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Abstract. Thermoluminescence (TL) of feldspar is investi-
gated for its potential to extract temperature histories experi-
enced by rocks exposed at Earth’s surface. TL signals from
feldspar observed in the laboratory arise from the release of
trapped electrons from a continuous distribution of trapping
energies that have a range of thermal stabilities. The distri-
bution of trapping energies, or thermal stabilities, is such
that the lifetime of trapped electrons at room temperature
ranges from less than a year to several billion years. Shorter
lifetimes are associated with low-temperature TL signals, or
peaks, and longer lifetimes are associated with high temper-
ature TL signals. Here we show that trapping energies asso-
ciated with shorter lifetimes, or lower-temperature TL sig-
nals (i.e. between 200 and 250 ◦C), are sensitive to temper-
ature fluctuations occurring at Earth’s surface over geolog-
ical timescales. Furthermore, we show that it is possible to
reconstruct past surface temperature histories in terrestrial
settings by exploiting the continuous distribution of trapping
energies. The potential of this method is first tested through
theoretical experiments, in which a periodic temperature his-
tory is applied to a kinetic model that encapsulates the kinetic
characteristics of TL thermometry. We then use a Bayesian
approach to invert TL measurements into temperature histo-
ries of rocks, assuming that past temperature variations fol-
low climate variations observed in the δ18O records. Finally,
we test the approach on two samples collected at the Mer de
Glace (Mont Blanc massif, European Alps) and find similar
temperature histories for both samples. Our results show that
the TL of feldspar may be used as a paleothermometer.

1 Introduction

Earth’s climate fluctuates in a cyclic way, on timescales of
years to millions of years, driven by Earth’s orbital pro-
cesses and rare aberrant shift and extreme climate transients
during the last 103 to 105 years (e.g. Zachos et al., 2001).
Reconstructions of past terrestrial climates often rely on
the use of climate proxies that preserve the physical and/or
chemical characteristics related to Earth’s past climate. Ex-
amples of such proxies include ice cores, tree rings, sub-
fossil pollen, boreholes, corals, lake sediments and carbonate
speleothems (e.g. Jones and Mann, 2004 for a review). Al-
though they have provided invaluable insights into past cli-
mates and their physical characteristics, very few of these
proxies provide a direct measure of temperature variations in
continental settings (e.g. glycerol dialkyl glycerol tetraether,
GDGT; Tierney et al., 2012), and many of these methods
often suffer from methodological limitations that limit reli-
able construction of terrestrial temperatures. For example,
fossil pollen and plant macrofossils have provided key in-
sights into past terrestrial climate at millennial timescales
(e.g. Bartlein et al., 2011) but typically rely on numerous
additional climate parameters, including precipitation, plant-
available moisture, seasonality and the length of the grow-
ing season, which make the inference of rock temperature
histories challenging. Similarly, GDGTs rely on the preser-
vation of organic compounds. To address some of these is-
sues, Tremblay et al. (2014a, b) recently introduced a new
paleotemperature proxy based on the thermal stability and
release of 3He and 21Ne noble gases in quartz. The system
has a single energy level and is therefore only able to esti-
mate a single equivalent diffusion temperature (EDT). As a
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result, reconstruction of complex rock temperature histories
is challenging.

This study revives the use of thermoluminescence (TL) as
a paleothermometer and takes advantage of recent progress
made for TL thermochronometry (Biswas et al., 2018) to in-
troduce a new approach for reconstructing temperature his-
tories in terrestrial settings at millennial timescales. The idea
is not new; it has already been tested through a series of
feasibility studies (Li and Li, 2012; Ronca, 1964; Ronca
and Zeller, 1965) and was applied to lunar samples (Dur-
rani et al., 1977). Unfortunately, the method has remained
underdeveloped since this early work. More recently, Gural-
nik and Sohbati (2019) used optically stimulated lumines-
cence (OSL) to estimate paleotemperature. However, they
only investigated a single thermal stability, and thus a sin-
gle equivalent temperature, similar to the noble gas approach
of Tremblay et al. (2014a, b).

The present study aims to establish the TL of feldspar as a
paleothermometer to constrain temporal variations of Earth’s
surface temperature, within the last few tens of thousands of
years. TL signals from feldspar arise from a series of traps
that have different thermal stabilities, with lifetimes at room
temperature ranging from less than a year to billions of years
(Biswas et al., 2018). In the following, we first investigate the
sensitivity of the TL signals to linear and periodic thermal
histories. Then, we use a Bayesian approach to infer the ther-
mal histories of rocks from TL measurements. Finally, we
apply this method to two samples collected from the Mer de
Glace glacier (Mont Blanc massif, European Alps) as proof
of concept.

2 Theoretical background

In its simplest form, luminescence enables the measurement
of the concentration of charge trapped in the impurity or de-
fect centres of natural crystalline minerals (e.g. quartz or
feldspar); the trapped charge population is proportional to
the time elapsed since the material was either heated or ex-
posed to sunlight. In the laboratory when the minerals are
heated using a linear heating rate, trapped electrons are re-
leased from increasingly higher energy traps, some of which
recombine radiatively with the holes, and the luminescence
process generates a TL glow curve. Trapping of electrons
happens in nature when samples are exposed to environmen-
tal radiation over geological time. Detrapping reflects the es-
cape of electrons from traps, which can occur thermally or
athermally. In nature, the TL system can reach a dynamic
equilibrium between radiation-induced growth and decay via
thermal and athermal pathways. For higher ambient temper-
atures, the thermal decay rate is greater, which results in a
lower equilibrium level and vice versa (for more details see
Aitken, 1985, and Ronca, 1964). Such a difference in equi-
librium can be exploited to reconstruct the thermal history
of rocks (Biswas et al., 2018; Brown et al., 2017; Guralnik

and Sohbati, 2019; Herman and King, 2018; Herman et al.,
2010; King et al., 2016a, b). Until now, this principle has only
been exploited for inferring rock cooling due to exhumation.
Here we use the same principle for inferring the paleotemper-
ature of rocks exposed at Earth’s surface. In this section, we
start by outlining the theoretical model that describes the TL
process of feldspar and how one can constrain all the model
parameters. Then we assess how sensitive the model is to var-
ious surface temperature histories and ultimately show how
surface temperatures in terrestrial settings can influence TL
signals.

2.1 TL kinetic model and TL thermometer

The kinetic model that describes the TL of feldspar was re-
viewed in Biswas et al. (2018). The model encapsulates the
process of populating traps with electrons in response to sur-
rounding radiations, and the processes of electron escape
through thermal and athermal pathways. A key element of
the method is that each kinetic parameter can be constrained
in the laboratory for each sample. We briefly outline the ki-
netic model here and illustrate how the kinetic parameters
may be constrained from laboratory measurements for one
sample. The reader is referred to Sect. S1 in the Supplement
and Biswas et al. (2018) for further information.

The model assumes general-order kinetics (Biswas et al.,
2018; Guralnik et al., 2015a, b). The rate equation for the
trapped charge population of a specific trapping centre, with
single trap depth (E), frequency factor (s) and athermal fad-
ing parameter (ρ′; Huntley, 2006; Tachiya and Mozumder,
1974) is as follows:

d
dt

(n(r ′, t))=
Ḋ

D0
(1− n(r ′, t))a − se−

E
kT (n(r ′, t))b

− s̃e−ρ
′−

1
3 r ′n(r ′, t), (1)

where n is equal to n/N (where n is the number of trapped
electrons at time t and temperature T , andN is the total num-
ber of available traps), Ḋ is the dose rate due to ambient ra-
dioactivity (Gyka−1),D0 is the onset of dose saturation (Gy),
a and b are the kinetic orders of trapping and thermal detrap-
ping respectively, E is the trap depth or activation energy
(eV), s and s̃ are the thermal and athermal frequency factor
respectively (s−1), ρ′ is the dimensionless athermal fading
rate, and r ′ is a dimensionless distance that characterizes the
probability of athermal escape (Huntley, 2006). Each of these
parameters can then be constrained from laboratory experi-
ments that are described in Biswas et al. (2018) and summa-
rized in Table S1 in the Supplement for one sample.

To account for athermal loss, i.e. anomalous fading (Win-
tle, 1973), the total number of trapped electrons at any in-
stant n(t) is obtained by integrating over the whole range of
dimensionless distances (0< r ′ < 2; Kars et al., 2008) over
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Figure 1. Inferred TL kinetic parameters from a TL glow curve of sample MBTP9. The method used to constrain these parameters in the
laboratory is fully explained in Biswas et al. (2018) and described in Sect. S1.

which electrons can athermally escape;

n(t)=

∞∫
0

p(r ′)n(r ′, t)dr ′, (2)

where p(r ′) is the probability of nearest recombination cen-
tre at a distance between r ′ and r ′+ dr ′ and expressed as
p(r ′)dr ′ = 3r ′2er

′3
dr ′ (Huntley, 2006). This model was val-

idated using rocks from the KTB borehole and applied to
samples from Namche Barwa (Biswas et al., 2018), which
gave results in agreement with other studies from the same
area (King et al., 2016a).

The TL of feldspar arises from a continuous distribu-
tion of trapping energies (Biswas et al., 2018; Duller, 1997;

Grün and Packman, 1994; Pagonis et al., 2014; Strickertsson,
1985) and can be assumed to be the sum of a large number
of traps (Biswas et al., 2018; Pagonis et al., 2014); all follow
the process described by Eq. (1). To constrain the kinetic pa-
rameters in Eq. (1), we measure full TL glow curves and see
how the kinetic parameters are distributed along the TL glow
curve (Biswas et al., 2018). For the modelling, we use the ki-
netic parameters for sample MBTP9 (Lehmann et al., 2020,
for sample details). The experimental details are provided in
Sects. 4 and S1. The distribution of kinetic parameters along
the TL glow curve temperature is reported in Fig. 1. The re-
sults show that the kinetic parameters vary systemically with
the glow curve temperature. Such data are then fitted using
a spline function from which the kinetic parameters are then
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Figure 2. Panels (a–c) are the three prescribed thermal histories: isothermal, cooling and warming respectively. Panels (d–f) are the cor-
responding dynamic equilibrium levels of trapped charge population (n) of 10 different thermometers in the range of 200–300 ◦C. The
temperatures of the thermometers (or TL temperature) are shown on the right.

extracted for a specific TL temperature (Biswas et al., 2018),
which we define herein as a specific “TL thermometer”.

2.2 Temperature response of TL thermometers

In this section, we use the model (Eq. 1) in a forward
manner by prescribing a temperature history and predicting
the trapped charge population through time (n). Both linear
(isothermal, warming and cooling) and periodic thermal his-
tories are used. The model was run for 1 Myr, with an initial
condition of n= 0, which is long enough to ensure that n
reaches equilibrium. We investigate how n changes for 10
different TL thermometers, in the temperature range of 200–
300 ◦C with 10 ◦C intervals, each having an independent set
of kinetic parameters (see Table S1).

2.2.1 Linear thermal history

The thermal response of the dynamic equilibrium level of
the trapped charge population (n) of the 10 thermometers is
tested for three different linear thermal histories: (1) isother-
mal holding at 20 ◦C (Fig. 2a), (2) isothermal holding at
20 ◦C for 900 kyr followed by linear cooling to 0 ◦C during
the last 100 kyr (Fig. 2b) and (3) isothermal holding at 0 ◦C

for 900 kyr followed by linear heating to 20 ◦C during the
last 100 kyr (Fig. 2c). The results are shown in Fig. 2d, e
and f respectively. In all cases, n is lowest for the lowest TL
thermometers (or TL signals) and highest for the highest TL
thermometers. For the isothermal scenario, n remains con-
stant over the entire recent time period (after reaching steady
state) as there is no temperature change. For the cooling sce-
nario, n increases as temperature decreases, because of a de-
crease in thermal loss. For the warming scenario, n decreases
as temperature increases because of an increase in thermal
loss. The increase and decrease in n (Fig. 2d and e) with tem-
perature are most pronounced for lower-temperature TL ther-
mometers (< 250 ◦C) and negligible for higher-temperature
TL thermometers (> 250 ◦C). It must be noted that if the am-
plitude of temperature change (here 20 ◦C) were increased,
the higher-TL thermometers would change more dramati-
cally. However, this would be unrealistic and beyond tem-
perature variations observed at Earth’s surface at comparable
timescales.

The previous section shows that the thermal sensitivities of
the different TL thermometers are distinct. It is therefore ex-
pected that their temporal sensitivities are also different. To
quantify the temporal response of each TL thermometer, we
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prescribe a simple step function in which the temperature is
set to be equal to 0 ◦C until a given time, tchange, and then in-
creases to 10, 20 and 30 ◦C, in three different cases. We then
calculate the present-day trapped charge population (npresent)
for each TL thermometer. tchange is varied from 100 kyr to the
present.

The model predictions (npresent) are shown as a function
of time of change (tchange) in Fig. 3. In addition, we calcu-
late the tchange where npresent increases by 20 % compared to
npresent predicted for a thermal history where tchange is equal
to 100 kyr. We define this corresponding time as the mem-
ory time (tmemory) at which the TL thermometer can record
a temperature change. As expected, the lower-TL thermome-
ters record more recent temperature changes and the higher-
TL thermometers record older temperature changes. For ex-
ample, in the case of a 10 ◦C temperature change (Fig. 3a),
the 200–210 ◦C thermometers record a change for ∼ 10 kyr,
while the 240–250 ◦C thermometers record a change for
∼ 50 kyr. Furthermore, the number of sensitive thermome-
ters increases as we raise the final temperature. For a 10 ◦C
temperature change, only 5 TL thermometers (200–250 ◦C)
record the temperature change (Fig. 3a), 6 TL thermometers
(200–250 ◦C) record a 20 ◦C temperature change (Fig. 3b),
and 7 TL thermometers (200–250 ◦C) record a 30 ◦C tem-
perature change (Fig. 3c).

2.2.2 Periodic thermal history

Earth’s climate varies in cyclical way, at multiple timescales
from years to decades, centuries, and millennia, influenced
by periodic variations in the Earth’s orbit, known as Mi-
lankovitch cycles, at 25.77, 41 and 100 kyr. Therefore, tem-
peratures are dictated by periodic functions that include sev-
eral harmonics comprising decadal and millennial periods. In
order to assess how the trapped charge population is affected
by a periodic temperature history, we prescribe the following
function as a thermal history.

T (t)= Tmean+ Tamp× sin
(

2π
P
t

)
, (3)

where Tmean, Tamp and P are the mean temperature, the am-
plitude and the period of oscillation respectively.

Different combinations of arbitrary periodic thermal his-
tories, with the same amplitude (10 ◦C) but in three different
periods (1, 10 and 100 kyr) and with three different mean
temperatures (0, 15 and 30 ◦C), were used (solid lines of
Fig. 4a, b and c) to assess the effect of periodic temperature
variations on n (nosc) for each TL thermometer (solid lines
of Fig. 4d–l). These predictions are compared to isothermal
effects on n (niso) (dashed line in Fig. 4d–l) if the samples are
kept at the mean temperature of the corresponding oscillation
(dashed lines of Fig. 4a, b and c).

The results show that the n always depletes more for the
lower temperature TL thermometer (e.g. 200–210 ◦C TL)

Figure 3. The variation of present-day trapped charge population
(npresent) of different thermometers with the times of change of
temperature (tchange) of step functions (such as thermal history)
with temperature changes of (a) 10 ◦C, (b) 20 ◦C and (c) 30 ◦C.
The asterisk symbols denote the memory time (tmemory) that a ther-
mometer can record the temperature change history. Estimation of
tmemory is illustrated in plot (a) for 200–210 ◦C TL thermometer.
The solid green line corresponds to npresent for tchange = 100ka,
and the dashed green lines represent npresent for tchange = tmemory,
which is 20 % higher than the solid green line.
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Figure 4. Variation of trapped charge population (n) for different sinusoidal thermal histories. Panels (a–c) represent the prescribed thermal
histories with the same mean amplitude (10 ◦C) and three different mean temperatures (0, 15 and 30 ◦C) but for different periods, 1, 10 and
100 ka respectively. The dashed lines are the isotherm (mean temperature of oscillation). Panels (d–f), (g–i) and (j–l) are the response of n
for the corresponding thermal field. The solid lines are for oscillating fields and dashed lines are for isothermal fields. The temperatures of
the representative thermometers (or TL temperature) are shown inside in blue.
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Figure 5. Present-day trapped charge populations (npresent) of different TL signals (or thermometers) with (a) mean temperature variation
(amplitude and period are fixed), (b) amplitude variation (mean temperature and period are fixed) and (c) period variation (mean temperature
and amplitudes are fixed).

than for the higher-temperature TL thermometer (e.g. 290–
300 ◦C TL), which results from a gradient in the thermal
stabilities of lower- to higher-temperature TL thermometers.
For every TL thermometer, n decreases if the mean temper-
ature, Tmean, increases (Fig. 4d–f, g–i and j–l). This is be-
cause the probability of detrapping increases with increasing
temperature. Finally, the higher-temperature TL thermome-
ters (near to 300 ◦C) remain relatively insensitive to such pe-
riodic temperature forcing (Tmean up to 30 ◦C); with increas-
ing Tmean the higher-temperature TL thermometers become
more responsive.

One can also describe how the system behaves by compar-
ing the period of oscillation (P ) and the lifetime (or resident
time) of trapped electrons (τ ) for a given temperature. For the
200 to 300 ◦C TL thermometers, τ spans ∼ 10 kyr to 1 Gyr
when the samples are at 0 ◦C. At higher temperatures τ is
reduced as the probability of electron escape increases, re-
ducing the lifetime to between∼ 0.1 kyr and 1 Myr when the
samples are stored at 30 ◦C (Biswas et al., 2018). For P � τ

(e.g. Fig. 4d, where P = 1 kyr and τ spans ∼ 10 kyr to 1 Gyr
for the 200 to 300 ◦C TL thermometers for Tmean = 0 ◦C),
the value of nosc exhibits small fluctuations but always re-
mains lower than niso. This result implies that smaller peri-
ods (< 1 kyr) and Tmean (< 30 ◦C) do not influence trapped
charge equilibrium levels of 200 to 300 ◦C TL thermometers
in an oscillating fashion and cannot be differentiated from
the trapped charge population resulting from an isothermal
condition. We must mention here, if the amplitude of oscil-
lation increases, the oscillating response to trapped charge
equilibrium levels will be relatively prominent. However, the
predicted values of nosc are lower than those predicted using
constant temperature of Tmean, which is the mean temper-
ature of the oscillation explored. Similarly, the present-day
nosc remains indistinguishable from niso when P � τ (e.g.

see the behaviour of the low-temperature TL thermometer
shown in Fig. 4l). These two endmember scenarios are there-
fore not suitable for predicting the temporal variation of sur-
face temperature. Interestingly, the response of nosc deviates
from its temperature forcing when P ∼ τ (e.g. Fig. 4g–i and
j–l). Under this condition, nosc is out of phase and asym-
metric compared to the prescribed forcing, i.e. the thermal
history. More importantly, the degree of deviation for differ-
ent thermochronometers is different. Therefore, temperature
variations can be reconstructed by targeting TL thermome-
ters that have lifetimes of trapped electrons comparable to
the period of surface temperature changes.

As discussed in the previous section, the response of
trapped electron concentrations corresponding to a TL ther-
mometer depends highly on the three characteristic parame-
ters of the periodic forcing, i.e. Tmean, Tamp and P . We now
test the sensitivity of the model to these three parameters.
The present-day trapped charge population (npresent) is pre-
dicted for different arbitrary combinations of Tmean (0, 15 and
30 ◦C), Tamp (5, 10 and 20 ◦C) and P (1, 10 and 100 kyr). The
results show that npresent is highly dependent on the mean
temperature variation, and less dependent on the amplitude
and the period (Fig. 5). Although the npresent is less sensi-
tive to the amplitude and the period, the pattern of npresent of
different thermometers is unique. This ensures that complex
thermal histories, that comprise multiple harmonics with pe-
riods of about tens of thousands of years but that are distinct
from one another, can be reconstructed.

3 Inversion of TL data into realistic thermal histories

The objective of this section is to test whether a temperature
history can be recovered by inverting TL data into a realis-
tic thermal history. We start the exercise by predicting TL
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data using Eq. (1) for a specific thermal history (forward
modelling) that we then invert using a Bayesian approach
(Biswas et al., 2018; King et al., 2016a, b) (inverse mod-
elling). This synthetic experiment is performed in two dif-
ferent cases. First, we describe the forward and inverse mod-
elling in a general way and then report the two synthetic ex-
amples.

3.1 Forward modelling

Forward modelling is achieved by solving Eq. (1) and pre-
scribing a thermal history, similarly to the previous sections.
This approach enables us to predict the present-day trapped
charge population for a specific TL thermometer using the
kinetic parameters extracted for sample MBTP9. Using this
approach, we generate a range of “observed values” (nobs)
for a particular thermal history, which we then try to recover
using an inversion method. We run the model for 1 Ma to
ensure that n reaches steady state assuming an initial condi-
tion of n= 0. For a specific thermal history, TL thermome-
ters with lower thermal stability exhibit lower nobs than TL
thermometers with higher thermal stabilities. It is worth not-
ing that the predicted nobs values are mostly sensitive to two
parameters, the trap depth (E) and athermal fading (ρ′), such
that these must be constrained carefully from laboratory ex-
periments.

3.2 Inverse modelling

To invert TL data (nobs) into a thermal history, a Bayesian
approach is used. We first generate a large number of ran-
dom thermal histories (300 000). For each random path, the
present-day TL signals are predicted by solving Eq. (1). Each
predicted present-day TL value (npredict) is then compared
with the observed TL (nobs) using the following misfit func-
tion (Wheelock et al., 2015) and likelihood:

misfit=
1
l

l∑
i=1

[
1
2
×
nobs

σnobs

× log
npredict

nobs

]2

, (4)

likelihood= exp(−misfit), (5)

where l is the number of TL thermometers (here l = 4) and
σnobs is the uncertainty of corresponding nobs. An arbitrary
uncertainty of 20 % of nobs is assumed for synthetic test. For
each random path, npredict for a specific thermometer is usu-
ally calculated using mean values of the specific set of ki-
netic parameters (Biswas et al., 2018; King et al., 2016a, b).
However, the kinetic parameters have uncertainties, as shown
in Fig. 1 and Table S1. To accommodate the measurement
uncertainties in kinetic parameters, for each random thermal
history, we randomly picked the kinetic parameters within its
error range. Finally, nobs was also randomly picked within
its error range, assuming that any value within error limit is
equally probable (cf. Guralnik et al., 2015a). Since the ran-
domization is applied to a large number of parameters, it is

necessary to run the model for large number of thermal his-
tories (300 000 iterations here).

The thermal histories that best fit the data are se-
lected using a rejection algorithm that satisfies the criterion
likelihood>R, where R is a random number between 0 and
1. A probability density distribution is then constructed by
counting the number of accepted thermal histories passing
through each grid cell, which is generated by dividing the
time–temperature space (0–100 ka and −50 to 50 ◦C) into
100× 100 cells. This approach is commonly used in differ-
ent thermochronometric studies (Biswas et al., 2018; Braun
et al., 2012; Gallagher et al., 2009; King et al., 2016b). It
should be noted that the misfit function (Eq. 4) used here is
different to the one used in previous studies (Biswas et al.,
2018; King et al., 2016b) but is the same as that used in King
et al. (2020). We find that a log misfit enables us to better fit
data that vary across orders of magnitude, as trapped charge
populations vary greatly for different TL signals.

3.3 Synthetic approach 1

We choose three arbitrary periodic thermal histories, Path1
(Tmean = 10 ◦C, Tamp = 10 ◦C and P = 25.77 kyr), Path2
(Tmean = 20 ◦C, Tamp = 10 ◦C and P = 25.77 kyr) and Path3
(Tmean = 10 ◦C, Tamp = 20 ◦C and P = 25.77 kyr), as shown
in Fig. 6a. For each thermal history, the present-day trapped
charge concentrations (nobs) are calculated for four TL
thermometers (210–250 ◦C, 10 ◦C interval) as described in
Sect. 3.1 and represented in Fig. 6b–d. We then invert the TL
data (nobs) into a thermal history as described in Sect. 3.2.
For the inverse modelling, we first generate a large number
of random periodic histories (300 000), with Tmean and Tamp
randomly varying from 0 to 50 ◦C and P randomly varying
between three cycles, 25.77, 41 and 100 kyr. We do not vary
P in a completely random fashion because nobs is less sen-
sitive to P ; i.e. it is difficult to resolve neighbouring peri-
ods (as discussed in Sect. 2.2.2 and Fig. 5). The results are
shown in Fig. 6e–j. Although this approach predicts the very
recent temperature well (up to max 5 ka) it loses the peri-
odic information (25.77 kyr) because of the significant num-
ber of accepted thermal histories with different periods (41
and 100 kyr). The same exercise was repeated but the pe-
riod was fixed to 25.77 kyr for the inversion. The results are
shown in Fig. 6k–p. Interestingly, this approach enables the
actual solution to be recovered within 1σ uncertainty. This
shows that a periodic thermal history can be predicted well if
the period is known a priori; it enables Tmean and Tamp to be
constrained satisfactorily. To circumvent the limitation (pe-
riod) of this method we use synthetic approach 2, in which
the δ18O data impose the shape of the thermal histories as a
priori information. This is typically done for inversion prob-
lems when appropriate. We then constrain Tmean and Tamp of
the spectrum (as discussed in the next section).
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Figure 6. Results of synthetic experiment of approach 1. Panels (a–d) are for the forward modelling and (e–p) are for the inverse modelling.
Panel (a) shows three arbitrary periodic thermal histories with different mean temperature (Tmean) and amplitude (Tamp) but fixed period
P . Panels (b–d) are the evolution of trapped charge population (n) for four different thermometers (210–250 ◦C, 10 ◦C interval) of the
corresponding three thermal histories, respectively. The present-day trapped charge populations are considered as observed values (nobs) for
the inverse modelling. Panels (e–g) are the inferred probability density plots when Tmean, Tamp and P are randomly varied. Panels (h–j)
depict the fit between the observed TL (obtained through forward modelling). The solid red lines show the predicted median; white lines and
black lines show the 1σ and 2σ confidence intervals in the probability density distribution. Panels (k–m) are the inferred probability density
functions when Tmean and Tamp are randomly varied but P is fixed. Panels (n–p) depict the fit between the observed TL (obtained through
forward modelling). These results are obtained using the kinetic parameters of sample MBTP9.
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3.4 Synthetic approach 2

Here we report the result of three thermal histories assum-
ing that the temperature follows the measured δ18O records
from Greenland for the past 60 kyr, which is based on vari-
ous records from the DYE-3, the GRIP and the NorthGRIP
ice cores (Svensson et al., 2008). For our purpose, we scale
the δ18O records to thermal histories and assume a constant
temperature prior to 60 ka (Fig. 7a). For each thermal history,
the present-day trapped charge concentrations (nobs) are cal-
culated for four TL thermometers (210–250 ◦C, 10 ◦C inter-
val). The results reported in Fig. 7b–d show a clear depletion
of the trapped charge population during the last 20 kyr, for
all investigated scenarios. However, high-frequency tempera-
ture variations are dampened, implying that TL thermometry
is insensitive to short-term variations. This result is consis-
tent with the results shown in Fig. 4. For the inverse mod-
elling, we first generate a large number of random periodic
histories (300 000), assuming that they all follow the Green-
land ice core δ18O record (Svensson et al., 2008), which we
scaled randomly by varying the amplitude of the temperature
oscillation (i.e. the difference between minimum the temper-
ature, which is at ∼ 20 ka, and the maximum temperature
at present) between 0 and 40 ◦C and the minimum temper-
ature (i.e. temperature at ∼ 20 ka) from −20 to 30 ◦C (see
Sect. S2). Note that making this assumption is somewhat
equivalent to assuming a prior estimated on the inferred ther-
mal history (Tarantola, 2005). The inversion results for three
tested thermal histories are shown in Fig. 7e–p. The probabil-
ity density functions (Fig. 7e, f and g) show it is possible to
recover all three thermal histories within the 1σ confidence
level using this inversion approach.

4 Proof of concept

The following sections explore the potential of multiple TL
thermometers in the lower-temperature region of the TL glow
curve (210–250 ◦C) to infer the rock temperature histories for
two samples collected in the French Alps.

4.1 Sample location

Two bedrock samples (MBTP1 and MBTP9) were collected
at the Mer de Glace glacier (Mont Blanc massif, European
Alps) at an altitude of 2545 and 2133 m. The rock surfaces
were exposed since the last glacial maximum (LGM); with
exposure ages younger than the LGM of about 20 kyr, based
on 10Be terrestrial cosmogenic nuclide and OSL surface ex-
posure dating (Lehmann et al., 2019, 2020).

4.2 Sample preparation

The sample preparation followed the method reported pre-
viously (King et al., 2016b). The light-exposed outer layer
(> 2 cm from the surface) was removed using a diamond

saw under subdued red-light conditions with constant water
flow to avoid frictional heating. The interior part of the sam-
ple was gently crushed with a mortar and pestle and sieved
to separate the 150–250 µm grain size. The samples were
sequentially treated with 10 % HCl and 30 % H2O2 to re-
move carbonate and organic matter respectively. Once dried,
the magnetic fractions were removed using a hand magnet.
The K-feldspar fraction was separated by density separation
(< 2.58 gmcm−3) using sodium polytungstate. The grains
were mounted on stainless steel discs using Silkospray. Small
aliquots of 2 mm diameter (containing ∼ 100 grains) were
prepared as these feldspars were highly luminescent.

4.3 Experimental procedure

The TL luminescence measurements were made using a Risø
TL/OSL reader (TL/OSL DA-20; Bøtter-Jensen et al., 2010)
equipped with a 90Sr/90Y irradiation source (∼ 0.24 Gys−1)
at the University of Lausanne. A heating rate of 1 ◦Cs−1 was
used, under constant flow of N2 gas. The TL emission was
restricted to violet-blue (395± 30 nm) using a filter combi-
nation of BG3 and BG39. The measurement details are dis-
cussed below. Typically, the minimum detectable limit for
the present instrument is ∼ 300 photon counts per second
(cps), considering the signal should be 3 times the back-
ground level, which is ∼ 100 cps. The present highly lumi-
nescent feldspar has a maximum photon count of ∼ 106 cps.
This restricts the use of the TL signals up to ∼ 10−3 % of
maximum TL signals.

4.3.1 Measurements

Following Biswas et al. (2018), three sets of experiments
were performed to constrain the growth parameters (D0,a),
thermal decay parameters (E,s,b) and athermal decay pa-
rameters (ρ′). The athermal frequency factor (s̃) is taken as
3× 1015 s−1 (Huntley, 2006).

The growth parameters and the natural TL level, i.e. the
trapped charge population (nobs), are estimated using the
multiple aliquot regeneration dose (MAR) protocol (Aitken,
1985) with post-glow normalization (Tang and Li, 2017).
Eight regeneration doses (0, 24, 47, 118, 236, 472, 944
and 1888 Gy) were given and three aliquots were used for
each dose point. A cut heat of 200 ◦C was applied to re-
move traps that are unstable over laboratory timescales. We
observed a significant sensitivity change (decrease) during
the very first measurement of natural TL, which means that
natural and regenerative TL signals were not measured un-
der identical TL sensitivity conditions. To circumvent this
sensitivity change, we adopted the natural correction factor
method (NCF; Chauhan and Singhvi, 2019; Singhvi et al.,
2010, 2011). However, the NCF was initially developed for
quartz OSL (Singhvi et al., 2011) and should be adapted for
feldspar.
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Figure 7. Results of synthetic experiment of approach 2. Panels (a–d) are for the forward modelling and (e–p) are for the inverse modelling.
Panel (a) shows three arbitrary temperature histories obtained by scaling the Greenland δ18O ice core record (Svensson et al., 2008). Pan-
els (b–d) are the evolution of trapped charge population (n) for four different thermometers (210–250 ◦C, 10 ◦C interval) corresponding to
three histories respectively. The present-day trapped charge populations are considered as observed values (nobs) for the inverse modelling.
Panels (e–g) are the inferred probability density functions. The dashed red lines show the actual temperature history as used in forward
modelling, the solid red lines show the predicted median, and white lines and black lines show the 1σ and 2σ confidence intervals in the
probability density distribution. Panels (h–j) depict the fit between the observed TL (obtained through forward modelling) and modelled TL
(obtained through inverse modelling). Panels (k–m) represent histograms of the parameter, base temperature, Tbase (which is temperature
at 20 ka). Panels (n–p) represent histograms of present temperature, Tpresent (which is Tbase+ Tamp as shown in Eq. S9). These results are
obtained using the kinetic parameters of sample MBTP9.
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The NCF method for quartz relies on the fact that the
110 ◦C TL peak and the blue stimulated OSL are correlated
(Singhvi et al., 2011). In contrast, the TL of feldspar does
not exhibit a distinct 110 ◦C TL peak. The luminescence pro-
cess in feldspar is more complicated because it arises from
a continuous distribution of trapping energies and the dose
response characteristics (D0) vary along the TL glow curve
(Fig. 1). To circumvent these issues, we proceeded as fol-
lows. We first give a small dose (i.e. < 100 Gy) in addition
to the natural dose and subsequently measure the TL signal
up to 200 ◦C (TL1). Then the sample is annealed by heat-
ing it to 450 ◦C, which is followed by a dose of the same
amount and measurement of the TL glow curve to 200 ◦C
(TL2). We observe that the TL sensitivity of the natural mea-
surement is higher than the post-natural-regeneration mea-
surement (Fig. 8a). We then calculate the NCF at different
temperatures between 90 and 150 ◦C, similar to the use of
the 110 ◦C TL peak for quartz. We find that the NCF de-
creases with increasing temperature during the TL measure-
ment (Fig. 8c). Since there is no direct way to measure the
NCF beyond 150 ◦C, we then extrapolate the NCF value at
the region of interest to higher temperatures, i.e. 210–250 ◦C
(Fig. 8c), which we call var-NCF. In turn, the trapped charge
population (nobs) is corrected with the corresponding factor
which is between 1 and 2 for samples MBTP1 and MBTP9
(Table 1 and Fig. 8). Finally, we investigated the effects of
variable doses and the NCF and found it had no effect for
doses below 100 Gy (Fig. 8b).

The thermal decay parameters are estimated using the
Tm− Tstop method (McKeever, 1980) and analysed by sub-
traction and fitting of sub-peaks (Pagonis et al., 2014). For
the athermal decay parameter, a fading experiment (Hunt-
ley and Lian, 2006) was performed for different delay times;
aliquots were preheated to 200 ◦C prior to storage.

4.3.2 Estimating the kinetic parameters

The kinetic parameters of growth (D0,a), thermal decay (E,
s, b) and athermal decay (ρ′) were inferred using the ap-
proach of Biswas et al. (2018) for all thermometers (210–
250 ◦C, 10 ◦C interval). The results are summarized in Ta-
ble 1 and shown in S3. It can be noted that with increas-
ing the TL temperature (or thermometer), the activation en-
ergy (E) increases and athermal fading (ρ′) decreases (Ta-
ble 1). The dose rate (Ḋ) values, another growth parameter,
were taken from Lehmann et al. (2020). Since a cut heat of
200 ◦C was applied for the MAR growth analysis and fading
experiments, we focus on the 210–250 ◦C TL thermometers
(i.e. four thermometers). We did not use TL signals beyond
250 ◦C, as they are insensitive to typical surface temperature
fluctuations, as discussed in Sect. 2.2.

4.4 Predicting the surface temperature

The measured TL signals (nobs) are then inverted to infer
the thermal history as described in Sects. 3.2 and 3.4 (syn-
thetic approach 2). For the thermal histories, we again use
the Greenland ice core δ18O record (Svensson et al., 2008),
which we scaled as described in Sect. 3.2. We assume that
the atmospheric temperatures of the Mont Blanc massif fol-
lowed the trend observed for the Greenland ice core data
over the last 60 ka. Note that the temperature increase dur-
ing the last glacial cycle was synchronous with the tempera-
ture anomalies observed in Greenland (e.g. Heiri et al., 2014;
Schwander et al., 2000; van Raden et al., 2013). The ratio-
nale here is that all temperatures in the Mont Blanc massif
follow the Greenland ice core δ18O data but the amplitude
of temperature oscillation (minimum temperature at ∼ 20 ka
to maximum temperature at the present day) and mean tem-
perature are unknown. We pick the amplitude of temperature
oscillation randomly between 0 and 40 ◦C, and the base tem-
perature (temperature at ∼ 20 ka) between −20 and 30 ◦C.
By generating a large number of random thermal histories
(300 000), the probability density function is constructed as
discussed in Sect. 3.2. The results of two samples, MBTP1
and MBTP2, are shown in Fig. 9 and suggest that the temper-
ature rose from −4.6+3.7

−4.1 to 6.2+3.1
−3.5

◦C for sample MBTP1
and −2.0+3.9

−4.1 to 7.9+3.0
−3.1

◦C for sample MBTP9, since 20 ka,
considering 1σ uncertainty. The inferred median suggests an
increase of∼ 10–11 ◦C for the rock surface temperature over
the last 20 ka.

5 Discussion

The theoretical model for the rate equation of trapped charge
population in feldspar has been described in several ways;
first-order kinetics (Brown et al., 2017; Yukihara et al.,
2018), general-order kinetics (Biswas et al., 2018; Gural-
nik et al., 2015b), charge transport through sub-conduction
band-tail states (King et al., 2016a; Li and Li, 2013), Gaus-
sian distribution of trapped energies (Lambert et al., 2020)
or localized recombination in randomly distributed defects
(Jain et al., 2012). What is common to all these models is
that luminescence of feldspar is complicated and exhibits
a non-linear non-first-order kind of behaviour due to either
the presence of sub-conduction band-tail states (Morthekai
et al., 2019; Poolton et al., 2002) or a complex charge trans-
port mechanism. TL in feldspar is even more complicated
because it shows continuous distribution of trapping ener-
gies (Biswas et al., 2018; Duller, 1997; Grün and Packman,
1994; Pagonis et al., 2014; Strickertsson, 1985) and TL is a
more diffusive process than OSL; OSL of feldspar has reso-
nant energy levels (Hütt et al., 1988). Different models were
reviewed and tested by Guralnik et al. (2015b) who sug-
gested that the general-order kinetics, a mathematically sim-
plified model, could be used to explain the luminescence phe-
nomenon well. We adopted this model for the TL of feldspar
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Figure 8. (a) The lower-temperature TL before (TL1) and after (TL2) natural TL measurement (up to 450 ◦C) of samples MBTP1 and
MBTP9. (b) NCF for TL signal (integrated over 90–120 ◦C) for different given doses. The data are scattered and vary within ±10 %, which
possibly suggests the NCF is dose independent. (c) Plot of var-NCF (= TL1/TL2) at different temperature (90–150 ◦C) along TL glow (solid
circles), and extrapolated to calculate NCF in the region of interest (210–250 ◦C; empty circles). The values were calculated by taking the
average of three measurements.

Table 1. List of kinetic parameters that describe growth (Ḋ,D0,a), thermal decay (E,s,b) and athermal decay (ρ′) and natural TL (observed)
trapped charge populations (nobs) for the four thermometers (210–250 ◦C, 10 ◦C interval) for samples MBTP1 and MBTP9. The dose rate
(Ḋ) values were taken from Lehmann et al. (2020). Note that in the thermal decay parameters (E,s and b) no errors are mentioned. The
mean values of these parameters are calculated from the distribution and an arbitrary error of 5 % was considered.

Growth Thermal decay Athermal decay Natural TL (nobs)

TL (◦C) Ḋ (Gyka−1) D0 (Gy) a E (eV) log10(s) b log10(ρ′) Uncorrected NCF Corrected

MBTP1 210–220 7.39± 0.16 766± 51 1.00± 0.09 1.24 11.62 1.46 −6.02± 0.08 0.17± 0.03 1.36± 0.04 0.13± 0.02
220–230 690± 46 1.00± 0.11 1.28 11.69 1.45 −6.29± 0.14 0.28± 0.04 1.34± 0.03 0.21± 0.03
230–240 638± 43 1.00± 0.13 1.31 11.75 1.45 −7.10± 0.94 0.41± 0.07 1.31± 0.03 0.31± 0.05
240–250 559± 40 1.00± 0.26 1.35 11.79 1.45 <−20± 0 0.53± 0.09 1.29± 0.03 0.41± 0.07

MBTP9 210–220 7.07± 0.15 773± 41 1.00± 0.03 1.25 11.63 1.49 −6.13± 0.09 0.26± 0.03 1.73± 0.08 0.15± 0.02
220–230 680± 37 1.00± 0.01 1.29 11.72 1.49 −6.18± 0.10 0.36± 0.05 1.72± 0.08 0.21± 0.03
230–240 625± 40 1.18± 0.33 1.32 11.79 1.49 −6.33± 0.17 0.44± 0.06 1.71± 0.09 0.26± 0.04
240–250 502± 36 1.10± 0.27 1.36 11.85 1.49 −6.51± 0.24 0.56± 0.08 1.70± 0.09 0.33± 0.05

where the power terms (a, b) accounts for the nonlinearity
involved in the TL of feldspar. The efficacy of using general-
order kinetics has been demonstrated on samples with known
thermal history (KTB borehole samples) for OSL of feldspar
(Guralnik et al., 2015a) and the TL of feldspar (Biswas et al.,
2018).

Here we investigate the difference in temperature sensi-
tivity of different TL thermometers, which correspond to
individual TL temperature or TL signals. On the basis of
the kinetic parameters derived for our sample, and our sen-
sitivity tests (Sect. 2.2.1), we recommend using TL ther-
mometers with a temperature range of 200 to 250 ◦C for a
typical surface temperature fluctuation, e.g. ∼ 10 ◦C. If the
temperature fluctuations are larger, higher-temperature TL
(> 250 ◦C TL) can be used. The multiple TL signals (200
to 250 ◦C, 10 ◦C interval) can constrain thermal history of
∼ 50 kyr. A higher-temperature fluctuation can be better con-

strained with a greater number of thermometers (as discussed
in Sect. 2.2.1).

For periodic oscillations, when the period is comparable to
the lifetime of the trapped electron for a given thermometer,
it may be used to infer temporal variation of surface temper-
ature (see Sect. 2.2.2). Typically, tens of thousands of years
of temperature oscillation can be detected using TL ther-
mometers with peak temperatures higher than 200 ◦C (210
to 250 ◦C). Periodic oscillation with shorter periods (< 1 kyr)
will exhibit a similar effect to isothermal temperature condi-
tions, yielding a temperature higher than the mean of oscilla-
tion.

One outstanding issue when using TL is the sensitivity
change during the very first measurements up to 450 ◦C,
which cannot be corrected by post-glow normalization (Tang
and Li, 2017). Here we show that sensitivity changes dur-
ing natural measurements can be monitored for lower-
temperature TL (< 150 ◦C) following the same method
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Figure 9. Inferred rock surface temperature history for sample MBTP1 and MBTP9 collected in the Mont Blanc massif at an altitude of
∼ 2.0–2.5 km, obtained through inverse modelling of TL data as described in Sect. 4.4. Panels (a–d) are for the sample MBTP1. Panel (a) is
the probability density function. The red line, white lines and black lines are the predicted median, 1σ and 2σ confidence intervals. Panel (b)
is the plot of observed TL (nobs) and modelled TL (predicted TL through inverse modelling). Panels (c) and (d) are histograms of temperature
at 20 ka and present respectively. Panels (e–h) are the result of same analysis for sample MBTP9.

Clim. Past, 16, 2075–2093, 2020 https://doi.org/10.5194/cp-16-2075-2020



R. H. Biswas et al.: Surface paleothermometry using low-temperature thermoluminescence of feldspar 2089

Figure 10. The impact of initial sensitivity correction for past temperature prediction to sample MBTP1 for three different scenarios: (1) no
initial sensitivity correction, i.e. NCF= 1; (2) initial sensitivity corrected with fixed NCF at 100 ◦C (= 1.64± 0.08) for all thermometers;
and (3) initial sensitivity corrected to all TL thermometers with var-NCF for all TL thermometers (i.e. the selected method). Panels (a), (e)
and (i) are the probability distributions, and (b), (f) and (j) are observed and predicted TL plots for all three scenarios respectively. Panels (c),
(g), (k) (d), (h) and (l) are the histograms of predicted temperature for all accepted paths at 20 ka and the present day for all three scenarios
respectively.

adopted for the OSL of quartz, which is called the natural
correction factor (NCF; Singhvi et al., 2011). Because there
is no direct method to track the TL sensitivity change in
the region of interest (210–250 ◦C TL), we simply extrap-
olate the sensitivity change observed in the lower tempera-
ture TL peaks (i.e. 90–150 ◦C) to the region of interest (i.e.
210–250 ◦C). This is new and it will need further investiga-
tion. However, we find that the effect of the initial sensitivity
change on the amplitude of the inferred temperature histo-
ries is small. In Fig. 10, we compare inversion results for
three different scenarios for sample MBTP1: (1) there is no
initial sensitivity correction, i.e. NCF= 1; (2) the initial sen-
sitivity correction is done using the value obtained at 100 ◦C
(NCF100 = 1.64± 0.08); and (3) the var-NCF approach de-
scribed in the Sect. 4.3.1 is used. Although the results show
that the sensitivity correction has a significant impact on the

absolute inferred temperature, we do not observe much dif-
ference between using a constant value and the extrapolated
value. Furthermore, and more importantly, the difference be-
tween the present-day temperature and temperature at about
20 ka remains about 10–11 ◦C in the three tested cases (me-
dian of the prediction).

The estimated constant erosion rates in these two sample
locations, MBTP1 and MBTP9, are 3.5× 10−3 and 3.2×
10−2 mmyr−1 with maximum possible times of erosion of
20.9 and 19.5 ka respectively (Lehman et al., 2020). This
translates to maximum erosion depths in these two locations
of 0.07 and 0.62 m respectively. At those depths, mean tem-
perature should be in equilibrium with atmospheric temper-
ature (e.g. Hasler et al., 2011). Based on the rock tempera-
ture measurement of borehole samples in Mont Blanc mas-
sif, Magnin et al. (2017) suggest that up to a 2 m depth the
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Figure 11. Result of synthetic test for annual fluctuation of temperature. Panel (a) shows a probability density plot. The dotted red line
is the actual thermal history. The solid red line is the predicted median of the isotherms. White and black lines are the 1σ and 2σ confi-
dence intervals. Panel (b) shows the plot of observed (nobs) and modelled TL values (predicted TL through inverse modelling) for all TL
thermometers.

rock temperature is nearly constant with depth or a maximum
variation of up to 1 ◦C (Fig. 6c of Magnin et al., 2017). No
effect of erosion on surface temperature is considered here.

For the inverse modelling of natural samples, δ18O data
are used as a prior on the shape of the thermal histories, but
we leave two scaling parameters free – minimum tempera-
ture at 20 ka, and amplitude (temperature difference between
at 20 ka and present) – and we did not include the role of ice
on setting the rock temperature during glaciation. Lehman
et al. (2020) provided a range of solutions for deglacia-
tion in the present location: either thinning of 450 m of the
glacier occurred progressively between ∼ 17 and ∼ 12 ka or
it was instantaneous. In the absence of a clear scenario, we
took two samples from two extreme altitudes of 2545 m a.s.l.
(MBTP1) and 2133 m a.s.l. (MBTP9). The top-most sample,
MBTP1, had a very thin or no glacier coverage during LGM,
and the bottom-most sample, MBTP9, was exposed or cov-
ered by ice. Thus, it is expected that the during LGM, the
rock temperature of MBTP1 would have been in equilibrium
with atmospheric temperature (Hoelzle et al., 1999), whereas
it is less clear for MBTP9. If it was covered by ice, it was
likely temperate ice and the basal temperature would be close
to 0 ◦C. Interestingly, we find similar results from the in-
version; predicted rock surface temperatures of MBTP1 and
MBTP9, during LGM, are −4.6+3.7

−4.1 and −2.0+3.9
−4.1 respec-

tively, and the temperature of the bottom-most sample during
LGM is close to 0 ◦C, at least within error.

The application of the introduced method predicts that
the final rock surface temperatures at the locations of Mont
Blanc massif are 6.2±3.2 ◦C for MBTP1 (2545 m a.s.l.) and
7.9± 3.0 ◦C for sample MBTP9 (2133 m a.s.l.). Although
these temperatures have large uncertainty, they are higher
than the mean annual atmospheric temperature in this loca-

tion. The mean annual temperature of Chamonix (1035 m),
a nearby city, is 7.3 ◦C. Considering an adiabatic lapse rate
of 5 ◦Ckm−1, the expected mean annual atmospheric tem-
peratures at the sample locations of MBTP1 and MBTP9
are ∼ 0 and 2 ◦C respectively. The offset between the pre-
dicted and expected temperature (∼ 6 ◦C) can be explained
by two main factors: (1) the rock surface temperature is al-
ways higher than atmospheric temperature and the temper-
ature difference can be up to 10 ◦C (Magnin et al., 2019),
and (2) seasonal temperature fluctuations may lead to an
overestimation of the mean annual temperature (as discussed
in Sect. 2.2.2). To quantify this latter offset, we performed
a simple synthetic test, with annual oscillation of +10 ◦C
(summer) to −10 ◦C (winter) with mean at 0 ◦C, up to 20 ka
(before that temperature was set to a 0 ◦C isotherm), and pre-
dicted the equivalent isothermal temperature using the in-
verse approach. The result suggests a mean annual temper-
ature that is 2.7±0.7 ◦C higher than the mean temperature of
the periodic signal (Fig. 11), confirming the results of Gural-
nik and Sohbati (2019).

The inverse modelling results show an increase in rock sur-
face temperature in the Mont Blanc Massif of ∼ 10–11 ◦C
(considering median of the prediction) from 20 ka to today.
The median of the distribution of possible thermal histories
of the two samples follows Greenland ice core δ18O anoma-
lies with missing low frequencies. Climate reconstructions in
Europe using fossil pollen suggest that the mean annual tem-
perature anomaly (the difference between the temperature at
the LGM and today) is 12± 3 ◦C in the north of Pyrenees–
Alps line (Peyron et al., 1998). Wu et al. (2007) inferred that
LGM temperatures in Europe were ∼ 10–15 ◦C lower than
the present-day temperature based on pollen analysis. Al-
though there are large uncertainties associated with pollen
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data and its methodological constraints, the overlap in tem-
perature estimates between the two proxies suggests that TL
may be a reliable paleothermometer.

6 Conclusions

A new approach to reconstruct the temporal variation of rock
surface temperature using the TL of feldspar is introduced.
Forward modelling of different TL signals suggests that TL
signals in the range of 210 to 250 ◦C are sensitive to typical
surface temperature fluctuations, which we define as TL ther-
mometers. Multiple TL thermometers (210–250 ◦C, 10 ◦C
interval) can then be used to constrain thermal histories of
rocks over ∼ 50 kyr for temperature fluctuations of ∼ 10 ◦C.
The sensitivity of the periodic forcing on trapped charge pop-
ulations suggest that natural TL is sensitive enough to mean
temperature and amplitude of periodic forcings. Typically,
tens of thousands of years of temperature oscillation can be
predicted using this approach. Finally, we show that it is
possible to recover thermal histories of rocks when one as-
sumes that the temperature followed observed the Greenland
ice core δ18O record.
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