Articles | Volume 14, issue 6
https://doi.org/10.5194/cp-14-901-2018
https://doi.org/10.5194/cp-14-901-2018
Research article
 | 
26 Jun 2018
Research article |  | 26 Jun 2018

A spatiotemporal reconstruction of sea-surface temperatures in the North Atlantic during Dansgaard–Oeschger events 5–8

Mari F. Jensen, Aleksi Nummelin, Søren B. Nielsen, Henrik Sadatzki, Evangeline Sessford, Bjørg Risebrobakken, Carin Andersson, Antje Voelker, William H. G. Roberts, Joel Pedro, and Andreas Born

Related authors

Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025,https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
Interactive coupling of a Greenland ice sheet model in NorESM2
Heiko Goelzer, Petra M. Langebroek, Andreas Born, Stefan Hofer, Konstanze Haubner, Michele Petrini, Gunter Leguy, William H. Lipscomb, and Katherine Thayer-Calder
EGUsphere, https://doi.org/10.5194/egusphere-2024-3045,https://doi.org/10.5194/egusphere-2024-3045, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Predicting trends in atmospheric CO2 across the Mid-Pleistocene Transition using existing climate archives
Jordan R. W. Martin, Joel B. Pedro, and Tessa R. Vance
Clim. Past, 20, 2487–2497, https://doi.org/10.5194/cp-20-2487-2024,https://doi.org/10.5194/cp-20-2487-2024, 2024
Short summary
The first firn core from Peter I Island – capturing climate variability across the Bellingshausen Sea
Elizabeth R. Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
Clim. Past, 20, 2525–2538, https://doi.org/10.5194/cp-20-2525-2024,https://doi.org/10.5194/cp-20-2525-2024, 2024
Short summary
How does a change in climate variability impact the Greenland ice sheet surface mass balance?
Tobias Zolles and Andreas Born
The Cryosphere, 18, 4831–4844, https://doi.org/10.5194/tc-18-4831-2024,https://doi.org/10.5194/tc-18-4831-2024, 2024
Short summary

Cited articles

Alley, R.: GISP2 Ice Core Temperature and Accumulation Data, iGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2004-013, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, 2004. a
Arzel, O., Colin de Verdiere, A., and England, M. H.: The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions, J. Climate, 23, 2233–2256, 2010. a
Bard, E., Rostek, F., and Ménot-Combes, G.: Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin, Quaternary Res., 61, 204–214, https://doi.org/10.1016/j.yqres.2003.11.006, 2004. a
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, https://doi.org/10.1038/nature14330, 2015. a, b
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, 1991. a
Download
Short summary
We combine North Atlantic sea-surface temperature reconstructions and global climate model simulations to study rapid glacial climate shifts (30–40 000 years ago). Pre-industrial climate boosts similar, albeit weaker, sea-surface temperature variability as the glacial period. However, in order to reproduce most of the amplitude of this variability, and to see temperature variability in Greenland similar to the ice-core record, although with a smaller amplitude, we need forced simulations.