Articles | Volume 15, issue 1
Clim. Past, 15, 91–104, 2019
https://doi.org/10.5194/cp-15-91-2019
Clim. Past, 15, 91–104, 2019
https://doi.org/10.5194/cp-15-91-2019
Research article
16 Jan 2019
Research article | 16 Jan 2019

The 405 kyr and 2.4 Myr eccentricity components in Cenozoic carbon isotope records

Ilja J. Kocken et al.

Related authors

Physiological control on carbon isotope fractionation in marine phytoplankton
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022,https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Single-species dinoflagellate cyst carbon isotope fractionation in from coretop sediments: environmental controls, CO2-dependency and proxy potential
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-118,https://doi.org/10.5194/bg-2022-118, 2022
Preprint under review for BG
Short summary
Pliocene evolution of the tropical Atlantic thermocline depth
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022,https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022,https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Peter K. Bijl, Joost Frieling, Margot J. Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021,https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary

Cited articles

Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, 26, 1–14, https://doi.org/10.1029/2010PA002055, 2011. a
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance, 282, 451–473, https://doi.org/10.2475/ajs.282.4.451, 1982. a, b, c
Berner, R. A.: Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model, Am. J. Sci., 306, 295–302, https://doi.org/10.2475/05.2006.01, 2006. a
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a, b
Boulila, S., Galbrun, B., Laskar, J., and Pälike, H.: A ~9 myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link?, Earth Planet. Sc. Lett., 317/318, 273–281, https://doi.org/10.1016/j.epsl.2011.11.017, 2012. a
Download
Short summary
Marine organic carbon burial could link the 405 thousand year eccentricity cycle in the long-term carbon cycle to that observed in climate records. Here, we simulate the response of the carbon cycle to astronomical forcing. We find a strong 2.4 million year cycle in the model output, which is present as an amplitude modulator of the 405 and 100 thousand year eccentricity cycles in a newly assembled composite record.