Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Rodrigo da Costa Portilho-Ramos
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
Institute of Geosciences, University of São Paulo, Rua do Lago 562, CEP05508-080, São Paulo, Brazil
Tainã Marcos Lima Pinho
Institute of Geosciences, University of São Paulo, Rua do Lago 562, CEP05508-080, São Paulo, Brazil
School of Arts, Sciences and Humanities, University of São Paulo, Rua Arlindo Bettio 1000, CEP03828-000, São Paulo, Brazil
Cristiano Mazur Chiessi
School of Arts, Sciences and Humanities, University of São Paulo, Rua Arlindo Bettio 1000, CEP03828-000, São Paulo, Brazil
Cátia Fernandes Barbosa
Departamento de Geoquímica, Universidade Federal Fluminense, Rua Outeiro São João Baptista S/N, CEP24020-141, Niterói, Brazil
Related authors
No articles found.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Anna Paula Soares Cruz, Cátia Fernandes Barbosa, Angélica Maria Blanco, Camila Areias de Oliveira, Cleverson Guizan Silva, and José Carlos Sícoli Seoane
Clim. Past, 15, 1363–1373, https://doi.org/10.5194/cp-15-1363-2019, https://doi.org/10.5194/cp-15-1363-2019, 2019
Short summary
Short summary
Salgada Lagoon is a hypersaline lake investigated for its sedimentation history in order to interpret past climatic events. We studied the geochemistry of sediments from 5800 years ago until the present and found sea level oscillations, different climatic conditions, and proxies for vegetation cover and productivity, which highlight a dry event 4200 years ago that matches a global event of the same age, marking changes to favorable conditions for carbonates microbial mats and stromatolites.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017, https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Short summary
Our new planktonic foraminiferal stable carbon isotopic data from the western South Atlantic show major decreases during abrupt climate change events of the last glacial. These anomalies are likely related to periods of a sluggish Atlantic meridional overturning circulation and increase (decrease) in atmospheric CO2 (stable carbon isotopic ratios). We hypothesize that strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump are responsible for these decreases.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
C. Häggi, C. M. Chiessi, and E. Schefuß
Biogeosciences, 12, 7239–7249, https://doi.org/10.5194/bg-12-7239-2015, https://doi.org/10.5194/bg-12-7239-2015, 2015
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
A. Govin, C. M. Chiessi, M. Zabel, A. O. Sawakuchi, D. Heslop, T. Hörner, Y. Zhang, and S. Mulitza
Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, https://doi.org/10.5194/cp-10-843-2014, 2014
L. F. Prado, I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq
Clim. Past, 9, 2117–2133, https://doi.org/10.5194/cp-9-2117-2013, https://doi.org/10.5194/cp-9-2117-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
A major change in North Atlantic deep water circulation 1.6 million years ago
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
N. Khélifi and M. Frank
Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, https://doi.org/10.5194/cp-10-1441-2014, 2014
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
M. Dedert, H. M. Stoll, D. Kroon, N. Shimizu, K. Kanamaru, and P. Ziveri
Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, https://doi.org/10.5194/cp-8-977-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Abelmann, A., Gersonde, R., Knorr, G., Zhang, X., Chapligin, B., Maier, E.,
Esper, O., Friedrichsen, H., Lohmann, G., Meyer, H., and Tiedemann, R.: The
seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink, Nat.
Commun., 6, 8136, https://doi.org/10.1038/ncomms9136, 2015.
Abrantes, F., Cermeno, P., Lopes, C., Romero, O., Matos, L., Van Iperen, J.,
Rufino, M., and Magalhães, V.: Diatoms Si uptake capacity drives carbon
export in coastal upwelling systems, Biogeosciences, 13, 4099–4109,
https://doi.org/10.5194/bg-13-4099-2016, 2016.
Aguiar, A. L., Cirano, M., Pereira, J., and Marta-Almeida, M.: Upwelling
processes along a western boundary current in the Abrolhos-Campos region of
Brazil, Cont. Shelf Res., 85, 42–59, https://doi.org/10.1016/j.csr.2014.04.013, 2014.
André, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard,
R., Douady, C. J., de Garidel-Thoron, T., Escarguel, G., de Vargas, C., and
Kucera, M.: The cryptic and the apparent reversed: lack of genetic
differentiation within the morphologically diverse plexus of the planktonic
foraminifer Globigerinoides sacculifer, Paleobiology, 39, 21–39,
https://doi.org/10.1666/0094-8373-39.1.21, 2013.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Bianchi, A. A., Bianucci, L., Piola, A. R., Pino, D. R., Schloss, I.,
Poisson, A., and Balestrini, C. F.: Vertical stratification and air-sea
CO2 fluxes in the Patagonian shelf, J. Geophys. Res., 110, 1–10,
https://doi.org/10.1029/2004JC002488, 2005.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., and Burckle, L. H.:
Opal burial in the equatorial Atlantic Ocean over the last 30 ka:
Implications for glacial-interglacial changes in the ocean silicon cycle,
Paleoceanography, 22, PA4216, https://doi.org/10.1029/2007PA001443, 2007.
Brandini, F. P., Nogueira, M., Simião, M., Codina, J. C. U., and Almeida
Noernberg, M.: Deep chlorophyll maximum and plankton community response to
oceanic bottom intrusions on the continental shelf in the South Brazilian
Bight, Cont. Shelf Res., 89, 61–75, https://doi.org/10.1016/j.csr.2013.08.002, 2014.
Brandini, F. P., Tura, P. M., and Santos, P. P. G. M.: Ecosystem responses to
biogeochemical fronts in the South Brazil Bight, Prog. Oceanogr.,
164, 52–62, https://doi.org/10.1016/j.pocean.2018.04.012, 2018.
Campos, E. J. D., Velhote, D., and da Silveira, I. C. A.: Shelf break
upwelling driven by Brazil Current Cyclonic Meanders, Geophys. Res. Lett.,
27, 751–754, https://doi.org/10.1029/1999GL010502, 2000.
Campos, P. C., Möller, O. O., Piola, A. R., and Palma, E. D.: Seasonal
variability and coastal upwelling near Cape Santa Marta (Brazil), J.
Geophys. Res.-Oceans, 118, 1420–1433, https://doi.org/10.1002/jgrc.20131, 2013.
Castelao, R. M., Campos, E. J. D., and Miller, J. L.: A Modelling Study of
Coastal Upwelling Driven by Wind and Meanders of the Brazil Current, J.
Coastal Res., 203, 662–671, 2004.
Chiessi, C. M., Ulrich, S., Mulitza, S., Pätzold, J., and Wefer, G.:
Signature of the Brazil-Malvinas Confluence (Argentine Basin) in the
isotopic composition of planktonic foraminifera from surface sediments, Mar.
Micropaleontol., 64, 52–66, https://doi.org/10.1016/j.marmicro.2007.02.002, 2007.
Chiessi, C. M., Mulitza, S., Groeneveld, J., Silva, J. B., Campos, M. C., and
Gurgel, M. H. C.: Variability of the Brazil Current during the late
Holocene, Palaeogeogr. Palaeocl., 415, 28–36,
https://doi.org/10.1016/j.palaeo.2013.12.005, 2014.
Crosta, X., Sturm, A., Armand, L., and Pichon, J.-J.: Late Quaternary sea ice
history in the Indian sector of the Southern Ocean as recorded by diatom
assemblages, Mar. Micropaleontol., 50, 209–223,
https://doi.org/10.1016/S0377-8398(03)00072-0, 2004.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso,
A. O., Ferrari, J. A., Dias, P. L. S., and Viana, O.: Insolation-driven
changes in atmospheric circulation over the past 116 000 years in
subtropical Brazil, Nature, 434, 63–6, https://doi.org/10.1038/nature03365,
2005.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021,
2005.
DeMaster, D. J.: The accumulation and cycling of biogenic silica in the
Southern Ocean: Revisiting the marine silica budget, Deep-Sea Res. Pt. II, 49, 3155–3167, https://doi.org/10.1016/S0967-0645(02)00076-0,
2002.
de Vargas, C., Bonzon, M., Rees, N. W., Pawlowski, J., and Zaninetti, L.: A
molecular approach to biodiversity and biogeography in the planktonic
foraminifer Globigerinella siphonifera (d'Orbigny), Mar. Micropaleontol.,
45, 101–116, https://doi.org/10.1016/S0377-8398(02)00037-3, 2002.
Dezileau, L., Reyss, J. L., and Lemoine, F.: Late Quaternary changes in
biogenic opal fluxes in the Southern Indian Ocean, Mar. Geol., 202,
143–158, https://doi.org/10.1016/S0025-3227(03)00283-4, 2003.
Donners, J. and Drijfhout, S. S.: The Lagrangian View of South Atlantic
Interocean Exchange in a Global Ocean Model Compared with Inverse Model
Results, J. Phys. Oceanogr., 34, 1019–1035,
https://doi.org/10.1175/1520-0485(2004)034<1019:TLVOSA>2.0.CO;2,
2004.
Ericson, D. B. and Wollin, G.: Pleistocene Climates and Chronology in
Deep-Sea Sediments, Science, 162, 1227–1234,
https://doi.org/10.1126/science.162.3859.1227, 1968.
Garcia, C. A. E. and Garcia, V. M. T.: Variability of chlorophyll-a from
ocean color images in the La Plata continental shelf region, Cont. Shelf
Res., 28, 1568–1578, https://doi.org/10.1016/j.csr.2007.08.010, 2008.
Godad, S. P., Naidu, P. D., and Malmgren, B. A.: Sea surface temperature
changes during May and August in the western Arabian Sea over the last
22 kyr: Implications as to shifting of the upwelling season, Mar.
Micropaleontol., 78, 25–29, https://doi.org/10.1016/j.marmicro.2010.09.006, 2011.
Griffiths, J. D., Barker, S., Hendry, K. R., Thornalley, D. J. R., van de
Flierdt, T., Hall, I. R., and Anderson, R. F.: Evidence of silicic acid
leakage to the tropical Atlantic via Antarctic Intermediate Water during
Marine Isotope Stage 4, Paleoceanography, 28, 307–318,
https://doi.org/10.1002/palo.20030, 2013.
Gu, F., Zonneveld, K. A. F., Chiessi, C. M., Arz, H. W., Pätzold, J., and
Behling, H.: Long-term vegetation, climate and ocean dynamics inferred from
a 73 500 years old marine sediment core (GeoB2107-3) off southern Brazil,
Quaternay Sci. Rev., 172, 55–71, https://doi.org/10.1016/j.quascirev.2017.06.028, 2017.
Hendry, K. R., Robinson, L. F., Meredith, M. P., Mulitza, S., Chiessi, C. M.,
and Arz, H.: Abrupt changes in high-latitude nutrient supply to the Atlantic
during the last glacial cycle, Geology, 40, 123–126,
https://doi.org/10.1130/G32779.1, 2012.
Ito, R. G., Garcia, C. A. E., and Tavano, V. M.: Net sea-air CO2 fluxes and
modelled pCO2 in the southwestern subtropical Atlantic continental shelf
during spring 2010 and summer 2011, Cont. Shelf Res., 119, 68–84,
https://doi.org/10.1016/J.CSR.2016.03.013, 2016.
Juggins, S.: C2 user guide: Software for ecological and palaeoecological
data analysis and visualization, Newcastle University, Newcastle, UK, 2007.
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and Weinelt,
M.: Multiproxy approach for the reconstruction of the glacial ocean surface
(MARGO), Quaternary Sci. Rev., 24, 813–819,
https://doi.org/10.1016/j.quascirev.2004.07.017, 2005a.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins,
S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from
assemblages of planktonic foraminifera: multi-technique approach based on
geographically constrained calibration data sets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998,
https://doi.org/10.1016/j.quascirev.2004.07.014, 2005b.
Lantzsch, H., Hanebuth, T. J. J., Chiessi, C. M., Schwenk, T., and Violante,
R. A.: The high-supply, current-dominated continental margin of southeastern
South America during the late Quaternary, Quaternary Res., 81, 339–354,
https://doi.org/10.1016/j.yqres.2014.01.003, 2014.
Lessa, D. V. de O., Portilho-Ramos, R. C., Barbosa, C. F., da Silva, A. R.,
Belem, A., Turcq, B., Albuquerque, A. L., and Ramos, R. P.: Planktonic
foraminifera in the sediment of a western boundary upwelling system off Cabo
Frio, Brazil, Mar. Micropaleontol., 106, 55–68,
https://doi.org/10.1016/j.marmicro.2013.12.003, 2014.
Lessa, D. V. O., Santos, T. P., Venancio, I. M., and Albuquerque, A. L. S.:
Offshore expansion of the Brazilian coastal upwelling zones during Marine
Isotope Stage 5, Global Planet. Change, 158, 13–20,
https://doi.org/10.1016/j.gloplacha.2017.09.006, 2017.
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks
for the last glacial cycle, Paleoceanography, 31, 1368–1394,
https://doi.org/10.1002/2016PA003002, 2016.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia O. H. E.,
Baranova, O. K., and Zweng, M. M.: World ocean database 2009, vol 1: temperature, US
government printing office, Washington, DC, USA, 2010.
Martínez-Méndez, G., Zahn, R., Hall, I. R., Peeters, F. J. C.,
Pena, L. D., Cacho, I., and Negre, C.: Contrasting multiproxy reconstructions
of surface ocean hydrography in the Agulhas Corridor and implications for
the Agulhas Leakage during the last 345 000 years, Paleoceanography, 25,
PA4227, https://doi.org/10.1029/2009PA001879, 2010.
Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic
acid leakage and their biogeochemical consequences, Paleoceanography, 29,
238–254, https://doi.org/10.1002/2013PA002588, 2014.
Mohtadi, M., Max, L., Hebbeln, D., Baumgart, A., Krück, N., and
Jennerjahn, T.: Modern environmental conditions recorded in surface sediment
samples off W and SW Indonesia: Planktonic foraminifera and biogenic
compounds analyses, Mar. Micropaleontol., 65, 96–112,
https://doi.org/10.1016/j.marmicro.2007.06.004, 2007.
Möller, O. O., Piola, A. R., Freitas, A. C., and Campos, E. J. D.: The
effects of river discharge and seasonal winds on the shelf off southeastern
South America, Cont. Shelf Res., 28, 1607–1624,
https://doi.org/10.1016/j.csr.2008.03.012, 2008.
Morey, A. E., Mix, A. C., and Pisias, N. G.: Planktonic foraminiferal
assemblages preserved in surface sediments correspond to multiple
environment variables, Quaternary Sci. Rev., 24, 925–950,
https://doi.org/10.1016/j.quascirev.2003.09.011, 2005.
Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman,
J., Hays, J. D., and Burckle, L. H.: Evidence for lower productivity in the
Antarctic Ocean during the last glaciation, Nature, 351, 220–223,
https://doi.org/10.1038/351220a0, 1991.
Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and
Walsh, J. J.: The importance of continental margins in the global carbon
cycle, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL021346, 2005.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos, Transactions American Geophysical Union, 77,
p. 379, https://doi.org/10.1029/96EO00259, 1996.
Peeters, F. J. C., Brummer, G. J. A., and Ganssen, G.: The effect of
upwelling on the distribution and stable isotope composition of Globigerina
bulloides and Globigerinoides ruber (planktic foraminifera) in modern
surface waters of the NW Arabian Sea, Global Planet. Change, 34, 269–291,
https://doi.org/10.1016/S0921-8181(02)00120-0, 2002.
Petró, S. M., Pivel, M. A. G., Coimbra, J. C., and Mizusaki, A. M. P.:
Paleoceanographic changes through the last 130 ka in the western South
Atlantic based on planktonic Foraminifera, Rev. Bras. Paleontolog., 19,
3–14, https://doi.org/10.4072/rbp.2016.1.01, 2016.
Portilho-Ramos, R. C., Ferreira, F., Lago, L. C., Da Silva, A. G. V.,
Jaworski, K. S., and Toledo, M. B.: Globorotalia crassaformis optimum event: a new late Quaternary
biostratigraphic marker for the southeastern Brazilian margin, Palaios,
29, 578–593, https://doi.org/10.2110/palo.2013.097, 2014a.
Portilho-Ramos, R. C., Barbosa, C. F., and Rios-Netto, A. M.: Planktonic
foraminiferal variations in the southwestern Atlantic since the last
glacial-interglacial cycle, Palaios, 29, 38–44,
https://doi.org/10.2110/palo.2012.104, 2014b.
Portilho-Ramos, R. C., Ferreira, F., Calado, L., Frontalini, F., and de
Toledo, M. B.: Variability of the upwelling system in the southeastern
Brazilian margin for the last 110 000 years, Global Planet. Change, 135,
179–189, https://doi.org/10.1016/j.gloplacha.2015.11.003, 2015.
Portilho-Ramos, R. C., Pinho, M. R., Chiessi, C. M., and
Barbosa, C. F.: Planktonic foraminifera assemblage, MAT-derived sea
surface temperature and Cibicides spp. oxygen isotopes, PANGAEA,
available at: https://doi.pangaea.de/10.1594/PANGAEA.902040 (unpublished dataset),
last access: 24 May 2019.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rodrigues, R. R. and Lorenzzetti, J. A.: A numerical study of the effects of
bottom topography and coastline geometry on the Southeast Brazilian coastal
upwelling, Cont. Shelf Res., 21, 371–394,
https://doi.org/10.1016/S0278-4343(00)00094-7, 2001.
Rodrigues, S. V., Marinho, M. M., Jonck, C. C. C., Gonçalves, E. S.,
Brant, V. F., Paranhos, R., Curbelo, M. P., and Falcão, A. P.:
Phytoplankton community structures in shelf and oceanic waters off southeast
Brazil (20–25∘ S), as determined by pigment
signatures, Deep-Sea Res. Pt. I, 88, 47–62,
https://doi.org/10.1016/j.dsr.2014.03.006, 2014.
Salgueiro, E., Naughton, F., Voelker, A. H. L., Abreu, L. De and Alberto,
A.: Past circulation along the western Iberian margin?: a time slice vision
from the Last Glacial to the Holocene, Quaternary Sci. Rev.,
106, 316–329, https://doi.org/10.1016/j.quascirev.2014.09.001, 2014.
Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Mulitza, S.,
Kuhnert, H., Govin, A., Machado, T., Costa, K. B., Toledo, F., Dias, B. B., and Albuquerque, A. L. S.: Prolonged warming of the Brazil Current precedes
deglaciations, Earth Planet. Sc. Lett., 463, 1–12,
https://doi.org/10.1016/j.epsl.2017.01.014, 2017.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity., Nature, 427, 56–60, https://doi.org/10.1038/nature10605, 2004.
Sautter, L. R. and Thunell, R. C.: Planktonic foraminiferal response to
upwelling and seasonal hydrographic conditions; sediment trap results from
San Pedro Basin, Southern California Bight, J. Foramin. Res., 21,
347–363, https://doi.org/10.2113/gsjfr.21.4.347, 1991.
Schiebel, R. and Hemleben, C.: Ecology, in Planktic Foraminifers in the
Modern Ocean, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany,
209–230, 2017.
Shemesh, A., Hodell, D., Crosta, X., Kanfoush, S., Charles, C., and
Guilderson, T.: Sequence of events during the last deglaciation in Southern
Ocean sediments and Antarctic ice cores, Paleoceanography, 17, 81–87,
https://doi.org/10.1029/2000PA000599, 2002.
Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords,
R. M.: Cenozoic Planktonic Foraminiferal Zonation and Characteristics of
Index Formsle, The Paleontological Institute, The University of Kansas,
Kansas, available at: http://hdl.handle.net/1808/3836 (last access:
14 March 2017), 1975.
Tessin, A. C. and Lund, D. C.: Isotopically depleted carbon in the mid-depth
South Atlantic during the last deglaciation, Paleoceanography, 28,
296–306, https://doi.org/10.1002/palo.20026, 2013.
Thunell, R. and Sautter, L. R.: Planktonic foraminiferal faunal and stable
isotopic indices of upwelling: a sediment trap study in the San Pedro Basin,
Southern California Bight, Geol. Soc. Spec. Publ., 64, 77–91,
https://doi.org/10.1144/GSL.SP.1992.064.01.05, 1992.
Toledo, F. A. L., Cachão, M., Costa, K. B., and Pivel, M. A. G.:
Planktonic foraminifera, calcareous nannoplankton and ascidian variations
during the last 25 kyr in the Southwestern Atlantic: A paleoproductivity
signature?, Mar. Micropaleontol., 64, 67–79,
https://doi.org/10.1016/j.marmicro.2007.03.001, 2007.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Volbers, A. N. A. and Henrich, R.: Calcium carbonate corrosiveness in the
South Atlantic during the Last Glacial Maximum as inferred from changes in
the preservation of Globigerina bulloides: A proxy to determine deep-water
circulation patterns?, Mar. Geol., 204, 43–57,
https://doi.org/10.1016/S0025-3227(03)00372-4, 2004.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9,
2002.
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification
and spatial homogenization of coastal upwelling under climate change,
Nature, 518, 390–394, https://doi.org/10.1038/nature14235, 2015.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., Kong,
X., and Solheid, M.: Millennial-scale precipitation changes in southern
Brazil over the past 90 000 years, Geophys. Res. Lett., 34, L23701,
https://doi.org/10.1029/2007GL031149, 2007.
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Fossil microorganisms from the last glacial found in marine sediments collected off southern...