Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1621-2019
https://doi.org/10.5194/cp-15-1621-2019
Research article
 | 
22 Aug 2019
Research article |  | 22 Aug 2019

Towards understanding potential atmospheric contributions to abrupt climate changes: characterizing changes to the North Atlantic eddy-driven jet over the last deglaciation

Heather J. Andres and Lev Tarasov

Related authors

Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024,https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Exploring the climate system response to a range of freshwater representations: Hosing, Regional, and Freshwater Fingerprints
Ryan Love, Lev Tarasov, Heather Andres, Alan Condron, Xu Zhang, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2225,https://doi.org/10.5194/egusphere-2023-2225, 2023
Preprint archived
Short summary
Freshwater routing in eddy-permitting simulations of the last deglacial: the impact of realistic freshwater discharge
Ryan Love, Heather J. Andres, Alan Condron, and Lev Tarasov
Clim. Past, 17, 2327–2341, https://doi.org/10.5194/cp-17-2327-2021,https://doi.org/10.5194/cp-17-2327-2021, 2021
Short summary
Last glacial inception trajectories for the Northern Hemisphere from coupled ice and climate modelling
Taimaz Bahadory, Lev Tarasov, and Heather Andres
Clim. Past, 17, 397–418, https://doi.org/10.5194/cp-17-397-2021,https://doi.org/10.5194/cp-17-397-2021, 2021
Short summary

Related subject area

Subject: Atmospheric Dynamics | Archive: Modelling only | Timescale: Millenial/D-O
Mechanisms of hydrological responses to volcanic eruptions in the Asian monsoon and westerlies-dominated subregions
Zhihong Zhuo, Ingo Kirchner, and Ulrich Cubasch
Clim. Past, 19, 835–849, https://doi.org/10.5194/cp-19-835-2023,https://doi.org/10.5194/cp-19-835-2023, 2023
Short summary

Cited articles

Andres, H. J. and Tarasov, L.: Data archive for Towards understanding potential atmospheric contributions to abrupt climate changes: characterizing changes to the North Atlantic eddy-driven jet over the last deglaciation [Data set], Zenodo, https://doi.org/10.5281/zenodo.3369241, 2019. a
Arbuszewski, J. A., deMenocal, P. B., Cléroux, C., Bradtmiller, L., and Mix, A.: Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum, Nat. Geosci., 6, 959–962, https://doi.org/10.1038/NGEO1961, 2013. a
Barnes, E. A. and Hartmann, D. L.: Rossby wave scales, propagation, and the variability of eddy-driven jets, J. Atmos. Sci., 68, 2893–2908, https://doi.org/10.1175/JAS-D-11-039.1, 2011. a, b, c, d
Benway, H. M., McManus, J. F., Oppo, D. W., and Cullen, J. L.: Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation, Quaternary Sci. Rev., 29, 3336–3345, https://doi.org/10.1016/j.quascirev.2010.08.013, 2010. a
Berger, A. L.: Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978. a
Download
Short summary
Abrupt climate shifts of large magnitudes were common during glacial states, with explanations centred on the oceans. However, winds drive ocean surface currents so shifts in mean wind conditions could also have played a critical role. In a small ensemble of transient deglacial simulations, we find abrupt shifts in both jet stream location and variability over the North Atlantic. We show that the eastern North American ice sheet margin strongly constrains regional jet characteristics.