Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamical and hydrological changes in climate simulations of the last millennium
Pedro José Roldán-Gómez
CORRESPONDING AUTHOR
Instituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, Madrid 28040, Spain
Jesús Fidel González-Rouco
Instituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, Madrid 28040, Spain
Camilo Melo-Aguilar
Instituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, Madrid 28040, Spain
Jason E. Smerdon
Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Related authors
Pedro José Roldán-Gómez, Paolo De Luca, Raffaele Bernardello, and Markus Donat
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-26, https://doi.org/10.5194/esd-2024-26, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Current trends on CO2 emissions increase the probability of an overshoot scenario, in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy. This work analyses how the climate after the overshoot would differ from the climate before, linking large scale non-reversibility mechanisms to changes in regional climates, and identifying those regions more impacted by changes on temperature and precipitation extremes.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Pedro José Roldán-Gómez, Paolo De Luca, Raffaele Bernardello, and Markus Donat
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-26, https://doi.org/10.5194/esd-2024-26, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Current trends on CO2 emissions increase the probability of an overshoot scenario, in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy. This work analyses how the climate after the overshoot would differ from the climate before, linking large scale non-reversibility mechanisms to changes in regional climates, and identifying those regions more impacted by changes on temperature and precipitation extremes.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Rebecca Orrison, Mathias Vuille, Jason E. Smerdon, James Apaéstegui, Vitor Azevedo, Jose Leandro P. S. Campos, Francisco W. Cruz, Marcela Eduarda Della Libera, and Nicolás M. Stríkis
Clim. Past, 18, 2045–2062, https://doi.org/10.5194/cp-18-2045-2022, https://doi.org/10.5194/cp-18-2045-2022, 2022
Short summary
Short summary
We evaluated the South American Summer Monsoon over the last millennium and dynamically interpreted the principal modes of variability. We find the spatial patterns of the monsoon are an intrinsic feature of the climate modulated by external forcings. Multi-centennial mean state departures during the Medieval Climate Anomaly and Little Ice Age show regionally coherent patterns of hydroclimatic change in both a multi-archive network of oxygen isotope records and isotope-enabled climate models.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Sooin Yun, Jason E. Smerdon, Bo Li, and Xianyang Zhang
Clim. Past, 17, 2583–2605, https://doi.org/10.5194/cp-17-2583-2021, https://doi.org/10.5194/cp-17-2583-2021, 2021
Short summary
Short summary
Climate field reconstructions (CFRs) estimate spatiotemporal climate conditions hundreds to thousands of years into the past. Assessing CFR skills is critical for improving their interpretation and ultimately for deriving better CFR estimates. We apply new methods for assessing spatiotemporal skill using formalized null hypotheses to derive a detailed assessment of why CFR skill varies across multiple methods, with implications for improving future CFR estimates.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Jorge Navarro-Montesinos, and Norman Steinert
Clim. Past, 14, 1583–1606, https://doi.org/10.5194/cp-14-1583-2018, https://doi.org/10.5194/cp-14-1583-2018, 2018
Short summary
Short summary
Air–ground temperature coupling is the central assumption of borehole temperature reconstructions. Here, this premise is assessed from a pseudo-reality perspective by considering last millennium ensembles of simulations from the Community Earth System Model. The results show that long-term variations in the energy fluxes at the surface during industrial times, due to the influence of external forcings, impact the long-term air–ground temperature coupling.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Nathan J. Steiger and Jason E. Smerdon
Clim. Past, 13, 1435–1449, https://doi.org/10.5194/cp-13-1435-2017, https://doi.org/10.5194/cp-13-1435-2017, 2017
H. Beltrami, G. S. Matharoo, L. Tarasov, V. Rath, and J. E. Smerdon
Clim. Past, 10, 1693–1706, https://doi.org/10.5194/cp-10-1693-2014, https://doi.org/10.5194/cp-10-1693-2014, 2014
J. Wang, J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam
Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, https://doi.org/10.5194/cp-10-1-2014, 2014
P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw
Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, https://doi.org/10.5194/cp-9-547-2013, 2013
L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita
Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, https://doi.org/10.5194/cp-9-393-2013, 2013
Related subject area
Subject: Feedback and Forcing | Archive: Modelling only | Timescale: Centennial-Decadal
The effect of uncertainties in natural forcing records on simulated temperature during the last millennium
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present
10Be in late deglacial climate simulated by ECHAM5-HAM – Part 1: Climatological influences on 10Be deposition
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann
Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, https://doi.org/10.5194/cp-10-359-2014, 2014
U. Heikkilä, S. J. Phipps, and A. M. Smith
Clim. Past, 9, 2641–2649, https://doi.org/10.5194/cp-9-2641-2013, https://doi.org/10.5194/cp-9-2641-2013, 2013
Cited articles
Adachi, Y., Yukimoto, S., Deushi, M., Obata, A., Nakano, H., Tanaka, T. Y.,
Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Shindo, E., Tsujino, H.,
Mizuta, R., Yabu, S., Koshiro, T., Ose, T., and Kitoh, A.: Basic performance
of a new earth system model of the Meteorological Research Institute
(MRI-ESM1), Pap. Meteorol. Geophys., 64, 1–19, 2013. a, b
Anchukaitis, K., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo,
R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G., Helama, S.,
Klesse, S., Krusic, P. J., Linderholm, H. W., Myglano, V., Osborn, T. J.,
Zhang, P., and Zorita, E.: Last millennium Northern Hemisphere summer
temperatures from tree rings: Part II, spatially resolved
reconstructions, Quaternary Sci. Rev., 163, 1–22, 2017. a
Berger, A.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2363–2367, 1978. a
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N.,
Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I. I.,
Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and
Attribution of Climate Change: from Global to Regional, in:
Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University
Press, 2013. a
Boo, K., Martin, G., Sellar, A., Senior, C., and Byun, Y.: Evaluating the
East Asian monsoon simulation in climate models, J. Geophys. Res., 116,
D01109, https://doi.org/10.1029/2010JD014737, 2011. a
Cavalcanti, I. F. A. and Shimizu, M. H.: Climate fields over South America
and variability of SACZ and PSA in HadGEM2-ES, American Journal of
Climate Changes, 1, 132–144, 2012. a
Cerezo-Mota, R., Allen, M., and Jones, R.: Mechanisms controlling precipitation
in the northern portion of the North American monsoon, J. Climate, 24,
2771–2783, 2011. a
Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S., Cavalcanti, I.
F. A., Castro, M., Dong, W., Goswami, P., Kanyanga, J. K., Kitoh,
A., Kossin, J., Lau, N., Renwick, J., Stephenson, D. B., Xie, S., and Zhou,
T.: Climate phenomena and their relevance for future regional climate change,
in: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University
Press, 2013. a, b, c, d, e
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st
century drying, Clim. Dynam., 43, 2607–2627, 2014. a
Cook, E. R., Kushnir, Y., Smerdon, J. E., Williams, A. P., Anchukaitis, K. J.,
and Wahl, E. R.: A Euro-Mediterranean tree-ring reconstruction of the
winter NAO index since 910 C.E., Clim. Dynam., 53, 1567–1580, 2019. a
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013. a, b
Diaz, H. F., Trigo, R., Hughes, M. K., Mann, M. E., Xoplaki, E., and
Barriopedro, D.: Spatial and temporal characteristics of climate in
Medieval Times revisited, B. Am. Meteorol. Soc., 92, 1487–1500, 2011. a
Dufresne, J., Foujols, M., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J., Ethe, C., Fairhead, L., Fichefet, T.,
Flavoni, S., Friedlingstein, P., Grandpeix, J., Guez, L., Guilyardi, E.,
Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,
Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.,
Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C.,
Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the
IPSL-CM5 Earth System Model: From CMIP3 to CMIP5, Clim. Dynam.,
40, 2123–2165, 2013. a, b
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating
Central Equatorial Pacific SST Variability over the Past
Millennium. Part I: Methodology and Validation, J. Climate, 26,
2302–2328, 2013a. a
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating
Central Equatorial Pacific SST Variability over the Past
Millennium. Part II: Reconstructions and implications, J.
Climate, 26, 2329–2352, 2013b. a
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013. a, b, c, d, e, f, g, h
Fischer, E., Luterbacher, J., Zorita, E., Tett, S., Casty, C., and Wanner, H.:
European climate response to tropical volcanic eruptions over the last half
millennium, Geophys. Res. Lett, 34, L05707, https://doi.org/10.1029/2006GL027992, 2007. a
Fogt, R. L., Perlwitz, J., Monaghan, A. J., Bromwich, D. H., Jones, J. M., and
Marshall, G. J.: Historical SAM variability. Part II:
Twentieth-Century variability and trends from reconstructions,
observations, and the IPCC AR4 models, J. Climate, 22, 5346–5365, https://doi.org/10.1175/2009JCLI2786.1, 2009. a
Frierson, D. M. W., Lu, J., and Chen, G.: The width of the Hadley Cell in
simple and comprehensive General Circulation Models, Geophys. Res.
Lett., 34, L18804, https://doi.org/10.1029/2007GL031115, 2007. a
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the last
1500 years: An improved ice core-based index for climate models, J. Geophys.
Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008. a, b
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI ESM simulations
for the Coupled Model Intercomparison Project phase 5, J. Adv. Model.
Earth Sy., 5, 572–597, 2013. a, b
Gong, D. Y. and Wang, S. W.: Definition of Antarctic Oscillation Index,
Geophys. Res. Lett., 26, 459–462, 1999. a
Graham, N. E., Ammann, C. M., Fleitmann, D., Cobb, K. M., and Luterbacher, J.:
Support for global climate reorganization during the “Medieval Climate
Anomaly”, Clim. Dynam., 7, 1217–1245, https://doi.org/10.1007/s00382-010-0914-z, 2011. a, b
Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P. D., and
Visbeck, M.: Historical SAM variability. Part I: Century-Length
seasonal reconstructions, J. Climate, 22, 5319–5345, https://doi.org/10.1175/2009JCLI2785.1, 2009. a
Jourdain, N. C., Gupta, A. S., Taschetto, A. S., Ummenhofer, C. C., Moise,
A. F., and Ashok, K.: The Indo-Australian monsoon and its relationship to
ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations, Clim.
Dynam., 41, 3073–3102, 2013. a
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Li, J. and Wang, J.: A modified zonal index and its physical sense, Geophys.
Res. Lett., 30, 1632, https://doi.org/10.1029/2003GL017441, 2003. a
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under
global warming, Geophys. Res. Lett, 34, L06805, https://doi.org/10.1029/2006GL028443, 2007. a
Luterbacher, J., García-Herrera, R., Akcer-On, S., Allan, R., Alvarez-Castro,
M. C., Benito, G., Booth, J., Büntgen, U., Cagatay, N., Colombaroli, D.,
Davis, B., Esper, J., Felis, T., Fleitmann, D., Frank, D., Gallego, D.,
Garcia-Bustamante, E., Glaser, R., Gonzalez-Rouco, F., Goosse, H., Kiefer,
T., Macklin, M. G., Manning, S. W., Montagna, P., Newman, L., Power, M. J.,
Rath, V., Ribera, P., Riemann, D., Roberts, N., Sicre, M. A., Silenzi, S.,
Tinner, W., Tzedakis, P. C., Valero-Garcés, B., Schrier, G., Vannière,
B., Vogt, S., Wanner, H., Werner, J. P., Willett, G., Williams, M. H.,
Xoplaki, E., Zerefos, C. S., and Zorita, E.: A review of 2000 years of
paleoclimatic evidence in the Mediterranean. In: The Climate of the
Mediterranean Region: From the Past to the Future, Elsevier, 1, 87–185,
2012. a, b
MacFarling-Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4
and N2O ice core records extended to 2000 years BP, Geophys. Res.
Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006. a
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., and Williams, A. P.:
Mid-latitude freshwater availability reduced by projected vegetation
responses to climate change, Nat. Geosci., 12, 983–988, 2019. a
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
Rouco, J. F. G., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn,
T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and
Timmermann, A.: Information from Paleoclimate Archives, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group
I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, 2013. a, b, c, d, e
May, W.: The sensitivity of the Indian summer monsoon to a global warming of
2ºC with respect to pre-industrial times, Clim. Dynam., 37, 1843–1868,
2011. a
Miller, G. H., Geirsdóttir, A., Zhong, Y., Larsen, D. J., Otto-Bliesner,
B. L., Holland, M. M. ., Bailey, D. A., Refsnider, K. A., Lehman, S. J.,
Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt
onset of the Little Ice Age triggered by volcanism and sustained by
sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012. a
Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., Raible, C. C.,
Steig, E. J., van Ommen, T., Vance, T., Villalba, R., Zinke, J., and Frank,
D.: Inter-hemispheric temperature variability over the past millennium,
Nat. Clim. Change, 4, 362–367, 2014. a
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P.:
No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554, 2019. a
Newton, A., Thunell, R., and Stott, L.: Climate and hydrographic variability in
the Indo-Pacific Warm Pool during the last millennium, Geophys. Res.
Lett., 33, L19710, https://doi.org/10.1029/2006GL027234, 2006. a
Ortega, P., Montoya, M., González-Rouco, F., Beltrami, H., and Swingedouw, D.: Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model, Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, 2013. a
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability
and change since 850 C.E.: An ensemble approach with the Community
Earth System Model (CESM), B. Am. Meteorol. Soc., 97, 735–754, https://doi.org/10.1175/BAMS-D-14-00233.1, 2015. a, b, c
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015. a
Palmer, W.: Meteorologic drought, U.S. Weather Bureau, Res. Pap. No. 45, 58,
1965. a
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings, Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012, 2012. a, b
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: A reconstruction of
global agricultural areas and land cover for the last millennium, Global
Biogeochem. Cy., 22, GB3018, https://doi.org/10.1029/2007GB003153, 2008. a
Sachs, J. P., Sachse, D., Smittenberg, R. H., Zhang, Z. H., Battisti, D. S.,
and Golubic, S.: Southward movement of the Pacific intertropical
convergence zone AD 1400–1850, Nat. Geosci., 2, 519–525, 2009. a
Schmidt, G., Ruedy, R., Hansen, J., Aleinov, I., Bell, N., Bauer, M., Bauer,
S., Cairns, B., Canuto, V., Cheng, Y., Genio, A. D., Faluvegi, G., Friend,
A., Hall, T., Hu, Y., Kelley, M., Kiang, N., Koch, D., Lacis, A., Lerner, J.,
Lo, K., Miller, R., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J.,
Rind, D., Romanou, A., Russell, G., Sato, M., Shindell, D., Stone, P., Sun,
S., Tausnev, N., Thresher, D., and Yao, M.: Present day atmospheric
simulations using GISS ModelE: Comparison to in-situ, satellite and
reanalysis data, J. Climate, 19, 153–192, 2006. a, b
Schmidt, G., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G., Aleinov, I.,
Bauer, M., Bauer, S., Bhat, M., Bleck, R., Canuto, V., Chen, Y., Cheng, Y.,
Clune, T., Genio, A. D., de Fainchtein, R., Faluvegi, G., Hansen, J., Healy,
R., Kiang, N., Koch, D., Lacis, A., LeGrande, A., Lerner, J., Lo, K.,
Matthews, E., Menon, S., Miller, R., Oinas, V., Oloso, A., Perlwitz, J.,
Puma, M., Putman, W., Rind, D., Romanou, A., Sato, M., Shindell, D., Sun, S.,
Syed, R., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.,
and Zhang, J.: Configuration and assessment of the GISS ModelE2
contributions to the CMIP5 archive, J. Adv. Model. Earth Sy., 6,
141–184, 2014. a, b
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011. a, b
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012. a, b
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.,
Harnik, N., Leetmaa, A., Lau, N., Li, C., Velez, J., and Naik, N.: Model
projections of an imminent transition to a more arid climate in
Southwestern North America, Science, 316, 1181–1184, 2007. a
Smerdon, J. E., Cook, B. I., Cook, E. R., and Seager, R.: Bridging Past and
Future Climate across Paleoclimatic Reconstructions, Observations, and
Models: A Hydroclimate Case Study, J. Climate, 28, 3212–3231, 2015. a
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during
the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009. a
Steinman, B. A., Abbott, M. B., Mann, M. E., Stansell, N. D., and Finney,
B. P.: 1,500 year quantitative reconstruction of winter precipitation in the
Pacific Northwest, P. Natl. Acad. Sci. USA, 109, 11619–11623, 2013. a
Stephenson, D., Pavan, V., Collins, M., Junge, M., and Quadrelli, R.: North
Atlantic Oscillation response to transient greenhouse gas forcing and the
impact on European winter climate: A CMIP2 multi-model assessment,
Clim. Dynam., 27, 401–420, 2006. a
Stocker, T. F., Qin, D., Plattner, G. K., Alexander, L. V., Allen, S. K.,
Bindoff, N. L., Bréon, F. M., Church, J. A., Cubasch, U., Emori, S.,
Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann,
D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar, K. K., Lemke, P.,
Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S.,
Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D.,
Talley, L. D., Vaughan, D. G., and Xie, S. P.: Technical Summary, in:
Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University
Press, 2013. a
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019. a
Taylor, C. M., Parker, D. J., and Harris, P. P.: An observational case study of
mesoscale atmospheric circulations induced by soil moisture, Geophys. Res.
Lett., 34, L15801, https://doi.org/10.1029/2007GL030572, 2007. a
Thompson, D. W. J. and Wallace, J. M.: Regional Climate Impacts of the
Northern Hemisphere Annular Mode, Science, 293, 85–89, 2001. a
Thornthwaite, C. W.: An approach toward a rational classification of climate,
Geogr. Rev., 38, 55–94, 1948. a
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank,
D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated
the Medieval Climate Anomaly, Science, 324, 78–80, https://doi.org/10.1126/science.1166349, 2009. a
Vial, J., Dufresne, J. L., and Bony, S.: On the interpretation of inter-model
spread in CMIP5 climate sensitivity estimates, Clim. Dynam., 41, 3339–3362,
2013. a
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution of
the solar irradiance during the Holocene, Astron. Astrophys., 531, A6, https://doi.org/10.1051/0004-6361/201015843,
2011. a
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., and Novello, V. F.: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, 2012.
a, b
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly,
M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: links to
solar changes and North Atlantic climate, Science, 308, 854–857, https://doi.org/10.1126/science.1106296, 2005. a
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer Drought
Severity Index, J. Climate, 17, 2335–2351, 2004. a
Widlansky, M. J., Webster, P. J., and Hoyos, C. D.: On the location and
orientation of the South Pacific Convergence Zone, Clim. Dynam., 36,
561–578, 2011. a
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo,
R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S.,
Klesse, S., Krusic, P. J., Linderholm, H. W., Myglano, V., Osborn, T. J.,
Rydval, M., and Zorita, E.: Last millennium northern hemisphere summer
temperatures from tree rings: Part I: The long term context, Quaternary Sci.
Rev., 134, 1–18, 2016. a
Xie, P., Miyama, T., Wang, Y., Xu, H., de Szoeke, S. P., Small, R. J. O.,
Richards, K. J., Mochizuki, T., and Awaji, T.: A regional ocean-atmosphere
model for eastern Pacific climate, J. Climate, 20, 1504–1522,
2007. a
Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M.,
Tanaka, T. Y., Deushi, M., Obata, A., Nakano, H., Adachi, Y., Shindo, E.,
Yabu, S., Ose, T., and Kitoh, A.: Meteorological Research Institute –
Earth System Model Version 1 (MRI-ESM1) – Model Description,
Tech. Rep. of the Met. Res. Inst., 64, 2011. a, b
Zorita, E., González-Rouco, J. F., von Storch, H., Montávez, J. P., and
Valero, F.: Natural and anthropogenic modes of surface temperature variations
in the last thousand years, Geophys. Res. Lett, 32, L08707, https://doi.org/10.1029/2004GL021563, 2005. a, b
Short summary
This work analyses the behavior of atmospheric dynamics and hydroclimate in climate simulations of the last millennium. In particular, how external forcing factors, like solar and volcanic activity and greenhouse gas emissions, impact variables like temperature, pressure, wind, precipitation, and soil moisture is assessed. The results of these analyses show that changes in the forcing could alter the zonal circulation and the intensity and distribution of monsoons and convergence zones.
This work analyses the behavior of atmospheric dynamics and hydroclimate in climate simulations...