Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-1039-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1039-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets
Krista M. S. Kemppinen
CORRESPONDING AUTHOR
Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
Philip B. Holden
Environment, Earth and Ecosystem Sciences, The Open University, Milton
Keynes, MK7 6AA, UK
Neil R. Edwards
Environment, Earth and Ecosystem Sciences, The Open University, Milton
Keynes, MK7 6AA, UK
Andy Ridgwell
School of Geographical Sciences, Bristol University, Bristol, BS8 1SS,
UK
Department of Earth Sciences, University of California, Riverside,
CA 92521, USA
Andrew D. Friend
Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
Related authors
No articles found.
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
Clim. Past, 20, 2719–2739, https://doi.org/10.5194/cp-20-2719-2024, https://doi.org/10.5194/cp-20-2719-2024, 2024
Short summary
Short summary
Using an Earth system model that can simulate Dansgaard–Oeschger-like events, we show that conditions under which millennial-scale climate variability occurs are related to the integrated surface buoyancy flux over the northern North Atlantic. This newly defined buoyancy measure explains why millennial-scale climate variability arising from abrupt changes in the Atlantic meridional overturning circulation occurred for mid-glacial conditions but not for interglacial or full glacial conditions.
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024, https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past, 20, 2373–2398, https://doi.org/10.5194/cp-20-2373-2024, https://doi.org/10.5194/cp-20-2373-2024, 2024
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model (MEMLM) for reconstructing palaeoenvironments from microfossil assemblages. The machine-learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation, but they can fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Rémy Asselot, Philip B. Holden, Frank Lunkeit, and Inga Hense
Earth Syst. Dynam., 15, 875–891, https://doi.org/10.5194/esd-15-875-2024, https://doi.org/10.5194/esd-15-875-2024, 2024
Short summary
Short summary
Phytoplankton are tiny oceanic algae able to absorb the light penetrating the ocean. The light absorbed by these organisms is re-emitted as heat in the surrounding environment, a process commonly called phytoplankton light absorption (PLA). As a consequence, PLA increases the oceanic temperature. We studied this mechanism with a climate model under different climate scenarios. We show that phytoplankton light absorption is reduced under strong warming scenarios, limiting oceanic warming.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91, https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton absorbing light can influence the climate system but its future effect on the climate is still unclear. We use a climate model to investigate the role of phytoplankton light absorption under global warming. We find out that the effect of phytoplankton light absorption is smaller under a high greenhouse gas emissions compared to reduced and intermediate greenhouse gas emissions. Additionally, we show that phytoplankton light absorption is an important mechanism for the carbon cycle.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Andreas Wernecke, Tamsin L. Edwards, Isabel J. Nias, Philip B. Holden, and Neil R. Edwards
The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020, https://doi.org/10.5194/tc-14-1459-2020, 2020
Short summary
Short summary
We investigate how the two-dimensional characteristics of ice thickness change from satellite measurements can be used to judge and refine a high-resolution ice sheet model of Antarctica. The uncertainty in 50-year model simulations for the currently most drastically changing part of Antarctica can be reduced by nearly 40 % compared to a simpler, non-spatial approach and nearly 90 % compared to the original spread in simulations.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Philip B. Holden, Neil R. Edwards, Thiago F. Rangel, Elisa B. Pereira, Giang T. Tran, and Richard D. Wilkinson
Geosci. Model Dev., 12, 5137–5155, https://doi.org/10.5194/gmd-12-5137-2019, https://doi.org/10.5194/gmd-12-5137-2019, 2019
Short summary
Short summary
We describe the development of the Paleoclimate PLASIM-GENIE emulator and its application to derive a high-resolution spatio-temporal description of the climate of the last 5 x 106 years. Spatial fields of bioclimatic variables are emulated at 1000-year intervals, driven by time series of scalar boundary-condition forcing (CO2, orbit, and ice volume). Emulated anomalies are interpolated into modern climatology to produce a high-resolution climate reconstruction of the Pliocene–Pleistocene.
Yoshiki Kanzaki, Bernard P. Boudreau, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, https://doi.org/10.5194/gmd-12-4469-2019, 2019
Short summary
Short summary
This paper provides eLABS, an extension of the lattice-automaton bioturbation simulator LABS. In our new model, the benthic animal behavior interacts and changes dynamically with oxygen and organic matter concentrations and the water flows caused by benthic animals themselves, in a 2-D marine-sediment grid. The model can address the mechanisms behind empirical observations of bioturbation based on the interactions between physical, chemical and biological aspects of marine sediment.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, https://doi.org/10.5194/gmd-11-2649-2018, 2018
Short summary
Short summary
We present a 1-D analytical diagenetic model resolving organic matter (OM) cycling and the associated biogeochemical dynamics in marine sediments designed to be coupled to Earth system models (ESMs). The reaction network accounts for the most important reactions associated with OM dynamics. The coupling is described and the OM degradation rate constant is tuned. Various observations, such as pore water profiles, sediment water interface fluxes and OM content, are reproduced with good accuracy.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
John S. Keery, Philip B. Holden, and Neil R. Edwards
Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, https://doi.org/10.5194/cp-14-215-2018, 2018
Short summary
Short summary
In the Eocene (~ 55 million years ago), the Earth had high levels of atmospheric CO2, so studies of the Eocene can provide insights into the likely effects of present-day fossil fuel burning. We ran a low-resolution but very fast climate model with 50 combinations of CO2 and orbital parameters, and an Eocene layout of the oceans and continents. Climatic effects of CO2 are dominant but precession and obliquity strongly influence monsoon rainfall and ocean–land temperature contrasts, respectively.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, and Robert van Woesik
Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, https://doi.org/10.5194/gmd-10-483-2017, 2017
Short summary
Short summary
We describe BUMPER, a Bayesian transfer function for inferring past climate from micro-fossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast. We apply BUMPER to a range of proxies, including both real and artificial data, demonstrating ease of use and applicability to multi-proxy reconstructions.
Philip B. Holden, Neil R. Edwards, Klaus Fraedrich, Edilbert Kirk, Frank Lunkeit, and Xiuhua Zhu
Geosci. Model Dev., 9, 3347–3361, https://doi.org/10.5194/gmd-9-3347-2016, https://doi.org/10.5194/gmd-9-3347-2016, 2016
Short summary
Short summary
We describe the development, tuning and climate of PLASIM–GENIE, a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the GENIE Earth system model.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
A. M. Foley, P. B. Holden, N. R. Edwards, J.-F. Mercure, P. Salas, H. Pollitt, and U. Chewpreecha
Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, https://doi.org/10.5194/esd-7-119-2016, 2016
Short summary
Short summary
We introduce GENIEem-PLASIM-ENTSem (GPem), a climate-carbon cycle emulator, showing how model emulation can be used in integrated assessment modelling to resolve regional climate impacts and systematically capture uncertainty. In a case study, we couple GPem to FTT:Power-E3MG, a non-equilibrium economic model with technology diffusion. We find that when the electricity sector is decarbonised by 90 %, further emissions reductions must be achieved in other sectors to avoid dangerous climate change.
J. D. Wilson, A. Ridgwell, and S. Barker
Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015, https://doi.org/10.5194/bg-12-5547-2015, 2015
Short summary
Short summary
We explore whether ocean model transport rates, in the form of a transport matrix, can be used to estimate remineralisation rates from dissolved nutrient concentrations and infer vertical fluxes of particulate organic carbon. Estimated remineralisation rates are significantly sensitive to uncertainty in the observations and the modelled circulation. The remineralisation of dissolved organic matter is an additional source of uncertainty when inferring vertical fluxes from remineralisation rates.
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
Short summary
This paper compares the performance of different land models in estimating soil thermal regimes at distinct cold region landscape types. Comparing models with different processes reveal the importance of surface insulation (snow/moss layer) and soil internal processes (heat/water transfer). The importance of model processes also depend on site conditions such as high/low snow cover, dry/wet soil types.
N. S. Jones, A. Ridgwell, and E. J. Hendy
Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, https://doi.org/10.5194/bg-12-1339-2015, 2015
Short summary
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
V. Huber, H. J. Schellnhuber, N. W. Arnell, K. Frieler, A. D. Friend, D. Gerten, I. Haddeland, P. Kabat, H. Lotze-Campen, W. Lucht, M. Parry, F. Piontek, C. Rosenzweig, J. Schewe, and L. Warszawski
Earth Syst. Dynam., 5, 399–408, https://doi.org/10.5194/esd-5-399-2014, https://doi.org/10.5194/esd-5-399-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
P. B. Holden, N. R. Edwards, D. Gerten, and S. Schaphoff
Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, https://doi.org/10.5194/bg-10-339-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Pleistocene
Assessing transient changes in the ocean carbon cycle during the last deglaciation through carbon isotope modeling
Marine carbon cycle response to a warmer Southern Ocean: the case of the last interglacial
Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding
Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study
Long-term deglacial permafrost carbon dynamics in MPI-ESM
The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
Quantifying the ocean's role in glacial CO2 reductions
A multi-variable box model approach to the soft tissue carbon pump
Hidetaka Kobayashi, Akira Oka, Takashi Obase, and Ayako Abe-Ouchi
Clim. Past, 20, 769–787, https://doi.org/10.5194/cp-20-769-2024, https://doi.org/10.5194/cp-20-769-2024, 2024
Short summary
Short summary
This study examines the transient response of the ocean carbon cycle to climate change since the last ice age by using an ocean general circulation model. Our carbon cycle model calculates atmospheric pCO2 changes that are consistent with ice core records but whose magnitude is underestimated. Our analysis of carbon isotopes suggests that improving the expression of activated ocean ventilation and suppressing biological productivity are critical in simulating atmospheric pCO2 changes.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Thomas Extier, Katharina D. Six, Bo Liu, Hanna Paulsen, and Tatiana Ilyina
Clim. Past, 18, 273–292, https://doi.org/10.5194/cp-18-273-2022, https://doi.org/10.5194/cp-18-273-2022, 2022
Short summary
Short summary
The role of land–sea fluxes during deglacial flooding in ocean biogeochemistry and CO2 exchange remains poorly constrained due to the lack of climate models that consider such fluxes. We implement the terrestrial organic matter fluxes into the ocean at a transiently changing land–sea interface in MPI-ESM and investigate their effect during the last deglaciation. Most of the terrestrial carbon goes to the ocean during flooding events of Meltwater Pulse 1a, which leads to regional CO2 outgassing.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins
Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021, https://doi.org/10.5194/cp-17-171-2021, 2021
Short summary
Short summary
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2, spanning 0–130 ka. We apply a carbon cycle box model, constrained with glacial–interglacial observations, and solve for optimal model parameter values against atmospheric and ocean proxy data. The results indicate that the last glacial drawdown in atmospheric CO2 was delivered mainly by slowing ocean circulation, lower sea surface temperatures and also increased Southern Ocean biological productivity.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
M. O. Chikamoto, A. Abe-Ouchi, A. Oka, R. Ohgaito, and A. Timmermann
Clim. Past, 8, 545–563, https://doi.org/10.5194/cp-8-545-2012, https://doi.org/10.5194/cp-8-545-2012, 2012
A. M. de Boer, A. J. Watson, N. R. Edwards, and K. I. C. Oliver
Clim. Past, 6, 827–841, https://doi.org/10.5194/cp-6-827-2010, https://doi.org/10.5194/cp-6-827-2010, 2010
Cited articles
Adams, J. M. and Faure, H.: A new estimate of changing carbon storage on
land since the last glacial maximum, based on global land ecosystem
reconstruction, Global Planet. Change, 16–17, 3–24,
https://doi.org/10.1016/S0921-8181(98)00003-4, 1998.
Adkins, J. F., Mcintyre, K., and Schrag, D. P.: The Salinity, Temperature,
and δ18O of the Glacial Deep Ocean, Science, 298, 1769–1773,
https://doi.org/10.1126/science.1076252, 2002.
Alder, J. R. and Hostetler, S. W.: Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model, Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, 2015.
Allen, K. A., Sikes, E. L., Hönisch, B., Elmore, A. C., Guilderson, T.
P., Rosenthal, Y., and Anderson, R. F.: Southwest Pacific deep water
carbonate chemistry linked to high southern latitude climate and atmospheric
CO2 during the Last Glacial Termination, Quaternary Sci. Rev., 122, 180–191,
https://doi.org/10.1016/j.quascirev.2015.05.007, 2015.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven Upwelling in the
Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science,
323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Annan, J. D. and Hargreaves, J. C.:
Efficient identification of ocean thermodynamics in a
physical/biogeochemical ocean model with an iterative Importance Sampling
method, Ocean Model., 32, 205–215, https://doi.org/10.1016/j.ocemod.2010.02.003,
2010.
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, 2013.
Ballarotta, M., Falahat, S., Brodeau, L., and Döös, K.: On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater, Ocean Sci., 10, 907–921, https://doi.org/10.5194/os-10-907-2014, 2014.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron,
O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based
continental climate reconstructions at 6 and 21 ka: A global synthesis,
Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Berger, A.: Long-term variations of daily insolation and quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015.
Bopp, L., Kohfeld, K. E., Le Quéré, C., and Aumont, O.: Dust impact
on marine biota and atmospheric CO2 during glacial periods,
Paleoceanography, 18, 1046, https://doi.org/10.1029/2002PA000810,
https://doi.org/10.1029/2002PA000810, 2003.
Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial carbon cycle, Clim. Past, 6, 575–589, https://doi.org/10.5194/cp-6-575-2010, 2010.
Bouttes, N., Paillard, D., Roche, D. M., Brovkin, V., and Bopp, L.: Last
Glacial Maximum CO2 and δ13C successfully reconciled, Geophys. Res.
Lett., 38, L02705, https://doi.org/10.1029/2010gl044499, 2011.
Brady, E. C., Otto-Bliesner, B. L., Kay, J. E., and Rosenbloom, N.: Sensitivity to glacial forcing in the CCSM4, J. Climate, 26, 1901–1925, https://doi.org/10.1175/JCLI-D-11-00416.1, 2013.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Brovkin, V. and Ganopolski, A.: The role of the terrestrial biosphere in
CLIMBER-2 simulations of the last glacial CO2 cycles, Nova Act. LC NF, 121,
43–47, 2015.
Brovkin, V., Hofmann, M., Bendtsen, J., and Ganopolski, A.: Ocean biology could control atmospheric δ13C during glacial-interglacialcycle, Geochem. Geophy. Geosy., 3, 1027, https://doi.org/10.1029/2001GC000270, 2002.
Brovkin, V., Ganopolski, A., Archer, D. and Rahmstorf, S.: Lowering of
glacial atmospheric CO2 in response to changes on oceanic circulation and
marine biogeochemistry, Paleoceanography, 22, A4202, https://doi.org/10.1029/2006PA001380,
2007.
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012.
Buchanan, P. J., Matear, R. J., Lenton, A., Phipps, S. J., Chase, Z., and Etheridge, D. M.: The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle, Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, 2016.
Catubig, N. R., Archer, D. E., Francois, R., DeMenocal, P., Howard, W., and
Yu, E. F.: Global deep-sea burial rate of calcium carbonate during the Last
Glacial Maximum, Paleoceanography, 13, 298–310, https://doi.org/10.1029/98PA00609,
1998.
Chikamoto, M. O., Matsumoto, K., and Ridgwell, A.: Response of deep-sea CaCO3
sedimentation to Atlantic meridional overturning circulation shutdown, J.
Geophys. Res.-Biogeo., 113, G03017, https://doi.org/10.1029/2007JG000669, 2008.
Chikamoto, M. O., Abe-Ouchi, A., Oka, A., Ohgaito, R., and Timmermann, A.: Quantifying the ocean's role in glacial CO2 reductions, Clim. Past, 8, 545–563, https://doi.org/10.5194/cp-8-545-2012, 2012.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C.,
and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during
the Last Glacial Maximum, Nat. Geosci., 5, 74–79, https://doi.org/10.1038/ngeo1324,
2012.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Quéré, C. Le, Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Colbourn, G.: Weathering effects on the carbon cycle in an Earth System
Model, PhD thesis, School of Environmental Sciences, University of East
Anglia, UK, 2011.
Costa, K. M., McManus, J. F., Anderson, R. F., Ren, H., Sigman, D. M.,
Winckler, G., Fleisher, M. Q., Marcantonio, F., and Ravelo, A. C.: No iron
fertilization in the equatorial Pacific Ocean during the last ice age,
Nature, 529, 519–522, https://doi.org/10.1038/nature16453, 2016.
Crocket, K. C., Vance, D., Foster, G. L., Richards, D. A., and Tranter,
M.: Continental weathering fluxes during the last glacial/interglacial cycle:
insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW
Atlantic, Quaternary Sci. Rev., 38, 89–99, https://doi.org/10.1016/j.quascirev.2012.02.004, 2012.
Crowley, T. J.: Ice Age terrestrial carbon changes revisited, Global
Biogeochem. Cy., 9, 377–389, https://doi.org/10.1029/95GB01107, 1995.
De La Fuente, M., Skinner, L., Calvo, E., Pelejero, C., and Cacho, I.:
Increased reservoir ages and poorly ventilated deep waters inferred in the
glacial Eastern Equatorial Pacific, Nat. Commun., 6, 7420, https://doi.org/10.1038/ncomms8420,
2015.
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural variability in a
stable, 1000-yr global coupled climate-carbon cycle simulation, J. Climate,
19, 3033–3054, https://doi.org/10.1175/JCLI3783.1, 2006.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758,
https://doi.org/10.1073/pnas.1323922111, 2014.
Foster, G. L. and Vance, D.: Negligible glacial-interglacial variation in
continental chemical weathering rates, Nature, 444, 918–921,
https://doi.org/10.1038/nature05365, 2006.
Franzen, L. G.: Are wetlands the key to the ice-age cycle enigma, Ambio,
23, 300–308, 1994.
Franzén, L. G. and Cropp, R. A.: The Peatland/ice age Hypothesis revised,
adding a possible glacial pulse trigger, Geogr. Ann. A, 89, 301–330,
2007.
Freeman, E., Skinner, L. C., Tisserand, A., Dokken, T., Timmermann, A.,
Menviel, L., and Friedrich, T.: An Atlantic-Pacific ventilation seesaw across
the last deglaciation, Earth Planet. Sc. Lett., 424, 237–244,
https://doi.org/10.1016/j.epsl.2015.05.032, 2015.
Gebbie, G.: How much did Glacial North Atlantic Water shoal?,
Paleoceanography, 29, 190–209, https://doi.org/10.1002/2013PA002557, 2014.
Goodwin, P. and Lauderdale, J. M.: Carbonate ion concentrations, ocean
carbon storage, and atmospheric CO2, Global Biogeochem. Cy., 27,
882–893, https://doi.org/10.1002/gbc.20078, 2013.
Harrison, K. G.: Role of increased marine silica input on paleo-pCO2 levels, Paleoceanography, 15,
292–298, https://doi.org/10.1029/1999PA000427, 2000.
Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M., and
Wilkinson, R. D.: A probabilistic calibration of climate sensitivity and
terrestrial carbon change in GENIE-1, Clim. Dynam., 35, 785–806,
https://doi.org/10.1007/s00382-009-0630-8, 2010a.
Holden, P. B., Edwards, N. R., Wolff, E. W., Lang, N. J., Singarayer, J. S., Valdes, P. J., and Stocker, T. F.: Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials, Clim. Past, 6, 431–443, https://doi.org/10.5194/cp-6-431-2010, 2010b.
Holden, P. B., Edwards, N. R., Müller, S. A., Oliver, K. I. C., Death, R. M., and Ridgwell, A.: Controls on the spatial distribution of oceanic δ13CDIC, Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, 2013a.
Holden, P. B., Edwards, N. R., Gerten, D., and Schaphoff, S.: A model-based constraint on CO2 fertilisation, Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, 2013b.
Iglesias-Rodríguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J.,
Kolber, D., Kolber, Z., Hayes, P. K., and Falkowski, P. G.: Representing key
phytoplankton functional groups in ocean carbon cycle models:
Coccolithophorids, Global Biogeochem. Cy., 16, 47-1–47-20,
https://doi.org/10.1029/2001GB001454, 2002.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., and Haug, G. H.: A pervasive
link between Antarctic ice core and subarctic Pacific sediment records over
the past 800 kyrs, Quaternary Sci. Rev., 29, 206–212,
https://doi.org/10.1016/j.quascirev.2009.10.007, 2010.
Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A., Anderson,
R. F., Sigman, D. M., and Haug, G. H.: Two Modes of Change in Southern Ocean
Productivity Over the Past Million Years, Science, 339, 1419–1423,
https://doi.org/10.1126/science.1227545, 2013.
Jaccard, S. L., Galbraith, E. D., Martínez-García, A., and Anderson,
R. F.: Covariation of deep Southern Ocean oxygenation and atmospheric CO2
through the last ice age, Nature, 530, 207–210,
https://doi.org/10.1038/nature16514, 2016.
Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L., and Joos, F.: Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data, Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, 2019.
Jones, I. W., Munhoven, G., Tranter, M., Huybrechts, P., and Sharp, M. J.:
Modelled glacial and non-glacial , Si and Ge fluxes since the LGM:
Little potential for impact on atmospheric CO2 concentrations and a potential
proxy of continental chemical erosion, the marine Ge∕Si ratio, Global Planet.
Change, 33, 139–153, https://doi.org/10.1016/S0921-8181(02)00067-X, 2002.
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P.
J.: Transient simulations of Holocene atmospheric carbon dioxide and
terrestrial carbon since the Last Glacial Maximum, Global Biogeochem.
Cy., 18, GB2002, https://doi.org/10.1029/2003GB002156, 2004.
Kim, S.-J., Flato, G., and Boer, G.: A coupled climate model simulation of
the Last Glacial Maximum, Part 2: approach to equilibrium, Clim. Dynam.,
20, 635–661, https://doi.org/10.1007/s00382-002-0292-2, 2003.
Kleypas, J. A.: Modeled estimates of global reef habitat and carbonate
production since the last glacial maximum, Paleoceanography, 12,
533–545, https://doi.org/10.1029/97PA01134, 1997.
Kohfeld, K. E.: Role of Marine Biology in Glacial-Interglacial CO2 Cycles,
Science, 308, 74–78, https://doi.org/10.1126/science.1105375, 2005.
Kohfeld, K. E. and Chase, Z.: Controls on deglacial changes in biogenic
fluxes in the North Pacific Ocean, Quaternary Sci. Rev., 30, 3350–3363,
https://doi.org/10.1016/j.quascirev.2011.08.007, 2011.
Kohfeld, K. E. and Ridgwell, A.: Glacial-Interglacial Variability in
Atmospheric CO2, Surf. Ocean. Atmos. Process., 187, 251–286,
https://doi.org/10.1029/2008GM000845, 2009.
Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le
Quéré, C., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: Paleo-data synthesis, Quaternary Sci. Rev., 68,
76–95, https://doi.org/10.1016/j.quascirev.2013.01.017, 2013.
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L.,
Gallardo, L., and De Pol-Holz, R.: Dust fluxes and iron fertilization in
Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42,
6014–6023, https://doi.org/10.1002/2015GL064250, 2015.
Lea, D. W., Bijma, J., Spero, H. J., and Archer, D.: Implications of a carbonate ion effect on shell carbon and oxygen isotopes for glacial ocean conditions, in: Use of Proxies in Paleoceanography: Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer-Verlag, Berlin Heidelberg, 513–522, 1999.
Lenton, T. M., Marsh, R., Price, A. R., Lunt, D. J., Aksenov, Y., Annan, J.
D., Cooper-Chadwick, T., Cox, S. J., Edwards, N. R., Goswami, S.,
Hargreaves, J. C., Harris, P. P., Jiao, Z., Livina, V. N., Payne, A. J.,
Rutt, I. C., Shepherd, J. G., Valdes, P. J., Williams, G., Williamson, M. S.,
and Yool, A.: Effects of atmospheric dynamics and ocean resolution on
bi-stability of the thermohaline circulation examined using the Grid ENabled
Integrated Earth system modelling (GENIE) framework, Clim. Dynam., 29,
591–613, https://doi.org/10.1007/s00382-007-0254-9, 2007.
Lippold, J., Luo, Y., Francois, R., Allen, S. E., Gherardi, J., Pichat, S.,
Hickey, B., and Schulz, H.: Strength and geometry of the glacial Atlantic
Meridional Overturning Circulation, Nat. Geosci., 5, 813–816,
https://doi.org/10.1038/ngeo1608, 2012.
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., and Kudrass, H.:
Increasing chemical weathering in the Himalayan system since the Last
Glacial Maximum, Earth Planet. Sc. Lett., 365, 243–252,
https://doi.org/10.1016/j.epsl.2013.01.038, 2013.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J.-M., Ivanova, E. V, Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E.-F., and Zahn, R.: Atlantic meridional overturning
circulation during the Last Glacial Maximum, Science, 316, 66–69,
https://doi.org/10.1126/science.1137127, 2007.
Ma, W. and Tian, J.: Modeling the contribution of dissolved organic carbon
to carbon sequestration during the last glacial maximum, Geo-Mar. Lett.,
34, 471–482, https://doi.org/10.1007/s00367-014-0378-y, 2014.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011.
Martin, P., Archer, D., and Lea, D. W.: Role of deep sea temperature in the
carbon cycle during the last glacial, Paleoceanography, 20, 1–10,
https://doi.org/10.1029/2003PA000914, 2005.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M.,
Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron
Fertilization of the Subantarctic Ocean During the Last Ice Age, Science,
343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G.,
Ritz, C., Guilyardi, E., Jouzel, J., Abe-Ouchi, A., Crucifix, M., Gladstone,
R. M., Hewitt, C. D., Kitoh, A., LeGrande, A. N., Marti, O., Merkel, U.,
Motoi, T., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Ross, I., Valdes,
P. J., Vettoretti, G., Weber, S. L., Wolk, F., and Yu, Y.: Past and future
polar amplification of climate change: Climate model intercomparisons and
ice-core constraints, Clim. Dynam., 26, 513–529,
https://doi.org/10.1007/s00382-005-0081-9, 2006.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and Timmermann, A.: Information from Paleoclimate Archives, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Matsumoto, K., Sarmiento, J. L., and Brzezinski, M. A.: Silicic acid leakage
from the Southern Ocean: A possible explanation for glacial atmospheric pCO2, Global Biogeochem. Cy., 16, 5-1–5-23,
https://doi.org/10.1029/2001GB001442, 2002.
Matsumoto, K., Hashioka, T., and Yamanaka, Y.: Effect of
temperature-dependent organic carbon decay on atmospheric pCO2, J. Geophys.
Res.-Biogeo., 112, G02007, https://doi.org/10.1029/2006JG000187, 2007.
Matsumoto, K., Tokos, K., Huston, A., and Joy-Warren, H.: MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme, Geosci. Model Dev., 6, 477–494, https://doi.org/10.5194/gmd-6-477-2013, 2013.
Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic
acid leakage and their biogeochemical consequences, Paleoceanography, 29,
238–254, https://doi.org/10.1002/2013PA002588, 2014.
Menviel, L., Joos, F., and Ritz, S. P.: Simulating atmospheric CO2,13C and
the marine carbon cycle during the Last Glacial-Interglacial cycle: Possible
role for a deepening of the mean remineralization depth and an increase in
the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68,
https://doi.org/10.1016/j.quascirev.2012.09.012, 2012.
Menviel, L., Mouchet, A., Meissner, K. J., Joos, F., and England, M. H.:
Impact of oceanic circulation changes on atmospheric δ13CO2, Global
Biogeochem. Cy., 29, 1944–1961, https://doi.org/10.1002/2015GB005207, 2015.
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England,
M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred from
carbon isotopes: A data-model comparison study, Paleoceanography, 32, 2–17,
https://doi.org/10.1002/2016PA003024, 2017.
Muglia, J. and Schmittner, A.: Glacial Atlantic overturning increased by
wind stress in climate models, Geophys. Res. Lett., 42, 9862–9869,
https://doi.org/10.1002/2015GL064583, 2015.
Munhoven, G.: Glacial – Interglacial changes of continental weathering:
Estimates of the related CO2 and flux variations and their
uncertainties, Global Planet. Change, 33, 155–176,
https://doi.org/10.1016/S0921-8181(02)00068-1, 2002.
O'ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum, Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, 2013.
Oka, A., Abe-Ouchi, A., Chikamoto, M. O., and Ide, T.: Mechanisms controlling
export production at the LGM: Effects of changes in oceanic physical fields
and atmospheric dust deposition, Global Biogeochem. Cy., 25, GB2009,
https://doi.org/10.1029/2009GB003628, 2011.
Opdyke, B. N. and Walker, J. C. G.: Return of the coral reef hypothesis:
basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2,
Geology, 20, 733–736, https://doi.org/10.1130/0091-7613(1992)020<0733:ROTCRH>2.3.CO;2, 1992.
Oppo, D. W., Curry, W. B., and McManus, J. F.: What do benthic δ13C
and δ18O data tell us about Atlantic circulation during Heinrich
Stadial 1?, Paleoceanography, 30, 353–368, https://doi.org/10.1002/2014PA002667,
2015.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., and François, L.:
Biospheric carbon stocks reconstructed at the Last Glacial Maximum:
Comparison between general circulation models using prescribed and computed
sea surface temperatures, Global Planet. Change, 33, 117–138,
https://doi.org/10.1016/S0921-8181(02)00066-8, 2002.
Palastanga, V., Slomp, C. P., and Heinze, C.: Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model, Biogeosciences, 10, 945–958, https://doi.org/10.5194/bg-10-945-2013, 2013.
Peltier, W. R.: Ice age paleotopography, Science, 265, 195–201,
https://doi.org/10.1126/science.265.5169.195, 1994.
Peterson, C. D., Lisiecki, L. E., and Stern, J. V.: Deglacial whole-ocean
δ13C change estimated from 480 benthic foraminiferal records,
Paleoceanography, 29, 549–563, https://doi.org/10.1002/2013PA002552, 2014.
Prentice, I., Farquhar, G., and Fasham, M.: The carbon cycle and atmospheric
carbon dioxide, Weather, 183–237,
https://doi.org/10.1256/004316502320517344, 2001.
Prentice, I., Harrison, S., and Bartlein, P.: Global vegetation and
terrestrial carbon cycle changes after the last ice age, New Phytol.,
189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Radi, T. and de Vernal, A.: Last glacial maximum (LGM) primary productivity
in the northern North Atlantic Ocean, Can. J. Earth Sci., 45, 1299–1316,
https://doi.org/10.1139/E08-059, 2008.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by
deep-sea sediments in an Earth system model, Global Biogeochem. Cy.,
21, GB2008, https://doi.org/10.1029/2006GB002764, 2007.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A. J.: cGENIE v.0.9 (“muffin”) User Manual
[PDF document], available at:
http://www.seao2.info/cgenie/docs/cGENIE.User_manual.pdf, last access: 26 October 2012.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation, Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, 2014.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Schmittner, A. and Somes, C. J.: Complementary constraints from carbon (13C)
and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological
pump, Paleoceanography, 31, 669–693, https://doi.org/10.1002/2015PA002905, 2016.
Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U.,
Bartlein, P. J., Mix, A. C., and Rosell-Mele, A.: Climate Sensitivity
Estimated from Temperature Reconstructions of the Last Glacial Maximum,
Science, 334, 1385–1388, https://doi.org/10.1126/science.1203513, 2011.
Schneider von Deimling, T., Held, H., Ganopolski, A., and Rahmstorf, S.: Climate sensitivity estimated from ensemble simulations of glacial climate, Clim. Dynam., 27, 149–163, https://doi.org/10.1007/s00382-006-0126-8, 2006.
Shin, S.-I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., and
Harrison, S.: A Simulation of the Last Glacial Maximum climate using the
NCAR-CCSM, Clim. Dynam., 20, 127–151, https://doi.org/10.1007/s00382-002-0260-x, 2003.
Sigman, D. M. and Boyle, E. A.: Glacial/Interglacial Variations In
Atmospheric Carbon Dioxide, Nature, 407, 859–869,
https://doi.org/10.1038/35038000, 2000.
Simmons, C. T., Mysak, L. A., and Matthews, H. D.: An investigation of carbon cycle dynamics since the Last Glacial Maximum: Complex interactions between the terrestrial biosphere, weathering, ocean alkalinity, and CO2 radiative warming in an Earth system model of intermediate complexity, Clim. Past Discuss., https://doi.org/10.5194/cp-2016-24, 2016.
Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and
Kroon, D.: Productivity collapses in the Arabian Sea during glacial cold
phases, Paleoceanography, 26, PA3210, https://doi.org/10.1029/2009PA001923, 2011.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Skinner, L. C., Waelbroeck, C., Scrivner, A. E., and Fallon, S. J.:
Radiocarbon evidence for alternating northern and southern sources of
ventilation of the deep Atlantic carbon pool during the last deglaciation,
P. Natl. Acad. Sci. USA, 111, 5480–5484, https://doi.org/10.1073/pnas.1400668111,
2014.
Skinner, L., McCave, I. N., Carter, L., Fallon, S., Scrivner, A. E., and
Primeau, F.: Reduced ventilation and enhanced magnitude of the deep Pacific
carbon pool during the last glacial period, Earth Planet. Sc. Lett., 411,
45–52, https://doi.org/10.1016/j.epsl.2014.11.024, 2015.
Stephens, B. B. and Keeling, R. F.: The influence of antarctic sea ice on
glacial-interglacial CO2 variations, Nature, 404, 171–174,
https://doi.org/10.1038/35004556, 2000.
Sun, X. and Matsumoto, K.: Effects of sea ice on atmospheric pCO2: A
revised view and implications for glacial and future climates, J. Geophys.
Res., 115, 1–8, https://doi.org/10.1029/2009JG001023, 2010.
Tamburini, F. and Föllmi, K. B.: Phosphorus burial in the ocean over glacial-interglacial time scales, Biogeosciences, 6, 501–513, https://doi.org/10.5194/bg-6-501-2009, 2009.
Thompson S. L. and Warren S. G.: Parameterization of outgoing infrared
radiation derived from detailed radiative calculations, J. Atmos. Sci.,
39, 2667–2680, https://doi.org/10.1175/1520-0469(1982)039<2667:POOIRD>2.0.CO;2, 1982.
Tiedemann, R., Ronge, T., Lamy, F., Köhler, P., Frische, M., De Pol
Holz, R., Pahnke, K., Alloway, B. V., Wacker, L., and Southon, J.: New
Constraints on the Glacial Extent of the Pacific Carbon Pool and its
Deglacial Outgassing, Nova Act. LC, 121, 229–233, 2015.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages, Paleoceanography,
21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Tréguer, P. and Pondaven, P.: Global change: Silica control of carbon
dioxide, Nature, 486, 358–359, 2000.
University of Bristol Geography Source: GENIE, available at:
https://source.ggy.bris.ac.uk/wiki/GENIE (last access: May 2019), 2014.
Vance, D., Teagle, D. A. H., and Foster, G. L.: Variable Quaternary chemical
weathering fluxes and imbalances in marine geochemical budgets, Nature,
458, 493–496, https://doi.org/10.1038/nature07828, 2009.
Völker, C. and Köhler, P.: Responses of ocean circulation and carbon
cycle to changes in the position of the Southern Hemisphere westerlies at
Last Glacial Maximum, Paleoceanography, 28, 726–739,
https://doi.org/10.1002/2013PA002556, 2013.
Wagner, M. and Hendy, I. L.: Trace metal evidence for a poorly ventilated glacial Southern Ocean, Clim. Past Discuss., 11, 637–670, https://doi.org/10.5194/cpd-11-637-2015, 2015.
Wallmann, K.: Is late Quaternary climate change governed by self-sustained
oscillations in atmospheric CO2?, Geochim. Cosmochim. Ac., 132, 413–439,
https://doi.org/10.1016/j.gca.2013.10.046, 2014.
Wallmann, A.: Effects of Eustatic Sea-Level Change on Atmospheric
CO2 and Glacial Climate, Nova Act. LC NF, 121,
241–245, 2015.
Watson, A. J. and Naveira Garabato, A. C.: The role of Southern Ocean mixing
and upwelling in glacial-interglacial atmospheric CO2 change, Tellus B, 58, 73–87, https://doi.org/10.1111/j.1600-0889.2005.00167.x,
2006.
Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., Murakami, S., Otto-Bliesner, B., and Peltier, W. R.: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations, Clim. Past, 3, 51–64, https://doi.org/10.5194/cp-3-51-2007, 2007.
Weitemeyer, K. A. and Buffett, B. A.: Accumulation and release of methane
from clathrates below the Laurentide and Cordilleran ice sheets, Global
Planet. Change, 53, 176–187, 2006.
Williamson, M. S., Lenton, T. M., Shepherd, J. G., and Edwards, N. R.: An
efficient numerical terrestrial scheme (ENTS) for Earth system modelling,
Ecol. Model., 198, 362–374, https://doi.org/10.1016/j.ecolmodel.2006.05.027,
2006.
Yu, J., Anderson, R., and Rohling, E.: Deep Ocean Carbonate Chemistry and
Glacial-Interglacial Atmospheric CO2 Change, Oceanography, 27, 16–25,
https://doi.org/10.5670/oceanog.2014.04, 2014.
Zech, R., Huang, Y., Zech, M., Tarozo, R., and Zech, W.: High carbon sequestration in Siberian permafrost loess-paleosols during glacials, Clim. Past, 7, 501–509, https://doi.org/10.5194/cp-7-501-2011, 2011.
Zeng, N.: Glacial-interglacial atmospheric CO2 changes – the Glacial Burial
Hypothesis, Adv. Atmos. Sci., 20, 677–693, 2003.
Zeng, N.: Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release, Clim. Past, 3, 135–153, https://doi.org/10.5194/cp-3-135-2007, 2007.
Zhang, X., Lohmann, G., Knorr, G., and Xu, X.: Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation, Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, 2013.
Ziegler, M., Diz, P., Hall, I. R., and Zahn, R.: Millennial-scale changes in
atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient
and dust flux, Nat. Geosci., 6, 457–461, 2013.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S., III.: Permafrost and the global carbon budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006.
Zimov, N. S., Zimov, S. A., Zimova, A. E., Zimova, G. M., Chuprynin, V. I.,
and Chapin, F. S.: Carbon storage in permafrost and soils of the mammoth
tundra-steppe biome: Role in the global carbon budget, Geophys. Res. Lett.,
36, L02502, https://doi.org/10.1029/2008gl036332, 2009.
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter...