georgina E. King
Geochronology, 5, 51–64, https://doi.org/10.5194/gchron-5-51-2023, https://doi.org/10.5194/gchron-5-51-2023, 2023
Short summary
Short summary
Chemical weathering alters the chemical composition of mineral grains, and it follows that luminescence dating signals may also be progressively modified. We artificially weathered feldspar samples under different chemical conditions to understand the effect of feldspar partial dissolution on their luminescence properties. Only minor changes were observed on luminescence dating properties, implying that chemical alteration of feldspar surfaces may not affect luminescence dating signals.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Short summary
The cooling climate of the last few million years leading into the ice ages has been linked to increasing erosion rates by glaciers. One of the ways to measure this is through mineral cooling ages. In this paper, we investigate potential bias in these data and the methods used to analyse them. We find that the data are not themselves biased but that appropriate methods must be used. Past studies have used appropriate methods and are sound in methodology.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Cited articles
Aitken, M. J.: Thermoluminescence dating, Academic press, London, 1985.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O.,
Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental
climate reconstructions at 6 and 21 ka: a global synthesis, Clim.
Dynam., 37, 775–802, 2011.
Biswas, R. H., Herman, F., King, G. E., and Braun, J.: Thermoluminescence of
feldspar as a multi-thermochronometer to constrain the temporal variation of
rock exhumation in the recent past, Earth Planet. Sc. Lett.,
495, 56–68, 2018.
Bøtter-Jensen, L., Thomsen, K. J., and Jain, M.: Review of optically
stimulated luminescence (OSL) instrumental developments for retrospective
dosimetry, Radiat. Meas., 45, 253–257, 2010.
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C.,
Pedersen, V., Perry, C., Simon-Labric, T., and Prigent, C.: Quantifying
rates of landscape evolution and tectonic processes by thermochronology and
numerical modeling of crustal heat transport using PECUBE, Tectonophysics,
524–525, 1–28, 2012.
Brown, N. D., Rhodes, E. J., and Harrison, T. M.: Using thermoluminescence signals
from feldspars for low-temperature thermochronology, Quat.
Geochronol., 42, 31–41, 2017.
Chauhan, N. and Singhvi, A. K.: Changes in the optically stimulated luminescence
(OSL) sensitivity of single grains of quartz during the measurement of
natural OSL: Implications for the reliability of optical ages, Quat.
Geochronol., 53, 101004, https://doi.org/10.1016/j.quageo.2019.101004, 2019.
Duller, G. A. T.: Behavioural studies of stimulated luminescence from
feldspars, Radiat. Meas., 27, 663–694, 1997.
Durrani, S. A., Khazal, K. A. R., and Ali, A.: Temperature and duration of the
shadow of a recently-arrived lunar boulder, Nature, 266, 411–415, 1977.
Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., and Stephenson, J.:
Markov chain Monte Carlo (MCMC) sampling methods to determine optimal
models, model resolution and model choice for Earth Science problems, Mar.
Petrol. Geol., 26, 525–535, 2009.
Grün, R. and Packman, S. C.: Observations on the kinetics involved in the TL
glow curves in quartz, K-feldspar and Na-feldspar mineral separates of
sediments and their significance for dating studies, Radiat. Meas.,
23, 317–322, 1994.
Guralnik, B., Jain, M., Herman, F., Ankjærgaard, C., Murray, A. S.,
Valla, P. G., Preusser, F., King, G. E., Chen, R., Lowick, S. E., Kook, M., and
Rhodes, E. J.: OSL-thermochronometry of feldspar from the KTB borehole,
Germany, Earth Planet. Sc. Lett., 423, 232–243, 2015a.
Guralnik, B., Li, B., Jain, M., Chen, R., Paris, R. B., Murray, A. S.,
Li, S.-H., Pagonis, V., Valla, P. G., and Herman, F.: Radiation-induced growth and
isothermal decay of infrared-stimulated luminescence from feldspar,
Radiat. Meas., 81, 224–231, 2015b.
Guralnik, B. and Sohbati, R.: Fundamentals of Luminescence Photo-and
Thermochronometry, in: Advances In Physics And Applications Of Optically And
Thermally Stimulated, World Scientific publication, 475, 399–437, https://doi.org/10.1142/9781786345790_0011, 2019.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset
in steep alpine rock and ice faces, The Cryosphere, 5, 977–988,
https://doi.org/10.5194/tc-5-977-2011, 2011.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A.,
Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M., Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P.,
Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate
records 60–8 ka in the Austrian and Swiss Alps and their forelands,
Quaternary Sci. Rev., 106, 186–205, 2014.
Herman, F. and King, G. E.: Luminescence Thermochronometry: Investigating the
Link between Mountain Erosion, Tectonics and Climate, Elements, 14, 33–38,
2018.
Herman, F., Rhodes, E. J., Braun, J., and Heiniger, L.: Uniform erosion rates and
relief amplitude during glacial cycles in the Southern Alps of New Zealand,
as revealed from OSL-thermochronology, Earth Planet. Sc. Lett.,
297, 183–189, 2010.
Hoelzle, M., Wegmann, M., and Krummenacher, B.: Miniature temperature
dataloggers for mapping and monitoring of permafrost in high mountain areas:
first experience from the Swiss Alps, Permafrost Periglac.,
10, 113–124, 1999.
Huntley, D. J.: An explanation of the power-law decay of luminescence, J. Phys.-Condens. Mat., 18, 1359–1365, 2006.
Huntley, D. J. and Lian, O. B.: Some observations on tunnelling of trapped
electrons in feldspars and their implications for optical dating, Quaternary
Sci. Rev., 25, 2503–2512, 2006.
Hütt, G., Jaek, I., and Tchonka, J.: Optical dating: K-feldspars optical response stimulation spectra, Quaternary Sci. Rev., 7, 381–385, 1988.
Jain, M., Guralnik, B., and Andersen, M. T.: Stimulated luminescence emission
from localized recombination in randomly distributed defects, J.
Phys.-Condens. Mat., 24, 385402, https://doi.org/10.1088/0953-8984/24/38/385402, 2012.
Jones, P. D. and Mann, M. E.: Climate over past millennia, Rev. Geophys.,
42, RG2002, https://doi.org/10.1029/2003RG000143, 2004.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards anomalous
fading correction for feldspar IRSL dating – tests on samples in field
saturation, Radiat. Meas., 43, 786–790, 2008.
King, G. E., Herman, F., and Guralnik, B.: Northward migration of the eastern
Himalayan syntaxis revealed by OSL thermochronometry, Science, 353, 800–804,
2016a.
King, G. E., Herman, F., Lambert, R., Valla, P. G., and Guralnik, B.:
Multi-OSL-thermochronometry of feldspar, Quat. Geochronol., 33,
76–87, 2016b.
King, G. E., Tsukamoto, S., Herman, F., Biswas, R. H., Sueoka, S., and Tagami, T.: Electron spin resonance (ESR) thermochronometry of the Hida range of the
Japanese Alps: validation and future potential, Geochronology, 2, 1–15,
https://doi.org/10.5194/gchron-2-1-2020, 2020.
Lambert, R., King, G. E., Valla, P. G., and Herman, F.: Validating multiple
first-order kinetic models for feldspar thermal decay in luminescence
thermochronometry, Radiat. Meas., under review, 2020.
Lehmann, B., Herman, F., Valla, P. G., King, G. E., and Biswas, R. H.: Evaluating post-glacial bedrock erosion and surface exposure duration by coupling in situ optically stimulated luminescence and 10Be dating, Earth Surf. Dynam., 7, 633–662, https://doi.org/10.5194/esurf-7-633-2019, 2019.
Lehmann, B., Herman, F., Valla, P. G., King, G. E., Biswas, R. H.,
Ivy-Ochs, S., Kroning, O., and Christl, M.: Post-glacial erosion of polished bedrock
surfaces and deglaciation timing: new insights from the Mont Blanc massif
(Western Alps), Geology, 48, 139–144, 2020.
Li, B. and Li, S.-H.: Determining the cooling age using
luminescence-thermochronology, Tectonophysics, 580, 242–248, 2012.
Li, B. and Li, S.-H.: The effect of band-tail states on the thermal stability
of the infrared stimulated luminescence from K-feldspar, J. Lumin., 136, 5–10, 2013.
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, 2017.
Magnin, F., Etzelmüller, B., Westermann, S., Isaksen, K., Hilger, P., and Hermanns, R. L.: Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes, Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019, 2019.
McKeever, S. W. S.: On the analysis of complex thermoluminescence.
Glow-curves: Resolution into individual peaks, Phys. Status Solidi A,
62, 331–340, 1980.
Morthekai, P., Biswas, R. H., and Singhvi, A. K.: Charge transport in band-tail
states of irradiated alkali feldspar I: Super-Arrhenius kinetics, Physica B, 561, 103–110, 2019.
Pagonis, V., Morthekai, P., and Kitis, G.: Kinetic analysis of
thermoluminescence glow curves in feldspar: evidence for a continuous
distribution of energies, Geochronometria, 41, 168–177, 2014.
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de
Beaulieu, J.-L., Bottema, S., and Andrieu, V.: Climatic Reconstruction in Europe for
18,000 YR B. P. from Pollen Data, Quaternary Res., 49, 183–196, 1998.
Poolton, N. R. J., Ozanyan, K. B., Wallinga, J., Murray, A. S., and
Bøtter-Jensen, L.: Electrons in feldspar II: a consideration of the
influence of conduction band-tail states on luminescence processes, Phys.
Chem. Miner., 29, 217–225, 2002.
rabiul-code: TL_Paleothermometry, available at: https://github.com/rabiul-code/TL_Paleothermometry, last access: 11 September, 2020.
Ronca, L. B.: Minimum length of time of frigid conditions in Antarctica as
determined by thermoluminescence, Am. J. Sci., 262, 767–781,
1964.
Ronca, L. B. and Zeller, E. J.: Thermoluminescence as a function of climate and
temperature, Am. J. Sci., 263, 416–428, 1965.
Schwander, J., Eicher, U., and Ammann, B.: Oxygen isotopes of lake marl at
Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor
oscillations, and their correlation to the GRIP ice core, Palaeogeogr. Palaeocl., 159, 203–214, 2000.
Singhvi, A. K., Chauhan, N., and Biswas, R. H.: A Survey Of Some New Approaches In
Extending The Maximum Age Limit And Accuracy Of Luminescence Application To
Archaeological Chronometry, Mediterr. Archaeol. Ar., 10,
9–15, 2010.
Singhvi, A. K., Stokes, S. C., Chauhan, N., Nagar, Y. C., and Jaiswal, M. K.:
Changes in natural OSL sensitivity during single aliquot regeneration
procedure and their implications for equivalent dose determination,
Geochronometria, 38, 231–241, 2011.
Strickertsson, K.: The thermoluminescence of potassium feldspars – Glow
curve characteristics and initial rise measurements, Nucl. Tracks Rad. Meas., 10, 613–617, 1985.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Tachiya, M. and Mozumder, A.: Decay of trapped electrons by tunnelling to
scavenger molecules in low-temperature glasses, Chem. Phys. Lett.,
28, 87–89, 1974.
Tang, S.-L. and Li, S.-H.: Low temperature thermochronology using thermoluminescence signals from K-feldspar, Geochronometria, 44, 112–120, 2017.
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Siam, Philadelphia, 2005.
Tierney, J. E., Schouten, S., Pitcher, A., Hopmans, E. C., Sinninghe
Damsté, J. S.: Core and intact polar glycerol dialkyl glycerol
tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): Insights into
the origin of lacustrine GDGTs, Geochim. Cosmochim. Ac., 77,
561–581, 2012.
Tremblay, M. M., Shuster, D. L., and Balco, G.: Cosmogenic noble gas
paleothermometry, Earth Planet. Sc. Lett., 400, 195–205, 2014a.
Tremblay, M. M., Shuster, D. L., and Balco, G.: Diffusion kinetics of 3He and 21Ne
in quartz and implications for cosmogenic noble gas paleothermometry,
Geochim. Cosmochim. Ac., 142, 186–204, 2014b.
van Raden, U. J., Colombaroli, D., Gilli, A., Schwander, J.,
Bernasconi, S. M., van Leeuwen, J., Leuenberger, M., and Eicher, U.: High-resolution
late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP, Palaeogeogr. Palaeocl., 391, 13–24, 2013.
Wheelock, B., Constable, S., and Key, K.: The advantages of logarithmically
scaled data for electromagnetic inversion, Geophys. J.
Int., 201, 1765–1780, 2015.
Wintle, A. G.: Anomalous Fading of Thermo-luminescence in Mineral Samples,
Nature, 245, 143–144, 1973.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: reconstruction from
pollen data using inverse vegetation modelling, Clim. Dynam., 29,
211–229, 2007.
Yukihara, E. G., Coleman, A. C., Biswas, R. H., Lambert, R., Herman, F., and King, G. E.: Thermoluminescence analysis for particle temperature sensing and
thermochronometry: Principles and fundamental challenges, Radiat.
Meas., 120, 274–280, 2018.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms,
and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693,
2001.
Short summary
A new approach to reconstruct the temporal variation of rock surface temperature using the thermoluminescence (TL) of feldspar is introduced. Multiple TL signals or thermometers in the range of 210 to 250 °C are sensitive to typical surface temperature fluctuations and can be used to constrain thermal histories of rocks over ~50 kyr. We show that it is possible to recover thermal histories of rocks using inverse modeling and with δ18O anomalies as a priori information.
A new approach to reconstruct the temporal variation of rock surface temperature using the...