Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model
Ning Tan
CORRESPONDING AUTHOR
Key Laboratory of Cenozoic Geology and Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Camille Contoux
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Gilles Ramstein
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
State Key Laboratory of Numerical Modelling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Christophe Dumas
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Pierre Sepulchre
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Zhengtang Guo
Key Laboratory of Cenozoic Geology and Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China
Viewed
Total article views: 6,118 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Jul 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,974 | 1,062 | 82 | 6,118 | 401 | 92 | 83 |
- HTML: 4,974
- PDF: 1,062
- XML: 82
- Total: 6,118
- Supplement: 401
- BibTeX: 92
- EndNote: 83
Total article views: 4,937 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Jan 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,179 | 686 | 72 | 4,937 | 202 | 80 | 71 |
- HTML: 4,179
- PDF: 686
- XML: 72
- Total: 4,937
- Supplement: 202
- BibTeX: 80
- EndNote: 71
Total article views: 1,181 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Jul 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
795 | 376 | 10 | 1,181 | 199 | 12 | 12 |
- HTML: 795
- PDF: 376
- XML: 10
- Total: 1,181
- Supplement: 199
- BibTeX: 12
- EndNote: 12
Viewed (geographical distribution)
Total article views: 6,118 (including HTML, PDF, and XML)
Thereof 5,396 with geography defined
and 722 with unknown origin.
Total article views: 4,937 (including HTML, PDF, and XML)
Thereof 4,421 with geography defined
and 516 with unknown origin.
Total article views: 1,181 (including HTML, PDF, and XML)
Thereof 975 with geography defined
and 206 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
28 citations as recorded by crossref.
- Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation E. de la Vega et al. 10.1038/s41598-020-67154-8
- Evaluation of Arctic warming in mid-Pliocene climate simulations W. de Nooijer et al. 10.5194/cp-16-2325-2020
- Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift G. Pontes et al. 10.1038/s41561-022-00999-y
- The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity A. Haywood et al. 10.5194/cp-16-2095-2020
- Climate-inferred distribution estimates of mid-to-late Pliocene hominins C. Gibert et al. 10.1016/j.gloplacha.2022.103756
- Southern African precipitation changes in a warmer world: insights from the PlioMIP2 mid-Pliocene Warm Period (∼3.3–3.0 Ma) ensemble S. Roffe et al. 10.1080/0035919X.2024.2410945
- Revisiting the physical processes controlling the tropical atmospheric circulation changes during the Mid-Piacenzian Warm Period K. Zhang et al. 10.1016/j.quaint.2024.01.001
- The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period Z. Han & G. Li 10.1007/s00382-024-07179-1
- Influence of Large‐Scale Atmospheric Dynamics on Precipitation Seasonality of the Tibetan Plateau and Central Asia in Cold and Warm Climates During the Late Cenozoic S. Botsyun et al. 10.1029/2021JD035810
- Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2 Z. Zhang et al. 10.5194/cp-17-529-2021
- The warm winter paradox in the Pliocene northern high latitudes J. Tindall et al. 10.5194/cp-18-1385-2022
- Drastic Vegetation Change in the Guajira Peninsula (Colombia) During the Neogene C. Jaramillo et al. 10.1029/2020PA003933
- The Yorktown Formation: Improved Stratigraphy, Chronology, and Paleoclimate Interpretations from the U.S. Mid-Atlantic Coastal Plain H. Dowsett et al. 10.3390/geosciences11120486
- Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 J. Weiffenbach et al. 10.5194/cp-19-61-2023
- On the climatic influence of CO2forcing in the Pliocene L. Burton et al. 10.5194/cp-19-747-2023
- Modeling the mid-piacenzian warm climate using the water isotope-enabled Community Earth System Model (iCESM1.2-ITPCAS) Y. Sun et al. 10.1007/s00382-024-07304-0
- Effect of Hudson Bay closure on global and regional climate under different astronomical configurations Z. Wu et al. 10.1016/j.gloplacha.2023.104040
- Highly stratified mid-Pliocene Southern Ocean in PlioMIP2 J. Weiffenbach et al. 10.5194/cp-20-1067-2024
- Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate A. Oldeman et al. 10.5194/esd-15-1037-2024
- Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m) W. Chan & A. Abe-Ouchi 10.5194/cp-16-1523-2020
- The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2 X. Ren et al. 10.5194/cp-19-2053-2023
- Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble E. Berntell et al. 10.5194/cp-17-1777-2021
- Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble A. Oldeman et al. 10.5194/cp-17-2427-2021
- The response of streams in the Adirondack region of New York to projected changes in sulfur and nitrogen deposition under changing climate S. Shao et al. 10.1016/j.scitotenv.2021.149626
- PlioMIP2 simulations with NorESM-L and NorESM1-F X. Li et al. 10.5194/cp-16-183-2020
- Fates of Paleo‐Antarctic Bottom Water During the Early Eocene: Based on a Lagrangian Analysis of IPSL‐CM5A2 Climate Model Simulations Y. Zhang et al. 10.1029/2019PA003845
- Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations S. Kaboth-Bahr et al. 10.1038/s43247-021-00232-5
- Impacts of Mid‐Pliocene Ice Sheets and Vegetation on Afro‐Asian Summer Monsoon Rainfall Revealed by EC‐Earth Simulations Z. Han et al. 10.1029/2023GL106145
28 citations as recorded by crossref.
- Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation E. de la Vega et al. 10.1038/s41598-020-67154-8
- Evaluation of Arctic warming in mid-Pliocene climate simulations W. de Nooijer et al. 10.5194/cp-16-2325-2020
- Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift G. Pontes et al. 10.1038/s41561-022-00999-y
- The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity A. Haywood et al. 10.5194/cp-16-2095-2020
- Climate-inferred distribution estimates of mid-to-late Pliocene hominins C. Gibert et al. 10.1016/j.gloplacha.2022.103756
- Southern African precipitation changes in a warmer world: insights from the PlioMIP2 mid-Pliocene Warm Period (∼3.3–3.0 Ma) ensemble S. Roffe et al. 10.1080/0035919X.2024.2410945
- Revisiting the physical processes controlling the tropical atmospheric circulation changes during the Mid-Piacenzian Warm Period K. Zhang et al. 10.1016/j.quaint.2024.01.001
- The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period Z. Han & G. Li 10.1007/s00382-024-07179-1
- Influence of Large‐Scale Atmospheric Dynamics on Precipitation Seasonality of the Tibetan Plateau and Central Asia in Cold and Warm Climates During the Late Cenozoic S. Botsyun et al. 10.1029/2021JD035810
- Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2 Z. Zhang et al. 10.5194/cp-17-529-2021
- The warm winter paradox in the Pliocene northern high latitudes J. Tindall et al. 10.5194/cp-18-1385-2022
- Drastic Vegetation Change in the Guajira Peninsula (Colombia) During the Neogene C. Jaramillo et al. 10.1029/2020PA003933
- The Yorktown Formation: Improved Stratigraphy, Chronology, and Paleoclimate Interpretations from the U.S. Mid-Atlantic Coastal Plain H. Dowsett et al. 10.3390/geosciences11120486
- Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 J. Weiffenbach et al. 10.5194/cp-19-61-2023
- On the climatic influence of CO2forcing in the Pliocene L. Burton et al. 10.5194/cp-19-747-2023
- Modeling the mid-piacenzian warm climate using the water isotope-enabled Community Earth System Model (iCESM1.2-ITPCAS) Y. Sun et al. 10.1007/s00382-024-07304-0
- Effect of Hudson Bay closure on global and regional climate under different astronomical configurations Z. Wu et al. 10.1016/j.gloplacha.2023.104040
- Highly stratified mid-Pliocene Southern Ocean in PlioMIP2 J. Weiffenbach et al. 10.5194/cp-20-1067-2024
- Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate A. Oldeman et al. 10.5194/esd-15-1037-2024
- Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m) W. Chan & A. Abe-Ouchi 10.5194/cp-16-1523-2020
- The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2 X. Ren et al. 10.5194/cp-19-2053-2023
- Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble E. Berntell et al. 10.5194/cp-17-1777-2021
- Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble A. Oldeman et al. 10.5194/cp-17-2427-2021
- The response of streams in the Adirondack region of New York to projected changes in sulfur and nitrogen deposition under changing climate S. Shao et al. 10.1016/j.scitotenv.2021.149626
- PlioMIP2 simulations with NorESM-L and NorESM1-F X. Li et al. 10.5194/cp-16-183-2020
- Fates of Paleo‐Antarctic Bottom Water During the Early Eocene: Based on a Lagrangian Analysis of IPSL‐CM5A2 Climate Model Simulations Y. Zhang et al. 10.1029/2019PA003845
- Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations S. Kaboth-Bahr et al. 10.1038/s43247-021-00232-5
- Impacts of Mid‐Pliocene Ice Sheets and Vegetation on Afro‐Asian Summer Monsoon Rainfall Revealed by EC‐Earth Simulations Z. Han et al. 10.1029/2023GL106145
Latest update: 18 Jan 2025
Short summary
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with the new boundary conditions are launched and analyzed based on the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM). Our results show that the warming in mid- to high latitudes enhanced due to the modifications of the land–sea mask and land–ice configuration. The pCO2 uncertainties within the records can produce asymmetrical warming patterns.
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with...