Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Elevated CO2, increased leaf-level productivity, and water-use efficiency during the early Miocene
Tammo Reichgelt
CORRESPONDING AUTHOR
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
Department of Geosciences, University of Connecticut, Storrs,
Connecticut, USA
William J. D'Andrea
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
Ailín del C. Valdivia-McCarthy
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
Bethany R. S. Fox
Department of Biological and Geographical Sciences, University of
Huddersfield, Huddersfield, UK
Jennifer M. Bannister
Department of Botany, University of Otago, Dunedin, New Zealand
John G. Conran
ACEBB & SGC, School of Biological Sciences, The University of
Adelaide, Adelaide, Australia
William G. Lee
Landcare Research, Dunedin, New Zealand
School of Biological Sciences, University of Auckland, Auckland, New Zealand
Daphne E. Lee
Department of Geology, University of Otago, Dunedin, New Zealand
Related authors
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Christopher K. West, David R. Greenwood, Tammo Reichgelt, Alexander J. Lowe, Janelle M. Vachon, and James F. Basinger
Clim. Past, 16, 1387–1410, https://doi.org/10.5194/cp-16-1387-2020, https://doi.org/10.5194/cp-16-1387-2020, 2020
Short summary
Short summary
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high Arctic. Fossil plants from the Canadian High Arctic and Pacific Northwest of North America are a window into this past
greenhouse world. We used an improved method for plant fossil climate reconstruction that provides a consensus reconstruction from all available proxies. Results show that the early Eocene climate in northern North America was similar across a broad range of latitudes.
Ethan G. Hyland, Katharine W. Huntington, Nathan D. Sheldon, and Tammo Reichgelt
Clim. Past, 14, 1391–1404, https://doi.org/10.5194/cp-14-1391-2018, https://doi.org/10.5194/cp-14-1391-2018, 2018
Short summary
Short summary
Climate equability is a paradox in paleoclimate research, but modeling suggests that strong seasonality should be a feature of greenhouse Earth periods too. Records of temperature from floral assemblages, paleosol geochemistry, clumped isotope thermometry, and downscaled models during the early Eocene show that the mean annual range of temperature was high, and may have increased during warming events. This has implications for predicting future seasonal climate impacts in continental regions.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Christopher K. West, David R. Greenwood, Tammo Reichgelt, Alexander J. Lowe, Janelle M. Vachon, and James F. Basinger
Clim. Past, 16, 1387–1410, https://doi.org/10.5194/cp-16-1387-2020, https://doi.org/10.5194/cp-16-1387-2020, 2020
Short summary
Short summary
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high Arctic. Fossil plants from the Canadian High Arctic and Pacific Northwest of North America are a window into this past
greenhouse world. We used an improved method for plant fossil climate reconstruction that provides a consensus reconstruction from all available proxies. Results show that the early Eocene climate in northern North America was similar across a broad range of latitudes.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Ethan G. Hyland, Katharine W. Huntington, Nathan D. Sheldon, and Tammo Reichgelt
Clim. Past, 14, 1391–1404, https://doi.org/10.5194/cp-14-1391-2018, https://doi.org/10.5194/cp-14-1391-2018, 2018
Short summary
Short summary
Climate equability is a paradox in paleoclimate research, but modeling suggests that strong seasonality should be a feature of greenhouse Earth periods too. Records of temperature from floral assemblages, paleosol geochemistry, clumped isotope thermometry, and downscaled models during the early Eocene show that the mean annual range of temperature was high, and may have increased during warming events. This has implications for predicting future seasonal climate impacts in continental regions.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
Cited articles
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses
of photosynthesis, canopy properties and plant production to rising
CO2, New Phytol., 165, 351–372, 2005.
Askin, R. A. and Raine, J. I.: Oligocene and early Miocene terrestrial
palynology of the Cape Roberts drillhole CRP-2/2A, Victoria Land Basin,
Antarctica, Terra Antartica, 7, 493–501, 2000.
Bader, M. K.-F., Leuzinger, S., Keel, S. G., Siegwolf, R. T. W., Hagedorn,
F., Schleppi, P., and Körner, C.: Central European hardwood trees in a
high CO2 future: synthesis of an 8-year forest canopy CO2
enrichment project, J. Ecol., 101, 1509–1519, 2013.
Bannister, J. M., Conran, J. G., and Lee, D. E.: Lauraceae from rainforest
surrounding an early Miocene maar lake, Otago, southern New Zealand, Rev. Palaeobot. Palyno., 178, 13–34, 2012.
Bar-On, Y. M., Philips, R., and Milo, R.: The biomass distribution on Earth,
P. Natl. Acad. Sci. USA, 115, 6506–6511, 2018.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C. J., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: Global distribution and covariation with climate, Science,
329, 834–838, 2010.
Bolton, C. T., Hernández-Sánchez, M. T., Fuertes, M.-Á.,
González-Lemos, S., Abrevaya, L., Mendez-Vicente, A., Flores, J.-A.,
Probert, I., Giosan, L., Johnson, J., and Stoll, H. M.: Decrease in
coccolithophore calcification and CO2 since the middle Miocene, Nat. Commun., 7, 1–13, 2016.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A.,
Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation
plate-tectonic reconstructions using GPlates, in: Geoinformatics:
Cyberinfrastructures for the Solid Earth Sciences, edited by: Keller, G. R., and Baru, C., Cambridge University Press, Cambridge, UK, 2011.
Bush, R. T., Wallace, J., Currano, E. D., Jacobs, B. F., McInerney, F. A.,
Dunn, R. E., and Tabor, N. J.: Cell anatomy and leaf δ13C as
proxies for shading and canopy structure in a Miocene forest from Ethiopia,
Palaeogeogr. Palaeocl., 485, 593–604, 2017.
Cernusak, L. A.: Gas exchange and water-use efficiency in plant canopies,
Plant Biology, 22, 52–67, 2020.
Conran, J. G., Bannister, J. M., and Lee, D. E.: Fruits and leaves with
cuticle of Laurelia otagoensis sp. nov. (Atherospermataceae) from the early Miocene of Otago (New Zealand), Alcheringa, 37, 1–14, 2013.
Conran, J. G., Lee, W. G., Lee, D. E., Bannister, J. M., and Kaulfuss, U.:
Reproductive niche conservatism in the isolated New Zealand flora over 23
million years, Biol. Letters, 10, 20140647, https://doi.org/10.1098/rsbl.2014.0647, 2014.
Conran, J. G., Bannister, J. M., Mildenhall, D. C., and Lee, D. E.:
Hedycarya macrofossils and associated Planarpollenites pollen from the early Miocene of New Zealand, Am. J. Bot., 103, 938–956, 2016.
Cornwell, W. K., Wright, I. J., Turner, J., Maire, V., Barbour, M. M.,
Cernusak, L. A., Dawson, T., Ellsworth, D., Farquhar, G. D., Griffiths, H.,
Keitel, C., Knohl, A., Reich, P. B., Williams, D. G., Bhaskar, R.,
Cornelissen, J. H. C., Richards, A., Schmidt, S., Valladares, F.,
Körner, C., Schulze, E.-D., Buchmann, N., and Santiago, L. S.: Climate
and oils together regulate photosynthetic carbon isotope discrimination
within C3 plants worldwide, Global Ecol. Biogeogr., 27,
1056–1067, 2018.
DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., and
Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455,
652–656, 2008.
De Lange, P. J.: Fact Sheet (content continuously updated). New Zealand
Plant Conservation Network, available at: https://www.nzpcn.org.nz, last access: 27 May 2020.
Dow, G. J., Bergmann, D. C., and Berry, J. A.: An integrated model of
stomatal development and leaf physiology, New Phytol., 201, 1218–1226,
2014.
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: More efficient
plants: A consequence of rising atmospheric CO2?, Annu. Rev. Plant Phys., 48, 606–639, 1997.
Evans, J. R. and Von Caemmerer, S.: Carbon dioxide diffusion inside leaves,
Plant Physiol., 110, 339–346, 1996.
Farquhar, G. D. and Richards, R. A.: Isotopic composition of plant carbon
correlates with water-use efficiency of wheat genotypes, Aust. J. Plant. Physiol., 11, 539–552, 1984.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship
between carbon isotope discrimination and the intercellular carbon dioxide
concentration in leaves, Aust. J. Plant. Physiol., 9,
121–137, 1982.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, 1989.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate focing
potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Feng, X.: Trends in intrinsic water-use efficiency of natural trees for the
past 100–200 years: a response to atmospheric CO2 concentration,
Geochim. Cosmochim. Ac., 63, 1891–1903, 1999.
Fox, B. R. S., Wartho, J.-A., Wilson, G. S., Lee, D. E., Nelson, F. E., and
Kaulfuss, U.: Long-term evolution of an Oligocene/Miocene maar lake from
Otago, New Zealand, Geochem. Geophys. Geosy., 16, 59–76, 2015.
Fox, B. R. S., Wilson, G. S., and Lee, D. E.: A unique annually laminated
maar lake sediment record shows orbital control of Southern Hemisphere
midlatitude climate across the Oligocene-Miocene boundary, Geol. Soc. Am. Bull., 128, 609–626, 2016.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle,
G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlström, A.,
Ciais, P., Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N.,
Andreu-Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., D'Alessandro,
H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N. J., Marah,
H., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells,
O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino, A.,
Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, E.,
Szychowska-Krapiec, L., Todaro, L., Waterhouse, J. S., and Weigl, M.:
Water-use efficiency and transpiration across European forests during the
Anthropocene, Nat. Clim. Change, 5, 579–583, 2015.
Franks, P. J. and Beerling, D. J.: Maximum leaf conductance driven by
CO2 effects on stomatal size and density over geologic time, P. Natl. Acad. Sci. USA, 106, 10343–10347, 2009.
Franks, P. J., Drake, P. L., and Beerling, D. J.: Plasticity in maximum
stomatal conductance constrained by negative correlation between stomatal
size and density: an analysis using Eucalyptus globulus, Plant Cell Environ., 32, 1737–1748, 2009.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A.,
Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N. G.,
Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to
changing atmospheric CO2 concentration: from the geological past to the next century, New Phytol., 197, 1077–1094, 2013.
Franks, P. J., Royer, D. L., Beerling, D. J., van de Water, P. K., Cantrill,
D. J., Barbour, M. M., and Berry, J. A.: New constraints on atmospheric
CO2 concentration for the Phanerozoic, Geophys. Res. Lett., 41, 4685–4694, 2014.
Gimeno, T. E., McVicar, T. R., O'Grady, A. P., Tissue, D. T., and Ellsworth,
D. S.: Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland, Global Change Biol., 24, 3010–3024, 2018.
Graham, H. V., Patzkowsky, M. E., Wing, S. L., Parker, G. G., Fogel, M. L.,
and Freeman, K. H.: Isotopic characteristics of canopies in simulated leaf
assemblages, Geochim. Cosmochim. Ac., 144, 82–95, 2014.
Greenop, R., Sosdian, S. M., Henehan, M. J., Wilson, P. A., Lear, C. H., and
Foster, G. L.: Orbital forcing, ice volume, and CO2 across the
Oligocene–Miocene transition, Paleoceanography and Paleoclimatology, 34,
316–628, 2019.
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity,
sea level and atmospheric carbon dioxide, Philos. T. Roy. Soc. A, 371, 20120294, https://doi.org/10.1098/rsta.2012.0294, 2013.
Henrot, A.-J., François, L., Favre, E., Butzin, M., Ouberdous, M., and Munhoven, G.: Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study, Clim. Past, 6, 675–694, https://doi.org/10.5194/cp-6-675-2010, 2010.
Herold, N., Müller, R. D., and Seton, M.: Comparing early to middle
Miocene terrestrial climate simulations with geological data, Geosphere, 6,
952–961, 2010.
Ji, S., Nie, J., Lechler, A., Huntington, K. W., Heitmann, E. O., and
Breecker, D. O.: A symmetrical CO2 peak and asymmetrical climate change
during the middle Miocene, Earth Planet. Sc. Lett., 499,
134–144, 2018.
Kaulfuss, U.: Crater stratigraphy and the post-eruptive evolution of Foulden
Maar, southern New Zealand, New Zeal. J. Geol. Geop.,
60, 410–432, 2017.
Kaulfuss, U., Lee, D. E., Barratt, B. I. P., Leschen, R. A. B.,
Larivière, M.-C., Dlussky, G. M., Henderson, I. M., and Harris, A. C.: A
diverse fossil terrestrial arthropod fauna from New Zealand: evidence from
the early Miocene Foulden Maar fossil lagerstätte, Lethaia, 48,
299–308, 2015.
Kohn, M.J.: Carbon isotope discrimination in C3 land plants is independent
of natural variations in , Geophysical Perspective Letters, 2, 35–43. 2016.
Kürschner, W. M.: The anatomical diversity of recent and fossil leaves
of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanaea Goeppert) – implications for their use as
biosensors of palaeoatmospheric CO2 levels, Rev. Palaeobot. Palyno., 96, 1–30, 1997.
Kürschner, W. M. and Kvaček, Z.: Oligocene-Miocene CO2
fluctuations, climatic and palaeofloristic trends inferred from fossil plant
assemblages in central Europe, B. Geosci., 84, 189–202, 2009.
Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of
Miocene atmospheric carbon dioxide fluctuations on climate and the evolution
of terrestrial ecosystems, P. Natl. Acad. Sci. USA, 105, 449–453, 2008.
Leathwick, J. R.: New Zealand's potential forest pattern as predicted from
current species-environment relationships, New Zeal. J. Bot.,
39, 447–464, 2001.
Lee, D. E., Lindqvist, J. K., Beu, A. G., Robinson, J. H., Ayress, M. A.,
Morgans, H. E. G., and Stein, J. K.: Geological setting and diverse fauna of
a Late Oligocene rocky shore ecosystem, Cosy Dell, Southland, New Zeal. J. Geol. Geop., 57, 195–208, 2014.
Lee, D. E., Kaulfuss, U., Conran, J. G., Bannister, J. M., and Lindqvist, J.
K.: Biodiversity and palaeoecology of Foulden Maar: an early Miocene
Konservat-Lagerstätte deposit in southern New Zealand, Alcheringa, 40, 525–541, 2016.
Liebrand, D., de Bakker, A. T. M., Beddow, H. M., Wilson, P. A., Bohaty, S.
M., Ruessink, G., Pälike, H., Batenburg, S. J., Hilgen, F. J., Hodell,
D. A., Huck, C. E., Kroon, D., Raffi, I., Saes, M. J. M., van Dijk, A. E.,
and Lourens, L. J.: Evolution of the early Antarctic ice ages, P. Natl. Acad. Sci. USA, 114,
3867–3872, 2017.
Lindqvist, J. K. and Lee, D. E.: High-frequency paleoclimate signals from
Foulden Maar, Waipiata Volcanic Field, southern New Zealand: An Early
Miocene varved lacustrine diatomite deposit, Sediment. Geol., 222,
98–110, 2009.
Londoño, L., Royer, D. L., Jaramillo, C. A., Escobar, J., Foster, D. A.,
Cárdenas-Rozo, A. L., and Wood, A.: Early Miocene CO2 estimates
from a Neotropical fossil leaf assemblage exceed 400 ppm, Am. J. Bot., 105, 1929–1937, 2018.
Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R.: Rising atmospheric
carbon dioxide: Plants FACE the future, Annu. Rev. Plant Biol., 55,
591–628, 2004.
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van
Bodegom, P. M., Cornwell, W. K., Ellsworth, D. S., Niinemets, Ü.,
Ordonez, A., Reich, P. B., and Santiago, L. S.: Global effects of soil and
climate on leaf photosynthetic traits and rates, Global Ecol. Biogeogr., 24, 706–717, 2015.
Marrero, T. R. and Mason, E. A.: Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data, 1, 3–118, 1972.
McElwain, J. C., Montañez, I. P., White, J. D., Wilson, J. P., and
Yiotis, C.: Was atmospheric CO2 capped at 1000 ppm over the past 300
million years?, Palaeogeogr. Palaeocl., 441,
653–658, 2016.
Mejía, L. M., Méndez-Vicente, A., Abrevaya, L., Lawrence, K. T.,
Ladlow, C., Bolton, C., Cacho, I., and Stoll, H.: A diatom record of CO2 decline since the late Miocene, Earth Planet. Sc. Lett., 479,
18–33, 2017.
Moraweck, K., Grein, M., Konrad, W., Kvaček, J., Kovar-Eder, J.,
Neinhuis, C., Traiser, C., and Kunzmann, L.: Leaf traits of long-ranging
Paleogeone species and their relationship with depositional facies, climate
an atmospheric CO2 level, Palaeontogr. Abt. B, 298, 93–172,
2019.
Németh, K. and White, J. D. L.: Reconstructing eruption processes of a
Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic
Field, South Island, New Zealand, J. Volcanol. Geoth. Res., 124, 1–21, 2003.
Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J., and
Warren, C. R.: Role of mesophyll diffusion conductance in constraining
potential photosynthetic productivity in the field, J. Exp. Bot., 60, 2249–2270, 2009.
Niinemets, Ü., Flexas, J., and Peñuelas, J.: Evergreens favored by
higher responsiveness to increased CO2, Trends Ecol. Evol., 26, 136–142, 2011.
Norby, R. J., Sholtis, J. D., Gunderson, C. A., and Jawdy, S. S.: Leaf
dynamics to a deciduous forest canopy: no response to elevated CO2,
Oecologia, 136, 574–584, 2003.
Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R., and DeMenocal, P.:
Synchronous rise of African C4 ecosystems 10 million years ago in the
absence of aridification, Nat. Geosci., 12, 657–660, 2016.
Reichgelt, T., Kennedy, E. M., Mildenhall, D. C., Conran, J. G., Greenwood,
D. R., and Lee, D. E.: Quantitative palaeoclimate estimates for Early
Miocene southern New Zealand: Evidence from Foulden Maar, Palaeogeography,
Palaeoclimatology, Palaeoecology, 378, 36–44, 2013.
Reichgelt, T. and D'Andrea, W. J.: Plant carbon assimilation rates in
atmospheric CO2 reconstructions, New Phytol., 223, 1844–1855,
2019.
Reichgelt, T., D'Andrea, W. J., and Fox, B. R. S.: Abrupt plant
physiological changes in southern New Zealand at the termination of the Mi-1
event reflect shifts in hydroclimate and pCO2, Earth Planet. Sc. Lett., 455, 115–124, 2016.
Reichgelt, T., Kennedy, E. M., Conran, J. G., Lee, W. G., and Lee, D. E.:
The presence of moisture deficits in Miocene New Zealand, Global and
Planetary Change, 172, 268–277, 2019.
Retallack, G. J. and Conde, G. D.: Deep time perspective on rising
atmospheric CO2, Global Planet. Change, 189, 103177, https://doi.org/10.1016/j.gloplacha.2020.103177, 2020.
Roeske, C. A. and O'Leary, M. H.: Carbon isotope effects on the
enzyme-catalyzed carboxylation of ribulose bisphosphate, Biochemistry-US, 23,
6275–6284, 1984.
Royer, D. L.: Climate sensitivity in the geologic past, Annu. Rev. Earth Pl. Sci., 44, 277–293, 2016.
Royer, D. L., Moynihan, K. M., McKee, M. L., Londoño, L., and Franks, P. J.: Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO2 concentration, Clim. Past, 15, 795–809, https://doi.org/10.5194/cp-15-795-2019, 2019.
Rubel, F. and Kottek, M.: Observed and projected climate shifts 1901–2100
depicted by world maps of the Köppen-Geiger climate classification,
Meteorol. Z., 19, 135–141, 2010.
Šantrůček, J., Vráblová, M., Šimková, M.,
Hronková, M., Drtinová, M., Květoň, J., Vrábl, D.,
Kubásek, J., Macková, J., Wiesnerová, D., Neuwithová, J.,
and Schreiber, L.: Stomatal and pavement cell density linked to leaf
internal CO2 concentration, Ann. Bot.-London, 114, 191–202, 2014.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ:
25 years of image analysis, Nat. Methods, 9, 671–675, 2012.
Schuepp, P. H.: Transley Review No. 59 Leaf boundary layers, New
Phytol., 125, 477–507, 1993.
Soh, W. K., Wright, I. J., Bacon, K. L., Lenz, T. I., Steinthorsdottir, M.,
Parnell, A. C., and McElwain, J. C.: Palaeo leaf economics reveal a shift in
ecosystem function associated with the end-Triassic mass extinction event,
Nat. Plants, 3, 17104, https://doi.org/10.1038/nplants.2017.104, 2017.
Soh, W. K., Yiotis, C., Murray, M., Parnell, A. C., Wright, I. J., Spicer,
R. A., Lawson, T., Caballero, R., and McElwain, J. C.: Rising CO2
drives divergence in water use efficiency of evergreen and deciduous plants,
Science Advances, 5, eaax7906, https://doi.org/10.1126/sciadv.aax7906, 2019.
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastrava,
G., Mehrotra, R. C., and Yang, J.: New developments in CLAMP: Calibration
using global gridded meteorological data, Palaeogeogr.
Palaeocl., 283, 91–98, 2009.
Steinthorsdottir, M., Vajda, V., and Pole, M. S.: Significant transient
pCO2 perturbation at the New Zealand Oligocene–Miocene transition recorded by fossil plant stomata, Palaeogeogr. Palaeocl., 515, 152–161, 2019.
Strömberg, C. A. E.: Evolution of grasses and grassland ecosystems,
Annu. Rev. Earth Pl. Sci., 39, 517–544, 2011.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P.
M.: North Atlantic temperature and pCO2 coupling in the early-middle Miocene, Geology, 46, 519–522, 2018.
Tesfamichael, T., Jacobs, B. F., Tabor, N. J., Michel, L., Currano, E. D.,
Feseha, M., Barclay, R. S., Kappelman, J., and Schmitz, M.: Settling the
issue of ”decoupling” between atmospheric carbon dioxide and global
temperature: [CO2]atm reconstructions across the warming
Paleogene-Neogene divide, Geology, 45, 999–1002, 2017.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope of Cenozoic
CO2: A comparative evaluation of available geochemical proxies,
Paleoceanography, 25, PA3202, https://doi.org/10.1029/2009PA001851, 2010.
Witkowski, C. R., Agostini, S., Harvey, B. P., van der Meer, M. T. J., Sinninghe Damsté, J. S., and Schouten, S.: Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan), Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, 2019.
Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L., and Beck, H. E.:
Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests, J. Geophys. Res.-Biogeo., 121, 2125–2140, 2016.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Zhou, S., Yu, B., Shwalm, C. R., Ciais, P., Zhang, Y., Fisher, J. B.,
Michalak, A. M., Wang, W., Poulter, B., Huntzinger, D. N., Niu, S., Mao, J.,
Jain, A., Ricciuto, D. M., Shi, X., Ito, A., Wei, Y., Huang, Y., and Wang,
G.: Response of water use efficiency to global environmental change based on
output from terrestrial biosphere models, Global Biogeochem. Cy., 31,
1639–1655, 2017.
Zhu, Z., Piao, S., Myneni, R. B., Zeng, Z., Canadell, J. G., Ciais, P.,
Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N.,
Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening
of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, 2016.
Short summary
Carbon dioxide (CO2) levels are increasing in the atmosphere. CO2 has a direct fertilization effect on plants, meaning that plants can photosynthesize more and create more biomass under higher atmospheric CO2. This paper outlines the first direct evidence of a carbon fertilization effect on plants in Earth's past from 23 × 106 yr old fossil leaves, when CO2 was higher. This allowed the biosphere to extend into areas that are currently too dry or too cold for forests.
Carbon dioxide (CO2) levels are increasing in the atmosphere. CO2 has a direct fertilization...