Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data
Catarina Cavaleiro
CORRESPONDING AUTHOR
University of Bremen, MARUM – Center for Marine and Environmental
Sciences, Leobener Straße 8, 28359 Bremen, Germany
IPMA – Instituto Português do Mar e da Atmosfera, Divisão de
Geologia Marinha e Georecursos Marinhos, Avenida Doutor Alfredo
Magalhães Ramalho 6, 1495-165 Algés, Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus
de Gambelas, 8005-139 Faro, Portugal
Antje H. L. Voelker
IPMA – Instituto Português do Mar e da Atmosfera, Divisão de
Geologia Marinha e Georecursos Marinhos, Avenida Doutor Alfredo
Magalhães Ramalho 6, 1495-165 Algés, Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus
de Gambelas, 8005-139 Faro, Portugal
Heather Stoll
Geology Department, University of Oviedo, C/. Jesús Arias de
Velasco s/n, 33005, Oviedo, Spain
now at: Department of Earth Sciences,
ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
Karl-Heinz Baumann
University of Bremen, Geosciences Department, Klagenfurter Straße
2-4, 28359 Bremen, Germany
Michal Kucera
University of Bremen, MARUM – Center for Marine and Environmental
Sciences, Leobener Straße 8, 28359 Bremen, Germany
Related authors
No articles found.
Alyssa R. Atwood, Andrea L. Moore, Kristine L. DeLong, Sylvia E. Long, Sara C. Sanchez, Jessica A. Hargreaves, Chandler A. Morris, Raquel E. Pauly, Emilie P. Dassie, Thomas Felis, Antje H. L. Voelker, Sujata A. Murty, and Kim M. Cobb
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-467, https://doi.org/10.5194/essd-2025-467, 2025
Preprint under review for ESSD
Short summary
Short summary
The stable isotopic composition of seawater is a valuable tool for studying the global water cycle in the past, present, and future. However, an active repository dedicated to archiving this type of data has been lacking, and many datasets remain hidden from public view. We have created a new database of observational seawater isotope data that is rich in metadata, publicly accessible, and machine readable to increase its availability and usability for a variety of Earth Science applications.
Laura Endres, Carlos Pérez-Mejías, Ruza Ivanovic, Lauren Gregoire, Anna L. C. Hughes, Hai Cheng, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3911, https://doi.org/10.5194/egusphere-2025-3911, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Stable isotope data of a precisely dated stalagmite from northwestern Iberia indicate gradual North Atlantic meltwater input during the last glacial maximum, followed by abrupt surges early in the last deglaciation. The first abrupt surge was followed by cooling about 850 years later – unlike later events – which reveals that the Atlantic circulation’s sensitivity to meltwater is variable and related to the evolving background climate boundary conditions.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
Biogeosciences, 22, 3143–3164, https://doi.org/10.5194/bg-22-3143-2025, https://doi.org/10.5194/bg-22-3143-2025, 2025
Short summary
Short summary
This study combines micropaleontology and satellite remote sensing to investigate particulate inorganic carbon in the Pacific sector of the Southern Ocean. We compare estimates of calcium carbonate produced by coccolithophores (tiny marine algae) to satellite measurements of particulate inorganic carbon. Both datasets show good agreement north of the Polar Front, but large differences are observed to the south of it, likely because of highly reflective small opal particles in this zone.
Heather Stoll, Clara Bolton, Madalina Jaggi, Alfredo Martinez-Garcia, and Stefano Bernasconi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2449, https://doi.org/10.5194/egusphere-2025-2449, 2025
Short summary
Short summary
In periods of high atmospheric CO2 many proxies suggest more extreme past polar warming than is simulated by current coupled climate models. Providing new data on high latitude temperatures in the South Atlantic over the last 15 million years using clumped isotope thermometry, we show that absolute temperatures may not have been as warm as indicated by some biomarker based proxy climate records.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Aline Mega, Teresa Rodrigues, Emília Salgueiro, Mária Padilha, Henning Kuhnert, and Antje H. L. Voelker
Clim. Past, 21, 919–939, https://doi.org/10.5194/cp-21-919-2025, https://doi.org/10.5194/cp-21-919-2025, 2025
Short summary
Short summary
Our research explores climatic changes during the Early–Middle Pleistocene (1006–750 ka) on the southern Portuguese margin. We found that warm, subtropical-gyre-related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data show that these cold events, linked to changes in the North Atlantic's circulation, reached as far south as 36° N and significantly impacted marine ecosystems in the surface ocean.
Nicolas Tapia, Laura Endres, Madalina Jaggi, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1000, https://doi.org/10.5194/egusphere-2025-1000, 2025
Short summary
Short summary
We use stalagmites to study past changes in the terrestrial P cycle. Our P records from multiple, coeval stalagmites from NW Spain, show that past abrupt cooling events are characterized by multi-century reproducible peaks in stalagmite P which reflect higher groundwater P/Ca concentrations and enhanced P export, potentially resulting from increased freeze-thaw frequency and more intense infiltration from snowmelt.
Gilles Reverdin, Claire Waelbroeck, Antje H. L. Voelker, and Hanno Meyer
Ocean Sci., 21, 567–575, https://doi.org/10.5194/os-21-567-2025, https://doi.org/10.5194/os-21-567-2025, 2025
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere, and the cryosphere and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different datasets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in different laboratories.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
José Guitián, Samuel R. Phelps, Reto S. Wijker, Pratigya J. Polissar, Laura Arnold, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-65, https://doi.org/10.5194/cp-2024-65, 2024
Preprint under review for CP
Short summary
Short summary
We reconstructed from sediments of different ocean sites phytoplankton carbon isotopic fractionation (εp), mainly linked to CO2 variations, during the Oligocene to early Miocene. Records confirm long-term trends but show contrasting relationships with the sea surface temperatures evolution. We evaluate the role of non-CO2 physiological factors such as temperature and nutrients at each site εp, highlighting the complexity of interpreting climate dynamics and CO2 reconstructions.
Xiaolei Pang, Antje H. L. Voelker, Sihua Lu, and Xuan Ding
Clim. Past, 20, 2103–2116, https://doi.org/10.5194/cp-20-2103-2024, https://doi.org/10.5194/cp-20-2103-2024, 2024
Short summary
Short summary
Our research discovered significant seasonal temperature variations in the North Atlantic's mid-latitudes during the early Late Pliocene. This highlights the necessity of using multiple methods to get a full picture of past climates, thus avoiding a biased understanding of the climate system. Moreover, our study reveals that the precession signal, which previously dominated surface temperature records, disappeared with the increased influence of the ice sheets in the Northern Hemisphere.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Nikita Kaushal, Carlos Perez-Mejias, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-37, https://doi.org/10.5194/cp-2024-37, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Terminations are large magnitude rapid events triggered in the North Atlantic region that manifest across the global climate system. They provide key examples of climatic teleconnections and dynamics. In this study, we use the SISAL global speleothem database and find that there are sufficient climatic records from key locations to make speleothems a valuable archive for studying Terminations and provide instances for more targeted work on speleothem research.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Cited articles
Abrantes, F.: Palaeoproductivity oscillations during the last 130 ka along
the Portuguese and NW African margins, Geol. Soc. London, Spec. Publ.,
64, 499–510, https://doi.org/10.1144/GSL.SP.1992.064.01.32, 1992.
Abrantes, F.: 200 000 yr diatom records from Atlantic upwelling sites reveal
maximum productivity during LGM and a shift in phytoplankton community
structure at 185?000 yr, Earth Planet. Sci. Lett., 176, 7–16,
https://doi.org/10.1016/S0012-821X(99)00312-X, 2000.
Abrantes, F. and Moita, M. T.: Water column and recent sediment data on
diatoms and coccolithophorids, off Portugal, confirm sediment record of
upwelling events, Oceanol. Acta, 22, 319–336,
https://doi.org/10.1016/S0399-1784(99)80055-3, 1999.
Abrantes, F., Rodrigues, T., Ventura, C., Santos, C., Li, B., Kim, J. K.,
Roehl, U., Voelker, A., and Hodell, D.: Past Productivity conditions off SW
Iberia at the transition from the 41 ky to the 100 ky world; The record of
IODP Sites U1385 and U1391, in Achievements and perspectives in scientific
ocean and continental drilling – EGU, 2017.
Alonso-Garcia, M., Sierro, F. J., and Flores, J. A.: Arctic front shifts in
the subpolar North Atlantic during the Mid-Pleistocene (800–400 ka) and
their implications for ocean circulation, Palaeogeogr. Palaeoclim.
Palaeoecol., 311, 268–280, https://doi.org/10.1016/j.palaeo.2011.09.004, 2011.
Álvarez-salgado, X. A., Castro, C. G., Pérez, F. F., and Fraga, F.:
Nutrient mineralization patterns in shelf waters of the Western Iberian
upwelling, Cont. Shelf Res., 17, 1247–1270,
https://doi.org/10.1016/S0278-4343(97)00014-9, 1997.
Alvarez, I., Gomez-Gesteira, M., deCastro, M., and Dias, J. M.:
Spatiotemporal evolution of upwelling regime along the western coast of the
Iberian Peninsula, J. Geophys. Res.-Ocean., 113, C07020,
https://doi.org/10.1029/2008JC004744, 2008.
Alvarez, I., Gomez-Gesteira, M., deCastro, M., Lorenzo, M. N., Crespo, A. J.
C., and Dias, J. M.: Comparative analysis of upwelling influence between the
western and northern coast of the Iberian Peninsula, Cont. Shelf Res.,
31, 388–399, https://doi.org/10.1016/j.csr.2010.07.009, 2011.
Amore, F. O., Flores, J. A., Voelker, A. H. L., Lebreiro, S. M., Palumbo, E.,
and Sierro, F. J.: A Middle Pleistocene Northeast Atlantic coccolithophore
record: Paleoclimatology and paleoproductivity aspects, Mar.
Micropaleontol., 90, 44–59, https://doi.org/10.1016/j.marmicro.2012.03.006, 2012.
Andrews, J. T. and Voelker, A. H. L.: “Heinrich events” (& sediments):
A history of terminology and recommendations for future usage, Quat. Sci.
Rev., 187, 31–40, https://doi.org/10.1016/j.quascirev.2018.03.017, 2018.
Antoine, D., André, J.-M., and Morel, A.: Oceanic primary production: 2.
Estimation at global scale from satellite (Coastal Zone Color Scanner)
chlorophyll, Global Biogeochem. Cy., 10, 57–69,
https://doi.org/10.1029/95GB02832, 1996.
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite
preservation on atmospheric CO2 concentration, Nature, 367, 260–263,
https://doi.org/10.1038/367260a0, 1994.
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the
glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38,
159–189, https://doi.org/10.1029/1999RG000066, 2000.
Arístegui, J., Barton, E. D., Álvarez-Salgado, X. A., Santos, A. M.
P., Figueiras, F. G., Kifani, S., Hernández-León, S., Mason, E.,
Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the
Canary Current upwelling, Prog. Oceanogr., 83, 33–48,
https://doi.org/10.1016/j.pocean.2009.07.031, 2009.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic model for organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II., 49, 219–236,
https://doi.org/10.1016/S0967-0645(01)00101-1, 2001.
Ausín, B., Zúñiga, D., Flores, J. A., Cavaleiro, C.,
Froján, M., Villacieros-robineau, N., Alonso-pérez, F., Arbones, B.,
Santos, C., Granda, F. De, Castro, C. G., Abrantes, F., Eglinton, T. I., and
Salgueiro, E.: Spatial and temporal variability in coccolithophore abundance
and distribution in the NW Iberian coastal upwelling system, 245–262,
2018.
Balch, W., Fritz, J., and Fernandez, E.: Decoupling of calcification and
photosynthesis in the coccolithophore Emiliania huxleyi under steady-state
light-limited growth, Mar. Ecol. Prog. Ser., 142, 87–97,
https://doi.org/10.3354/meps142087, 1996.
Balch, W. M.: Re-evaluation of the physiological ecology of coccolithophores
BT – Coccolithophores: From Molecular Processes to Global Impact, edited by:
Thierstein, H. R. and Young, J. R., Springer Berlin Heidelberg,
Berlin, Heidelberg, 165–190, 2004.
Balch, W. M.: The Ecology, Biogeochemistry, and Optical Properties of
Coccolithophores, Ann. Rev. Mar. Sci., 10, 71–98,
https://doi.org/10.1146/annurev-marine-121916-063319, 2018.
Barker, S., Archer, D., Booth, L., Elderfield, H., Henderiks, J., and
Rickaby, R. E. M.: Globally increased pelagic carbonate production during
the Mid-Brunhes dissolution interval and the (CO2) paradox of (MIS) ceright 11, Quat.
Sci. Rev., 25, 3278–3293,
https://doi.org/10.1016/j.quascirev.2006.07.018, 2006.
Barton, E. D.: Canary and Portugal Currents, in: Encyclopedia of Ocean
Sciences, edited by: Steele, J., Academic Press, Oxford, 467–476, 2001.
Baumann, K.-H. and Freitag, T.: Pleistocene fluctuations in the northern
Benguela Current system as revealed by coccolith assemblages, Mar.
Micropaleontol., 52, 195–215, https://doi.org/10.1016/j.marmicro.2004.04.011,
2004.
Baumann, K.-H., Andruleit, H., and Samtleben, C.: Coccolithophores in the
Nordic Seas: comparison of living communities with surface sediment
assemblages, Deep-Sea Res. Pt. II, 47,
1743–1772, https://doi.org/10.1016/s0967-0645(00)00005-9, 2000.
Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M., and Kinkel, H.:
The significance of extant coccolithophores as indicators of ocean water
masses, surface water temperature, and palaeoproductivity: a review,
Paläontologische Z., 79, 93–112, https://doi.org/10.1007/BF03021756,
2005.
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot,
F., and Labeyrie, L.: Insolation cycles as a mojor control of equatorial
Indian Ocean primary production, Science, 278,
1451–1454, 1997.
Beaufort, L., de Garidel-Thoron, T., Mix, A. C., and Pisias, N. G.: ENSO-like
Forcing on Oceanic Primary Production During the Late Pleistocene, Science, 80, 293, 2440–2444, https://doi.org/10.1126/science.293.5539.2440,
2001.
Berger, A.: Milankovitch Theory and climate, Rev. Geophys., 26, 624–657,
https://doi.org/10.1029/RG026i004p00624, 1988.
Berger, A., Crucifix, M., Hodell, D., and PAGES, P. I. W. G. of:
Interglacials of the last 800,000 years, Rev. Geophys., 54, 162–219,
https://doi.org/10.1002/2015RG000482, 2015.
Berger, W. H.: Increase of carbon dioxide in the atmosphere during
deglaciation: the coral reef hypothesis, Naturwissenschaften, 69, 87–88,
https://doi.org/10.1007/BF00441228, 1982.
Bischof, B., Mariano, A. J., and Ryan, H. E.: The Portugal Current System,
Ocean Surf. Curr., https://oceancurrents.rsmas.miami.edu/atlantic/por (last access: July 2018), 2003.
Blain, S., Guieu, C., Claustre, H., Leblanc, K., Moutin, T., Quèguiner,
B., Ras, J., and Sarthou, G.: Availability of iron and major nutrients for
phytoplankton in the northeast Atlantic Ocean, Limnol. Oceanogr., 49,
2095–2104, https://doi.org/10.4319/lo.2004.49.6.2095, 2004.
Bollmann, J., Baumann, K.-H., and Thierstein, H. R.: Global dominance of
Gephyrocapsa coccoliths in the Late Pleistocene: Selective dissolution,
evolution, or global environmental change?, Paleoceanography, 13,
517–529, https://doi.org/10.1029/98PA00610, 1998.
Bozzano, G., Kuhlmann, H., and Alonso, B.: Storminess control over African
dust input to the Moroccan Atlantic margin (NW Africa) at the time of maxima
boreal summer insolation: a record of the last 220 kyr, Palaeogeogr. Palaeoclim. Palaeoecol., 183, 155–168,
https://doi.org/10.1016/S0031-0182(01)00466-7, 2002.
Brady, R. X., Lovenduski, N. S., Alexander, M. A., Jacox, M., and Gruber, N.: On the role of climate modes in modulating the air-sea CO2 fluxes in eastern boundary upwelling systems, Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, 2019.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to
Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702,
https://doi.org/10.1029/2005GL024546, 2006.
Broecker, W. S. and Peng, T.-H.: The role of CaCO3 compensation in the
glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cy., 1, 15–29, https://doi.org/10.1029/GB001i001p00015, 1987.
Cabeçadas, G. and Brogueira, M. J.: Sediments in a Portuguese coastal
area — pool sizes of mobile and immobile forms of nitrogen and
phosphorus, Mar. Freshw. Res., 48, 559–563, https://doi.org/10.1071/MF96053, 1998.
Cachão, M., Oliveira, A., and Vitorino, J.: Subtropical winter guests,
offshore Portugal, J. Nannoplankt. Res., 22, 19–26, 2000.
Candy, I., Schreve, D. C., Sherriff, J., and Tye, G. J.: Marine Isotope Stage
11: Palaeoclimates, palaeoenvironments and its role as an analogue for the
current interglacial, Earth-Sci. Rev., 128, 18–51,
https://doi.org/10.1016/j.earscirev.2013.09.006, 2014.
Capellacci, S., Battocchi, C., Casabianca, S., Giovine, M., Bavestrello, G.,
and Penna, A.: Bioavailability of different chemical forms of dissolved
silica can affect marine diatom growth, Mar. Ecol., 34, 103–111,
https://doi.org/10.1111/j.1439-0485.2012.00529.x, 2013.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K. H., Kulhanek, D.
K., Naafs, B. D. A., Stein, R., Grützner, J., Ventura, C., and Kucera,
M.: Insolation forcing of coccolithophore productivity in the North Atlantic
during the Middle Pleistocene, Quat. Sci. Rev., 191, 318–336,
https://doi.org/10.1016/j.quascirev.2018.05.027, 2018.
Cermeño, P., Lee, J.-B., Wyman, K., and Schofield, O.: Competitive
dynamics in two species of marine phytoplankton under
non-equilibrium conditions, Mar. Ecol. Prog. Ser., 429, 19–28, 2011.
Daniels, C. J., Poulton, A. J., Balch, W. M., Marañón, E., Adey, T., Bowler, B. C., Cermeño, P., Charalampopoulou, A., Crawford, D. W., Drapeau, D., Feng, Y., Fernández, A., Fernández, E., Fragoso, G. M., González, N., Graziano, L. M., Heslop, R., Holligan, P. M., Hopkins, J., Huete-Ortega, M., Hutchins, D. A., Lam, P. J., Lipsen, M. S., López-Sandoval, D. C., Loucaides, S., Marchetti, A., Mayers, K. M. J., Rees, A. P., Sobrino, C., Tynan, E., and Tyrrell, T.: A global compilation of coccolithophore calcification rates, Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, 2018.
de Abreu, L., Abrantes, F. F., Shackleton, N. J., Tzedakis, P. C., McManus,
J. F., Oppo, D. W., and Hall, M. A.: Ocean climate variability in the eastern
North Atlantic during interglacial marine isotope stage 11: A partial
analogue to the Holocene?, Paleoceanography, 20, 1–15,
https://doi.org/10.1029/2004PA001091, 2005.
Desprat, S., Sánchez Goñi, M. F., Naughton, F., Turon, J. L.,
Duprat, J., Malaizé, B., Cortijo, E., and Peypouquet, J. P.: 25. Climate
variability of the last five isotopic interglacials: Direct land-sea-ice
correlation from the multiproxy analysis of North-Western Iberian margin
deep-sea cores, Dev. Quat. Sci., 7, 375–386,
https://doi.org/10.1016/S1571-0866(07)80050-9, 2007.
Desprat, S., Sánchez Goñi, M. F., McManus, J. F., Duprat, J., and Cortijo, E.: Millennial-scale climatic variability between 340 000 and 270 000 years ago in SW Europe: evidence from a NW Iberian margin pollen sequence, Clim. Past, 5, 53–72, https://doi.org/10.5194/cp-5-53-2009, 2009.
Desprat, S., Oliveira, D., Naughton, F., and Sánchez Goñi, M. F.:
L'étude du pollen des séquences sédimentaires marines pour la
compréhension du climat?: l'exemple des périodes chaudes
passées, Quaternaire, 28, 259–269,
https://doi.org/10.4000/quaternaire.8102, 2017.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio
calibration method for the accurate determination of Mg∕Ca and Sr∕Ca of
marine carbonates by ICP-AES, Geochem., Geophys. Geosyst., 3, 2001GC000169,
https://doi.org/10.1029/2001GC000169, 2002.
Duchamp-Alphonse, S., Siani, G., Michel, E., Beaufort, L., Gally, Y., and
Jaccard, S. L.: Enhanced ocean-atmosphere carbon partitioning via the
carbonate counter pump during the last deglacial, Nat. Commun., 9, 2396,
https://doi.org/10.1038/s41467-018-04625-7, 2018.
Figueiras, F. G., Labarta, U., and Fernández Reiriz, M. J.: Coastal
upwelling, primary production and mussel growth in the Rías Baixas of
Galicia, Hydrobiologia, 484, 121–131, https://doi.org/10.1023/A:1021309222459, 2002.
Fink, C., Baumann, K.-H., Groeneveld, J., and Steinke, S.: Strontium/Calcium
ratio, carbon and oxygen stable isotopes in coccolith carbonate from
different grain-size fractions in South Atlantic surface sediments, Geobios,
43, 151–164, https://doi.org/10.1016/j.geobios.2009.11.001, 2010.
Fiúza, A. F. D., de Macedo, M. E., and Guerreiro, M. R.: Climatological
space and time-variation of the portuguese coastal upwelling, Oceanol. Acta,
5, 31–40, 1982.
Fiúza, A. F. G.: Upwelling Patterns off Portugal BT – Coastal Upwelling
Its Sediment Record: Part A: Responses of the Sedimentary Regime to Present
Coastal Upwelling, edited by: Suess, E. and Thiede, J., Springer
US, Boston, MA, 85–98, 1983.
Fiúza, A. F. G., Hamann, M., Ambar, I., Dıaz del Rıo, G.,
González, N., and Cabanas, J. M.: Water masses and their circulation off
western Iberia during May 1993, Deep-Sea Res. Pt. I,
45, 1127–1160, https://doi.org/10.1016/S0967-0637(98)00008-9, 1998.
Flores, J.-A. and Sierro, F. J.: PALEOCEANOGRAPHY, BIOLOGICAL PROXIES
Coccoliths, in: Encyclopedia of Quaternary Science, edited by: Elias, S. A., Elsevier, Oxford, 1634–1646, 2007.
Flores, J. A., Sierro, F. J., Francés, G., Vázquez, A., and
Zamarren ̃o, I.: The last 100,000 years in the western Mediterranean: sea
surface water and frontal dynamics as revealed by coccolithophores, Mar.
Micropaleontol., 29, 351–366,
https://doi.org/10.1016/S0377-8398(96)00029-1, 1997.
Fraga, F.: Upwelling off the Galician Coast, Northwest Spain, Coast.
Upwelling, https://doi.org/10.1029/CO001p0176, 1981.
Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Factors
controlling the flux of organic carbon to the bathypelagic zone of the
ocean, Global Biogeochem. Cy., 16, 34-1-34–20,
https://doi.org/10.1029/2001GB001722, 2002.
Guerreiro, C., Oliveira, A., De Stigter, H., Cachão, M., Sá, C.,
Borges, C., Cros, L., Santos, A., Fortuño, J. M., and Rodrigues, A.: Late
winter coccolithophore bloom off central Portugal in response to river
discharge and upwelling, Cont. Shelf Res., 59, 65–83,
https://doi.org/10.1016/j.csr.2013.04.016, 2013.
Haynes, R. and Barton, E. D.: A poleward flow along the Atlantic coast of
the Iberian peninsula, J. Geophys. Res.-Oceans, 95, 11425–11441,
https://doi.org/10.1029/JC095iC07p11425, 2018.
Helmke, J. P., Bauch, H. A., Röhl, U., and Kandiano, E. S.: Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11, Clim. Past, 4, 181–190, https://doi.org/10.5194/cp-4-181-2008, 2008.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005,
https://doi.org/10.1029/2003RG000128, 2004.
Henson, S. A., Dunne, J. P., and Sarmiento, J. L.: Decadal variability in
North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013,
https://doi.org/10.1029/2008JC005139, 2009.
Hernández-Almeida, I., Ausín, B., Saavedra-Pellitero, M., Baumann,
K.-H., and Stoll, H. M.: Quantitative reconstruction of primary productivity
in low latitudes during the last glacial maximum and the mid-to-late
Holocene from a global Florisphaera profunda calibration dataset, Quat. Sci.
Rev., 205, 166–181, https://doi.org/10.1016/j.quascirev.2018.12.016,
2019.
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P. C., Margari, V.,
Channell, J. E. T., Kamenov, G., MacLachlan, S., and Rothwell, G.: Response
of Iberian Margin sediments to orbital and suborbital forcing over the past
420 ka, Paleoceanography, 28, 185–199, https://doi.org/10.1002/palo.20017, 2013a.
Hodell, D. A., Lourens, L., Stow, D. A. V., Hernández-Molina, J.,
Alvarez Zarikian, C. A., Abrantes, F., Acton, G. D., Bahr, A., Balestra, B.,
Llave Barranco, E., Carrara, G., Crowhurst, S., Ducassou, E., Flood, R. D.,
Flores, J. A., Furota, S., Grimalt, J., Grunert, P., Jimenez-Espejo, F. J.,
Kyoung Kim, J., Konijnendijk, T., Krissek, L. A., Kuroda, J., Li, B., Lofi,
J., Margari, V., Martrat, B., Miller, M. D., Nanayama, F., Nishida, N.,
Richter, C., Rodrigues, T., Rodríguez-Tovar, F. J., Freixo Roque, A.
C., Sanchez Goni, M. F., Sierro Sánchez, F. J., Singh, A. D., Skinner,
L., Sloss, C. R., Takashimizu, Y., Tjallingii, R., Tzanova, A., Tzedakis,
C., Voelker, A., Xuan, C., and Williams, T.: The “Shackleton Site” (IODP
Site U1385) on the Iberian Margin, Sci. Drill., 16, 13–19,
https://doi.org/10.5194/sd-16-13-2013, 2013b.
Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R.,
Jiménez-Espejo, F., Skinner, L., Tzedakis, P. C., Abrantes, F., Acton,
G. D., Alvarez Zarikian, C. A., Bahr, A., Balestra, B., Barranco, E. L.,
Carrara, G., Ducassou, E., Flood, R. D., Flores, J.-A., Furota, S., Grimalt,
J., Grunert, P., Hernández-Molina, J., Kim, J. K., Krissek, L. A.,
Kuroda, J., Li, B., Lofi, J., Margari, V., Martrat, B., Miller, M. D.,
Nanayama, F., Nishida, N., Richter, C., Rodrigues, T., Rodríguez-Tovar,
F. J., Roque, A. C. F., Sanchez Goñi, M. F., Sierro Sánchez, F. J.,
Singh, A. D., Sloss, C. R., Stow, D. A. V, Takashimizu, Y., Tzanova, A.,
Voelker, A., Xuan, C., and Williams, T.: A reference time scale for Site
U1385 (Shackleton Site) on the SW Iberian Margin, Global Planet. Change, 133,
49–64, https://doi.org/10.1016/j.gloplacha.2015.07.002, 2015.
Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, 2016.
Hodell, D. A. and Curtis, J. H.: Oxygen and carbon isotopes of detrital
carbonate in North Atlantic Heinrich Events, Mar. Geol., 256, 30–35,
https://doi.org/10.1016/j.margeo.2008.09.010, 2008.
Hodell, D. A., Channeil, J. E. T., Curtis, J. H., Romero, O. E., and
Röhl, U.: Onset of “Hudson Strait” Heinrich events in the eastern
North Atlantic at the end of the middle Pleistocene transition
(∼ 640 ka)?, Paleoceanography, 23, 1–16,
https://doi.org/10.1029/2008PA001591, 2008.
Hodell, D. A., Nicholl, J. A., Bontognali, T. R. R., Danino, S., Dorador,
J., Dowdeswell, J. A., Einsle, J., Kuhlmann, H., Martrat, B.,
Mleneck-Vautravers, M. J., Rodríguez-Tovar, F. J., and Röhl, U.:
Anatomy of Heinrich Layer 1 and its role in the last deglaciation,
Paleoceanography, 32, 284–303, https://doi.org/10.1002/2016PA003028, 2017.
Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T., and Poulton, A. J.:
Phenological characteristics of global coccolithophore blooms, Global Biogeochem. Cy., 29, 239–253, https://doi.org/10.1002/2014GB004919, 2015.
Hostetler, S. W., Clark, P. U., Bartlein, P. J., Mix, A. C., and Pisias, N.
J.: Atmospheric transmission of North Atlantic Heinrich events, J. Geophys.
Res.- Atmos., 104, 3947–3952, https://doi.org/10.1029/1998JD200067, 1999.
Jansen, J. H. F., Kuijpers, A., and Troelstra, S. R.: A Mid-Brunhes Climatic
Event: Long-Term Changes in Global Atmosphere and Ocean Circulation, Science, 232, 619–622, https://doi.org/10.1126/science.232.4750.619, 1986.
Lawton, J. H., Marotzke, J., Marsh, R., McCave, I. N., Barker, S., Higgins,
J. A., and Elderfield, H.: The future of the carbon cycle: review,
calcification response, ballast and feedback on atmospheric CO2, Philos. T. Roy. Soc. A, 361, 1977–1999,
https://doi.org/10.1098/rsta.2003.1238, 2003.
Lebreiro, S. M., Voelker, A. H. L., Vizcaino, A., Abrantes, F. G.,
Alt-Epping, U., Jung, S., Thouveny, N., and Gràcia, E.: Sediment
instability on the Portuguese continental margin under abrupt glacial
climate changes (last 60 kyr), Quat. Sci. Rev., 28, 3211–3223,
https://doi.org/10.1016/j.quascirev.2009.08.007, 2009.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V.,
Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and
Xoplaki, E.: The Mediterranean climate: An overview of the main
characteristics and issues, 1–26, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate
of global primary production in the ocean from satellite radiometer data, J.
Plankton Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
Loutre, M. F. and Berger, A.: Marine Isotope Stage 11 as an analogue for the
present interglacial, Global Planet. Change, 36, 209–217,
https://doi.org/10.1016/S0921-8181(02)00186-8, 2003.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008.
Maiorano, P., Marino, M., Balestra, B., Flores, J.-A., Hodell, D. A., and
Rodrigues, T.: Coccolithophore variability from the Shackleton Site (IODP
Site U1385) through MIS 16-10, Global Planet. Change, 133, 35–48,
https://doi.org/10.1016/j.gloplacha.2015.07.009, 2015.
Marino, M., Maiorano, P., and Flower, B. P.: Calcareous nannofossil changes
during the Mid-Pleistocene Revolution: Paleoecologic and paleoceanographic
evidence from North Atlantic Site 980/981, Palaeogeogr. Palaeoclim.
Palaeoecol., 306, 58–69,
https://doi.org/10.1016/j.palaeo.2011.03.028, 2011.
Marino, M., Maiorano, P., Tarantino, F., Voelker, A., Capotondi, L., Girone,
A., Lirer, F., Flores, J. A., and Naafs, B. D. A.: Coccolithophores as proxy
of seawater changes at orbital-to-millennial scale during middle Pleistocene
Marine Isotope Stages 14-9 in North Atlantic core MD01-2446,
Paleoceanography, 29, 518–532, https://doi.org/10.1002/2013PA002574, 2014.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters,
Nature, 345, 156–158, https://doi.org/10.1038/345156a0, 1990.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M.
A., Stocker, T. F., and Abreu, L. de: Four Climate Cycles of Recurring
Deep and Surface Water Destabilizations non the
Iberian Margin, Science, 317, 502–506, https://doi.org/10.1126/science.1139994,
2007.
Mason, E., Coombs, S. H., and Oliveira, P. B.: An overview of the literature concerning the
oceanography of the eastern North Atlantic region. Relatórios Científicos e Técnicos IPIMAR Série Digital, 33, p 59, 2005.
McClelland, H. L. O., Barbarin, N., Beaufort, L., Hermoso, M., Ferretti, P.,
Greaves, M., and Rickaby, R. E. M.: Calcification response of a key
phytoplankton family to millennial-scale environmental change, Sci. Rep.,
6, 1–11, https://doi.org/10.1038/srep34263, 2016.
McIntyre, A. and Bé, A. W. H.: Modern coccolithophoridae of the atlantic
ocean—I. Placoliths and cyrtoliths, Deep-Sea Res., 14,
561–597, https://doi.org/10.1016/0011-7471(67)90065-4, 1967.
McIntyre, A. and Molfino, B.: Forcing of Atlantic Equatorial and Subpolar
Millennial Cycles by Precession, Science, 274, 1867–1870,
https://doi.org/10.1126/science.274.5294.1867, 1996.
McIntyre, A., Ruddiman, W. F., and Jantzen, R.: Southward penetrations of the
North Atlantic polar front: faunal and floral evidence of large-scale
surface water mass movements over the last 225,000 years, Deep-Sea Res., 19, 61–77, https://doi.org/10.1016/0011-7471(72)90073-3, 1972.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of
millenial-scale climate variability in the North Atlantic, Science,
283, 971–975, https://doi.org/10.1126/science.283.5404.971, 1999.
Meckler, A. N., Sigman, D. M., Gibson, K. A., François, R.,
Martínez-García, A., Jaccard, S. L., Röhl, U., Peterson, L.
C., Tiedemann, R., and Haug, G. H.: Deglacial pulses of deep-ocean silicate
into the subtropical North Atlantic Ocean, Nature, 495, 495–498,
https://doi.org/10.1038/nature12006, 2013.
Mejía, L. M., Ziveri, P., Cagnetti, M., Bolton, C., Zahn, R., Marino,
G., Martínez-Méndez, G., and Stoll, H.: Effects of midlatitude
westerlies on the paleoproductivity at the Agulhas Bank slope during the
penultimate glacial cycle: Evidence from coccolith Sr∕Ca ratios,
Paleoceanography, 29, 697–714, https://doi.org/10.1002/2013PA002589, 2014.
Merico, A., Tyrrell, T., Lessard, E. J., Oguz, T., Stabeno, P. J., Zeeman,
S. I., and Whitledge, T. E.: Modelling phytoplankton succession on the Bering
Sea shelf: role of climate influences and trophic interactions in generating
Emiliania huxleyi blooms 1997–2000, Deep-Sea Res. Pt. I, 51, 1803–1826, https://doi.org/10.1016/j.dsr.2004.07.003,
2004.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, Astrochron An R Packag, Astrochronology, 1–132, 2014.
Moita, M. T.: Estrutura, variabilidade e dinâmica do Fitoplâncton na Costa de Portugal Continental, 1–219, 2001.
Müller, M. N., Lebrato, M., Riebesell, U., Barcelos e Ramos, J., Schulz, K. G., Blanco-Ameijeiras, S., Sett, S., Eisenhauer, A., and Stoll, H. M.: Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite, Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, 2014.
Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo,
R., Rufino, M., Lopes, C., Abrantes, F., and Sánchez Goñi, M. F.: The
complexity of millennial-scale variability in southwestern Europe during MIS
11, Quat. Res., 86, 373–387,
https://doi.org/10.1016/j.yqres.2016.09.002, 2016.
Oliveira, D., Sánchez Goñi, M. F., Naughton, F.,
Polanco-Martínez, J. M., Jimenez-Espejo, F. J., Grimalt, J. O.,
Martrat, B., Voelker, A. H. L., Trigo, R., Hodell, D., Abrantes, F., and
Desprat, S.: Unexpected weak seasonal climate in the western Mediterranean
region during MIS 31, a high-insolation forced interglacial, Quat. Sci.
Rev., 161, 1–17, https://doi.org/10.1016/j.quascirev.2017.02.013, 2017.
Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T.,
Abrantes, F., and Sánchez Goñi, M. F.: Unraveling the forcings
controlling the vegetation and climate of the best orbital analogues for the
present interglacial in SW Europe, Clim. Dynam, 51, 667–686,
https://doi.org/10.1007/s00382-017-3948-7, 2018.
Omta, A. W., van Voorn, G. A. K., Rickaby, R. E. M., and Follows, M. J.: On
the potential role of marine calcifiers in glacial-interglacial dynamics,
Global Biogeochem. Cy., 27, 692–704, https://doi.org/10.1002/gbc.20060, 2013.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Abrupt Climate Events 500,000
to 340,000 Years Ago: Evidence from Subpolar North Atlantic Sediments,
Science, 279, 1335–1338, https://doi.org/10.1126/science.279.5355.1335,
1998.
Palumbo, E., Flores, J. A., Perugia, C., Emanuele, D., Petrillo, Z.,
Rodrigues, T., Voelker, A. H. L., and Amore, F. O.: Abrupt variability of the
last 24ka BP recorded by coccolithophore assemblages off the Iberian Margin
(core MD03-2699), J. Quat. Sci., 28, 320–328, https://doi.org/10.1002/jqs.2623,
2013.
Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B. and Le Cann,
B.: Winter upper ocean circulation in the Western Iberian Basin – Fronts,
Eddies and Poleward Flows: an overview, Deep-Sea Res. Pt. I, 52, 621–646, https://doi.org/10.1016/j.dsr.2004.11.005, 2005.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for palaeotemperature assessment, Nature,
330, 367, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of
long-chain alkenones as indicators of paleoceanographic conditions, Geochim.
Cosmochim. Ac., 52, 2303–2310,
https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Rahman, A.: Reworked nannofossils in the North Atlantic Ocean and subpolar
basins: Implications for Heinrich events and ocean circulation, Geology,
23, 487–490, https://doi.org/10.1130/0091-7613(1995)023<0487:RNITNA>2.3.CO;2, 1995.
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., and
Toucanne, S.: An optimized scheme of lettered marine isotope substages for
the last 1.0 million years, and the climatostratigraphic nature of isotope
stages and substages, Quat. Sci. Rev., 111, 94–106,
https://doi.org/10.1016/j.quascirev.2015.01.012, 2015.
Relvas, P., Barton, E. D., Dubert, J., Oliveira, P. B., Peliz, Á., da
Silva, J. C. B. ,and Santos, A. M. P.: Physical oceanography of the western
Iberia ecosystem: Latest views and challenges, Prog. Oceanogr., 74,
149–173, https://doi.org/10.1016/j.pocean.2007.04.021, 2007.
Rickaby, R. E. M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker,
S., Rees, G., and Schrag, D. P.: Coccolith chemistry reveals secular
variations in the global ocean carbon cycle?, Earth Planet. Sci. Lett.,
253, 83–95, https://doi.org/10.1016/j.epsl.2006.10.016, 2007.
Ridgwell, A. and Zeebe, R. E.: The role of the global carbonate cycle in the
regulation and evolution of the Earth system, Earth Planet. Sci. Lett.,
234, 299–315, https://doi.org/10.1016/j.epsl.2005.03.006, 2005.
Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F., and Naughton,
F.: Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka):
Glacial suborbital variability versus interglacial stability,
Paleoceanography, 26, PA1204, https://doi.org/10.1029/2010PA001927, 2011.
Rodrigues, T., Alonso-García, M., Hodell, D. A., Rufino, M., Naughton,
F., Grimalt, J. O., Voelker, A. H. L., and Abrantes, F.: A 1-Ma record of sea
surface temperature and extreme cooling events in the North Atlantic: A
perspective from the Iberian Margin, Quat. Sci. Rev., 172, 118–130,
https://doi.org/10.1016/j.quascirev.2017.07.004, 2017.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump:
responses to environmental changes, in: Coccolithophores,
Springer Berlin Heidelberg, Berlin, Heidelberg, 99–125, 2004.
Rullkötter, J.: Organic Matter: The Driving Force for Early Diagenesis,
in Marine Geochemistry, Springer-Verlag, Berlin/Heidelberg, 125–168,
2006.
Ryther, J. H.: Photosynthesis and Fish Production in the Sea, Science, 166, 72–76, 1969.
Saavedra-Pellitero, M., Baumann, K.-H., Ullermann, J., and Lamy, F.: Marine
Isotope Stage 11 in the Pacific sector of the Southern Ocean; a
coccolithophore perspective, Quat. Sci. Rev., 158, 1–14,
https://doi.org/10.1016/j.quascirev.2016.12.020, 2017.
Salgueiro, E., Voelker, A. H. L., de Abreu, L., Abrantes, F., Meggers, H.,
and Wefer, G.: Temperature and productivity changes off the western Iberian
margin during the last 150 ky, Quat. Sci. Rev., 29, 680–695,
https://doi.org/10.1016/j.quascirev.2009.11.013, 2010.
Salgueiro, E., Naughton, F., Voelker, A. H. L., de Abreu, L., Alberto, A.,
Rossignol, L., Duprat, J., Magalhães, V. H., Vaqueiro, S., Turon, J. L.,
and Abrantes, F.: Past circulation along the western Iberian margin: A time
slice vision from the Last Glacial to the Holocene, Quat. Sci. Rev., 106,
316–329, https://doi.org/10.1016/j.quascirev.2014.09.001, 2014.
Sánchez Goñi, M. F., Llave, E., Oliveira, D., Naughton, F., Desprat,
S., Ducassou, E., Hodell, D. A., and Hernández-Molina, F. J.: Climate
changes in south western Iberia and Mediterranean Outflow variations during
two contrasting cycles of the last 1 Myrs: MIS 31-MIS 30 and MIS 12-MIS 11,
Global Planet. Change, 136, 18–29, https://doi.org/10.1016/j.gloplacha.2015.11.006,
2016.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, USA, New Jersey, 2007.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869,
https://doi.org/10.1038/35038000, 2000.
Silva, A.: Coccolithophores in coastal waters: Lisbon Bay, Portugal, University of Lisbon, 1–220, 2008
Silva, A., Palma, S., Oliveira, P. B., and Moita, M. T.: Composition and
interannual variability of phytoplankton in a coastal upwelling region
(Lisbon Bay, Portugal), J. Sea Res., 62, 238–249,
https://doi.org/10.1016/j.seares.2009.05.001, 2009.
Sousa, F. M. and Bricaud, A.: Satellite-derived phytoplankton pigment
structures in the Portuguese upwelling area, J. Geophys. Res.-Oceans,
97, 11343–11356, https://doi.org/10.1029/92JC00786, 1992.
Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B. D. A.:
Variability of surface water characteristics and Heinrich-like events in the
Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from
IODP Site U1313 (MIS 16-9), Paleoceanography, 24, PA2203,
https://doi.org/10.1029/2008PA001639, 2009.
Stoll, H., Shimizu, N., Arevalos, A., Matell, N., Banasiak, A., and Zeren,
S.: Insights on coccolith chemistry from a new ion probe method for analysis
of individually picked coccoliths, Geochemistry, Geophys. Geosystems, 8, Q06020, https://doi.org/10.1029/2006GC001546, 2007.
Stoll, H. M. and Schrag, D. P.: Coccolith Sr∕Ca as a new indicator of
coccolithophorid calcification and growth rate, Geochemistry, Geophys.
Geosystems, 1, 1006, https://doi.org/10.1029/1999GC000015, 2000.
Stoll, H. M. and Ziveri, P.: Separation of monospecific and restricted
coccolith assemblages from sediments using differential settling velocity,
Mar. Micropaleontol., 46, 209–221, https://doi.org/10.1016/S0377-8398(02)00040-3,
2002.
Stoll, H. M., Klaas, C. M., Probert, I., Encinar, J. R., and Alonso, J. I.
G.: Calcification rate and temperature effects on Sr partitioning in
coccoliths of multiple species of coccolithophorids in culture, Global Planet. Change, 34, 153–171, https://doi.org/10.1016/S0921-8181(02)00112-1,
2002a.
Stoll, H. M., Ziveri, P., M., G., Probert, I., and Young, J. R.: Potential
and limitations of Sr∕Ca ratios in coccolith carbonate: new perspectives
from cultures and monospecific samples from sediments, P. Roy. Soc. A-Math. Phy. 360, 719–747,
https://doi.org/10.1098/rsta.2001.0966, 2002b.
Tangunan, D., Baumann, K.-H., Pätzold, J., Henrich, R., Kucera, M., De
Pol-Holz, R., and Groeneveld, J.: Insolation forcing of coccolithophore
productivity in the western tropical Indian Ocean over the last two
glacial-interglacial cycles, Paleoceanography, 32, 692–709,
https://doi.org/10.1002/2017PA003102, 2017.
Tenore, K. R., Alonso-Noval, M., Alvarez-Ossorio, M., Atkinson, L. P.,
Cabanas, J. M., Cal, R. M., Campos, H. J., Castillejo, F., Chesney, E. J.,
Gonzalez, N., Hanson, R. B., McClain, C. R., Miranda, A., Roman, M. R.,
Sanchez, J., Santiago, G., Valdes, L., Varela, M., and Yoder, J.: Fisheries
and oceanography off Galicia, NW Spain: Mesoscale spatial and temporal
changes in physical processes and resultant patterns of biological
productivity, J. Geophys. Res.-Oceans, 100(, 10943–10966,
https://doi.org/10.1029/95JC00529, 2018.
Thomson, J., Nixon, S., Summerhays, C. P., Rohling, E. J., Schoenfeld, J.,
Zahn, R., Grootes, P., Abrantes, F., Gaspar, L., and Vaqueiro, S.: Enhanced
productivity on the Iberian margin during glacial/interglacial transitions
revealed by barium and diatoms, J. Geol. Soc. London., 157, 667–677, https://doi.org/10.1144/jgs.157.3.667, 2000.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Gibbard, P. L., Eynaud, F.,
Giraudeau, J., Turon, J. L., Cremer, M., Cortijo, E., Martinez, P., and
Rossignol, L.: A 1.2 Ma record of glaciation and fluvial discharge from the
West European Atlantic margin, Quat. Sci. Rev., 28, 2974–2981,
https://doi.org/10.1016/j.quascirev.2009.08.003, 2009.
Tyrrell, T. and Merico, A.: Emiliania huxleyi: bloom observations and the
conditions that induce them BT – Coccolithophores: From Molecular Processes
to Global Impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 75–97, 2004.
Tyrrell, T. and Young, J. R.: Coccolithophores, in: Encyclopedia of Ocean
Sciences, Elsevier, 606–614, 2009.
Tzedakis, P. C., Wolff, E. W., Skinner, L. C., Brovkin, V., Hodell, D. A., McManus, J. F., and Raynaud, D.: Can we predict the duration of an interglacial?, Clim. Past, 8, 1473–1485, https://doi.org/10.5194/cp-8-1473-2012, 2012.
Vázquez Riveiros, N., Waelbroeck, C., Skinner, L., Duplessy, J.-C.,
McManus, J. F., Kandiano, E. S., and Bauch, H. A.: The “MIS 11 paradox” and
ocean circulation: Role of millennial scale events, Earth Planet. Sci.
Lett., 371, 258–268, https://doi.org/10.1016/j.epsl.2013.03.036, 2013.
Villanueva, J., Calvo, E., Pelejero, C., Grimalt, J. O., Boelaert, A., and
Labeyrie, L.: A latitudinal productivity band in the central North Atlantic
over the last 270 kyr: An alkenone perspective, Paleoceanography, 16,
617–626, https://doi.org/10.1029/2000PA000543, 2001.
Vitorino, J., Oliveira, A., Jouanneau, J. M., and Drago, T.: Winter dynamics
on the northern Portuguese shelf, Part 1: physical processes, Prog.
Oceanogr., 52, 129–153,
https://doi.org/10.1016/S0079-6611(02)00003-4, 2002.
Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein, R., Hefter, J., and Grimalt, J. O.: Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9-14) and their implications for the thermohaline circulation, Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, 2010.
Westbroek, P., Brown, C. W., Bleijswijk, J. van, Brownlee, C., Brummer, G.
J., Conte, M., Egge, J., Fernández, E., Jordan, R., Knappertsbusch, M.,
Stefels, J., Veldhuis, M., van der Wal, P., and Young, J.: A model system
approach to biological climate forcing, The example of Emiliania huxleyi,
Global Planet. Change, 8, 27–46, https://doi.org/10.1016/0921-8181(93)90061-R,
1993.
Wright, A. K. and Flower, B. P.: Surface and deep ocean circulation in the
subpolar North Atlantic during the mid-Pleistocene revolution,
Paleoceanography, 17, 16–20, https://doi.org/10.1029/2002PA000782, 2002.