Articles | Volume 14, issue 12
https://doi.org/10.5194/cp-14-2071-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-2071-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate evolution across the Mid-Brunhes Transition
Department of Geography and Earth and Environmental Sciences, Emory and Henry College, Emory, VA 24327, USA
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Peter U. Clark
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Nicholas S. Bill
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Department of Geoscience, University of Wisconsin – Madison, Madison, WI 53706, USA
Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin – Madison, Madison, WI 53706, USA
Nicklas G. Pisias
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Related authors
Joshua Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2024-2091, https://doi.org/10.5194/egusphere-2024-2091, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the Northeast United States. A complex thermal history existed for the (LIS), that allowed for high erosion across most of the NE USA, but prevented erosion across high elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Joshua Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2024-2091, https://doi.org/10.5194/egusphere-2024-2091, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the Northeast United States. A complex thermal history existed for the (LIS), that allowed for high erosion across most of the NE USA, but prevented erosion across high elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Cited articles
Barth, A. M., Clark, P. U., Bill, N. S., He, F., and Pisias, N. G.: Climate
proxies of sea-surface temperature, carbon isotopes, and dust flux for the
last 800 kyr and the Mid-Brunhes Transition, PANGAEA,
https://doi.org/10.1594/PANGAEA.894898, 2018.
Bickert, T. and Wefer, G.: Late Quaternary deep water circulation in the
South Atlantic: Reconstruction from carbonate dissolution and benthic stable
isotopes, in: The South Atlantic: Present and Past Circulation, edited by:
Wefer, G., Berger, W. H., Siedler, G., and Webb, D. J., 599–620,
Springer, New York, USA, 1996.
Bickert, T., Curry, W. B., and Wefer, G.: Late Pliocene to Holocene
(2.6–0 Ma) western equatorial Atlantic deep-water circulation: Inferences
from benthic stable isotopes, Proc. Ocean Drill. Program Sci. Results, 154,
239–254, 1997.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y.
J., Zhang, R., and Wang, X.: Ice Age Terminations, Science, 326, 248–252,
2009.
Cheng, X., Tian, J., and Wang, P.: Data report: Stable isotopes from Site
1143, in: Proc. ODP, Sci. Results, edited by: Prell, W. L., Wang, P., Blum,
P., Rea, D. K., and Clemens, S. C., 184 (Ocean Drilling Program), College
Station, TX, USA, 2004.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V.,
Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene transition:
characteristics, mechanisms, and implications for long-term changes in
atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184, 2006.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the
western Atlantic Ocean, Paleoceanography, 20, 1–12, 2005.
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: Stable
sea surface temperatures in the western Pacific warm pool over the past 1.75
million years, Nature, 433, 294–298, 2005.
deMenocal, P. B., Oppo, D. W., Fairbanks, R. G., and Prell, W. L.:
Pleistocene 13C variability of North Atlantic intermediate water.
Paleoceanography, 7, 229–250, 1992.
deMenocal, P. B., Ruddiman, W. F., and Pokras, E. M.: Influences of high- and
low-latitude processes on African terrestrial climate: Pleistocene eolian
records from equatorial Atlantic Ocean Drilling Program Site 663,
Paleoceanography, 8, 209–242, https://doi.org/10.1029/93PA02688, 1993.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D. A., and Piotrowski, A. M.: Evolution of Ocean Temperature and Ice
Volume Through the Mid-Pleistocene Climate Transition, Science, 337,
704–709, 2012.
EPICA-community-members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, 2004.
Etourneau, J., Martinez, P., Blanz, T., and Schneider, R.:
Pliocene-Pleistocene variability of upwelling activity, productivity, and
nutrient cycling in the Benguela region, Geology, 37, 871–874, 2009.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758, 2014.
Guo, Z. T., Berger, A., Yin, Q. Z., and Qin, L.: Strong asymmetry of
hemispheric climates during MIS-13 inferred from correlating China loess and
Antarctica ice records, Clim. Past, 5, 21–31,
https://doi.org/10.5194/cp-5-21-2009, 2009.
Harden, J. W., Mark, R. K., Sundquist, E. T., and Stallard, R. F.: Dynamics
of soil carbon during deglaciation of the Laurentide Ice Sheet, Science, 258,
1921–1924, 1992.
Herbert, T. D., Peterson, L. C., Lawrence, K. T., and Liu, Z.: Tropical Ocean
Temperatures Over the Past 3.5 Million Years, Science, 328, 1530–1534, 2010.
Hodell, D., Charles, C., and Ninnemann, U.: Comparison of interglacial stages
in the South Atlantic sector of the southern ocean for the past 450 kyr:
implications for Marine Isotope Stage (MIS) 11, Global Planet. Change, 24,
7–26, 2000.
Hodell, D. A., Charles, C. D., Curtis, J. H., Mortyn, P. G., Ninnemann, U.
S., and Venz, K. A.: Data Report: Oxygen isotope stratigraphy of ODP Leg 177
Sites 1088, 1089, 1090, 1093, and 1094, Proc. Ocean Drill. Program Sci.
Results, 177, 1–26, 2003.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and
Röhl, U.: Onset of “Hudson Strait” Heinrich events in the eastern North
Atlantic at the end of the middle Pleistocene transition (∼640 ka)?,
Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Hoogakker, B. A. A., Rohling, E. J., Palmer, M. R., Tyrrell, T., and
Rothwell, R. G.: Underlying causes for long-term global ocean
δ13C fluctuations over the last 1.20 Myr, Earth Planet. Sc.
Lett., 248, 15–29, 2006.
Howe, J. N. W. and Piotrowski, A. M.: Atlantic deep water provenance
decoupled from atmospheric CO2 concentration during the lukewarm
interglacials, Nat. Commun., 8, 1–7, 2017.
Howell, P., Pisias, N. G., Ballance, J., Baughman, J., and Ochs, L.: ARAND
Time-Series Analysis Software, Brown University, Providence, RI, USA, 2006.
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W.
R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C.,
Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L.,
Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R.: On the structure and
origin of major glaciation cycles 2. The 100 000-year cycle,
Paleoceanography, 8, 699–735, 1993.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., and Haug, G. H.: A pervasive
link between Antarctic ice core and subarctic Pacific sediment records over
the past 800 kyrs, Quaternary Sci. Rev., 29, 206–212, 2010.
Jaccard, S. L., Hayes, C. T., Martinez-Garcia, A., Hodell, D. A., Anderson,
R. F., Sigman, D. M., and Haug, G. H.: Two modes of change in Southern Ocean
productivity over the past million years, Science, 339, 1419–1423, 2013.
Jansen, J. H. F., Kuijpers, A., and Troelstra, S. R.: A Mid-Brunhes Climatic
Event: Long-Term Changes in Global Atmosphere and Ocean Circulation, Science,
232, 619–622, 1986.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffman, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer,
H., Gallet, J. C., Johnsen, S., Leuenberger, D., Loulergue, L., Luethi, D.,
Oerter, H., Parrenin, F., Raisbeck, G. M., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R. A., Spahni, R., Stauffer, B.,
Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and
Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the
Past 800 000 Years, Science, 317, 793–796, 2007.
Kemp, A. E. S., Grigorov, I., Pearce, R. B., and Naveira Garabato, A. C.:
Migration of the Antarctic Polar Front through the mid-Pleistocene
transition: evidence and climatic implications, Quaternary Sci. Rev., 29,
1993–2009, 2010.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R.,
Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice
core, Nature, 452, 616–619, 2008.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, 2004.
Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., and Haywood, A.
M.: High-amplitude variations in North Atlantic sea surface temperature
during the early Pliocene warm period, Paleoceanography, 24, PA2218,
https://doi.org/10.1029/2008PA001669, 2009.
Li, L., Li, Q., Tian, J., Wang, P., Wang, H., and Liu, Z.: A 4-Ma record of
thermal evolution in the tropical western Pacific and its implications on
climate change, Earth Planet. Sc. Lett., 309, 10–20, 2011.
Lisiecki, L. E.: Atlantic overturning responses to obliquity and precession
over the last 3 Myr, Paleoceanography, 29, 71–86, 2014.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20,
1–17, 2005.
Lisiecki, L. E., Raymo, M. E., and Curry, W. B.: Atlantic overturning
responses to Late Pleistocene climate forcings, Nature, 456, 85–88, 2008.
Liu, T. S.: Loess and the Environment, China Ocean Press, Beijing, China,
1985.
Liu, Z. and Herbert, T. D.: High-latitude influence on the eastern equatorial
Pacific climate in the early Pleistocene eopch, Nature, 427, 720–723, 2004.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric CH4 over the
past 800 000 years, Nature, 453, 383–386, 2008.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382, 2008.
Martínez-Garcia, A., Rosell-Melé, A., Geibert, W., Gersonde, R.,
Masqué, P., Gaspari, V., and Barbante, C.: Links between iron supply,
marine productivity, sea surface temperature, and CO2 over the last
1.1 Ma, Paleoceanography, 24, 1–14, 2009.
Martinez-Garcia, A., Rosell-Mele, A., Jaccard, S. L., Geibert, W., Sigman, D.
M., and Haug, G. H.: Southern Ocean dust-climate coupling over the past four
million years, Nature, 476, 312–315, 2011.
McIntyre, K., Ravelo, A. C., and Delaney, M. L.: North Atlantic Intermediate
Waters in the late Pliocene to early Pleistocene, Paleoceanography, 14,
324–335, 1999.
Medina-Elizalde, M. and Lea, D. W.: The mid-Pleistocene transition in the
tropical Pacific, Science, 310, 1009–1012, 2005.
Mix, A. C., Le, J., and Shackleton, N. J.: Benthic foraminiferal stable
isotope stratigraphy from Site 846: 0–1.8 Ma, Proc. Ocean Drill. Program
Sci. Results, 138, 839–847, 1995a.
Mix, A. C., Pisias, N. G., Rugh, W., Wilson, J., Morey, A., and Hagelberg, T.
K.: Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): Local
and global climate changes, Proc. Ocean Drill. Program Sci. Results, 138,
371–412, 1995b.
Mix, A. C., Morey, A. E., Pisias, N. G., and Hostetler, S. W.: Foraminiferal
faunal estimates of paleotemperature: Circumventing the no-analog problem
yields cool ice age tropics, Paleoceanography, 14, 350–359,
https://doi.org/10.1029/1999PA900012, 1999.
Naafs, B. D. A., Hefter, J., Acton, G., Haug, G. H., Martínez-Garcia,
A., Pancost, R., and Stein, R.: Strengthening of North American dust sources
during the late Pliocene (2.7 Ma), Earth Planet. Sc. Lett., 317–318, 8–19,
2012.
Oppo, D. W., Fairbanks, R. G., Gordon, A. L., and Shackleton, N. J.: Late
Pleistocene Southern Ocean 13C variability, Paleoceanography, 5, 43–54,
1990.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Abrupt climate events
500 000 to 340 000 years ago; evidence from subpolar North Atlantic
sediments, Science, 279, 1335–1338, 1998.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time-series analysis, Eos Trans. AGU, 77, 379–379, 1996.
Pisias, N. G. and Mix, A. C.: Spatial and temporal oceanographic variability
of the eastern equatorial Pacific during the late Pleistocene: Evidence from
Radiolaria microfossils, Paleoceanography, 12, 381–393, 1997.
Pisias, N. G. and Moore, T. C.: The Evolution of Pleistocene Climate: A Time
Series Approach, Earth Planet. Sc. Lett., 52, 450–458, 1981.
Prokopenko, A. A., Williams, D. F., Kuzmin, D. V., Karabanov, E. B.,
Khursevich, G. K., and Peck, J. A.: Muted climate variations in continental
Siberia during the mid-Pleistocene epoch, Nature, 418, 65–68, 2002.
Prokopenko, A. A., Hinnov, L. A., Williams, D. F., and Kuzmin, M. I.: Orbital
forcing of continental climate during the Pleistocene: a complete
astronomically tuned climatic record from Lake Baikal, SE Siberia, Quaternary
Sci. Rev., 25, 3431–3457, 2006.
Raymo, M. E., Oppo, D., and Curry, W.: The mid-Pleistocene climate
transition: A deep sea carbon isotope perspective, Paleoceanography, 12,
546–559, 1997.
Raymo, M. E., Oppo, D. W., Flower, B. P., Hodell, D. A., McManus, J. F.,
Venz, K. A., Kleiven, K. F., and McIntyre, K.: Stability of North Atlantic
water masses in face of pronounced climate variability during the
Pleistocene, Paleoceanography, 19, PA2008, https://doi.org/10.1029/2003PA000921, 2004.
Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and Backman,
J.: Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic
Ocean, Paleoceanography, 4, 353–412, 1989.
Russon, T., Elliot, M., Sadekov, A., Cabioch, G., Corrège, T., and De
Deckker, P.: Inter-hemispheric asymmetry in the early Pleistocene Pacific
warm pool, Geophys. Res. Lett., 37, L11601, https://doi.org/10.1029/2010GL043191, 2010.
Schaefer, G., Rodger, J. S., Hayward, B. W., Kennett, J. P., Sabaa, A. T.,
and Scott, G. H.: Planktic foraminiferal and sea surface temperature record
during the last 1 Myr across the Subtropical Front, Southwest Pacific, Mar.
Micropaleontol., 54, 191–212, 2005.
Shackleton, N. J., Berger, A., and Peltier, W. R.: An alternative
astronomical calibration of the Lower Pleistocene timescale based on ODP
Site 677, T. Roy. Soc. Edin. Earth, 81, 251–261, 1990.
Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800-kyr
record of global surface ocean δ18O and implications for ice
volume-temperature coupling, Earth Planet. Sc. Lett., 426, 58–68, 2015.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55, 2010.
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on
glacial-interglacial CO2 variations, Nature, 404, 171–174, 2000.
Sun, Y. and An, Z.: Late Pliocene-Pleistocene changes in mass accumulation
rates of eolian deposits on the central Chinese Loess Plateau, J. Geophys.
Res., 110, 1–8, 2005.
Tiedemann, R., Sarnthein, M., and Shackleton, N. J.: Astronomic timescale for
the Pliocene Atlantic δ18O and dust flux records of Ocean
Drilling Program site 659, Paleoceanography, 9, 619–638, 1994.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages,
Paleoceanography, 21, 1–15, 2006.
Venz, K. A. and Hodell, D. A.: New evidence for changes in Plio-Pleistocene
deep water circulation from Southern Ocean ODP Leg 177 Site 1090,
Palaeogeogr. Palaeocl., 182, 197–220, 2002.
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Myr Record
of Glacial North Atlantic Intermediate Water Variability from ODP Site 982 in
the Northeast Atlantic, Paleoceanography, 14, 42–52, 1999.
Wefer, G., Berger, W. H., Bickert, T., Donner, B., Fischer, G., Kemle von
Mücke, S., Meinecke, G., Müller, P. J., Mulitza, S., Niebler, H.-S.,
Pätzold, J., Schmidt, H., Schneider, R. R., and Segl, M.: Late Quaternary
surface circulation of the South Atlantic: The stable isotope record and
implications for heat transport and productivity, in: The South Atlantic:
Present and Past Circulation, edited by: Wefer, G., Berger, W. H., Siedler,
G., and Webb, D., Springer, Berlin, Heidelberg, Germany, 461–502, 1996.
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C.,
Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson,
M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B.,
Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L.,
Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenback, D., Barbante,
C., Gabrielli, P., and Gaspari, V.: Southern Ocean sea-ice extent,
productivity and iron flux over the past eight glacial cycles, Nature, 440,
491–496, 2006.
Yin, Q.: Insolation-induced mid-Brunhes transition in Southern Ocean
ventilation and deep-ocean temperature, Nature, 494, 222–225, 2013.
Yin, Q. Z. and Guo, Z. T.: Strong summer monsoon during the cool MIS-13,
Clim. Past, 4, 29–34, https://doi.org/10.5194/cp-4-29-2008, 2008.
Short summary
Multiple components of the global climate system record a transition ~ 430 ka from lower- to higher-amplitude glacial cycles. Statistical analyses of globally distributed climate proxies show that a sequence of events including persistent Asian summer monsoons, weak glaciation, and reorganization of water masses preceded the transition to higher interglacial values for temperature, atmospheric greenhouse gases, and sea level.
Multiple components of the global climate system record a transition ~ 430 ka from lower- to...