Articles | Volume 14, issue 11
https://doi.org/10.5194/cp-14-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle
Olivier Cartapanis
CORRESPONDING AUTHOR
Earth and Planetary Sciences McGill University, Montreal H3A 2A7, Canada
Institute of Geological Sciences and Oeschger Centre for Climate Change
Research, University of Bern, 3012 Bern, Switzerland
Eric D. Galbraith
Earth and Planetary Sciences McGill University, Montreal H3A 2A7, Canada
Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg.
Lluís Companys 23, 08010 Barcelona, Spain
Institut de Ciència i Tecnologia Ambientals (ICTA) and Department of
Mathematics, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
Daniele Bianchi
Department of Atmospheric and Oceanic Sciences, University of California
Los Angeles, Los Angeles, CA 90095-1565, USA
Samuel L. Jaccard
Institute of Geological Sciences and Oeschger Centre for Climate Change
Research, University of Bern, 3012 Bern, Switzerland
Related authors
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Eric Galbraith, Abdullah-Al Faisal, Tanya Matitia, William Fajzel, Ian Hatton, Helmut Haberl, Fridolin Krausmann, and Dominik Wiedenhofer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1133, https://doi.org/10.5194/egusphere-2024-1133, 2024
Short summary
Short summary
The technosphere, including buildings, infrastructure and all other non-living human creations, has become a major part of the Earth system. Here we provide a refined definition of the technosphere, and an end-use classification aligned with the physical outcomes of human activities. We use these definitions to describe the composition and spatial distribution of technosphere mass, and discuss the exponential character of its growth since 1900, which presents a challenge for sustainability.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-26, https://doi.org/10.5194/gmd-2024-26, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Numerical models that capture key features of the global dynamics of fish communities play a crucial role in addressing the impacts of climate change and industrial fishing on ecosystems and societies. Here, we detail an update of the BiOeconomic marine Trophic Size-spectrum model that corrects the model representation of the dynamic of fisheries in the High Seas. This update also allows a better representation of biodiversity to improve future global and regional fisheries studies.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021, https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421–1442, https://doi.org/10.5194/gmd-11-1421-2018, https://doi.org/10.5194/gmd-11-1421-2018, 2018
Short summary
Short summary
Model intercomparison studies in the climate and Earth sciences communities have been crucial for strengthening future projections. Given the speed and magnitude of anthropogenic change in the marine environment, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. We describe the Fisheries and Marine Ecosystem Model Intercomparison Project, which brings together the marine ecosystem modelling community to inform long-term projections of marine ecosystems.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
Nicolas Brown and Eric D. Galbraith
Clim. Past, 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016, https://doi.org/10.5194/cp-12-1663-2016, 2016
Short summary
Short summary
An Earth system model is used to explore variability in the global impacts of AMOC disruptions. The model exhibits spontaneous AMOC oscillations under particular boundary conditions, which we compare with freshwater-forced disruptions. We find that the global impacts are similar whether the AMOC disruptions are spontaneous or forced. Freshwater forcing generally amplifies the global impacts, with tropical precipitation and the stability of polar haloclines showing particular sensitivity.
David Anthony Carozza, Daniele Bianchi, and Eric Douglas Galbraith
Geosci. Model Dev., 9, 1545–1565, https://doi.org/10.5194/gmd-9-1545-2016, https://doi.org/10.5194/gmd-9-1545-2016, 2016
Short summary
Short summary
We present the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling upper trophic level biomass at the global scale. BOATS employs fundamental ecological principles and takes a simple approach that relies on fewer parameters compared to similar modelling efforts. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, upper trophic levels, and fisheries at the global scale.
O. Duteil, W. Koeve, A. Oschlies, D. Bianchi, E. Galbraith, I. Kriest, and R. Matear
Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, https://doi.org/10.5194/bg-10-7723-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pleistocene
No detectable influence of the carbonate ion effect on changes in stable carbon isotope ratios (δ13C) of shallow dwelling planktic foraminifera over the past 160 kyr
Deglacial export of pre-aged terrigenous carbon to the Bay of Biscay
Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific
Nutrient utilization and diatom productivity changes in the low-latitude south-eastern Atlantic over the past 70 ka: response to Southern Ocean leakage
Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data
Peter Köhler and Stefan Mulitza
Clim. Past, 20, 991–1015, https://doi.org/10.5194/cp-20-991-2024, https://doi.org/10.5194/cp-20-991-2024, 2024
Short summary
Short summary
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from the planktic foraminifera G. ruber and/or T. sacculifer and compared them with carbon cycle simulations using the BICYCLE-SE model. In our stacks and our model-based interpretation, we cannot detect a species-specific isotopic fractionation during hard-shell formation as a function of carbonate chemistry in the surrounding seawater, something which is called a carbonate ion effect.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, and Aradhna Tripati
Clim. Past, 18, 183–207, https://doi.org/10.5194/cp-18-183-2022, https://doi.org/10.5194/cp-18-183-2022, 2022
Short summary
Short summary
Here we reconstruct atmospheric CO2 values across major climate transitions over the past 16 million years (Myr) from two sites in the West Pacific Warm Pool using a pH proxy on surface-dwelling foraminifera. We are able to reproduce pCO2 data from ice cores; therefore we apply the same framework to older samples to create a long-term pH and pCO2 reconstruction. We give quantitative constraints on pH and pCO2 changes over the main climate transitions of the last 16 Myr.
Katharine Hendry, Oscar Romero, and Vanessa Pashley
Clim. Past, 17, 603–614, https://doi.org/10.5194/cp-17-603-2021, https://doi.org/10.5194/cp-17-603-2021, 2021
Short summary
Short summary
Productive eastern boundary upwelling systems (EBUs) are characterized by abundant siliceous algae and diatoms, and they play a key role in carbon fixation. Understanding past shifts in diatom production is critical for predicting the impact of future climate change. We combine existing sediment archives from the Benguela EBU with new diatom isotope analyses and modelling to reconstruct late Quaternary silica cycling, which we suggest depends on both upwelling intensity and surface utilization.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model:
procedures, data sources and analysis, US Department of Commerce, National
Oceanic and Atmospheric Administration, National Environmental Satellite,
Data, and Information Service, National Geophysical Data Center, Marine
Geology and Geophysics Division Colorado, 2009.
Amiotte Suchet, P., Probst, J.-L., and Ludwig, W.: Worldwide distribution of
continental rock lithology: Implications for the atmospheric/soil CO2 uptake
by continental weathering and alkalinity river transport to the oceans,
Global Biogeochem. Cy., 17, 1038, https://doi.org/10.1029/2002GB001891, 2003.
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the
glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189,
https://doi.org/10.1029/1999rg000066, 2000.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean,
Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and
Lee, K.: Relating estimates of CaCO3 production, export, and dissolution in
the water column to measurements of CaCO3 rain into sediment traps and
dissolution on the sea floor: A revised global carbonate budget, Global Biogeochem. Cy., 21, gb1024, https://doi.org/10.1029/2006gb002803, 2007.
Berger, W. H.: Increase of carbon dioxide in the atmosphere during
deglaciation: the coral reef hypothesis, Naturwissenschaften, 69, 87–88,
https://doi.org/10.1007/BF00441228, 1982.
Berner, R. A.: The Long Term Stability of the Earth System Biogeochemical
cycles of carbon and sulfur and their effect on atmospheric oxygen over
phanerozoic time, Palaeogeogr. Palaeocl., 75, 97–122, https://doi.org/10.1016/0031-0182(89)90186-7, 1989.
Bird, M. I., Llyod, J., and Farquhar, G. D.: Terrestrial carbon-storage from
the Last Glacial Maximum to the present, Chemosphere, 33, 1675–1685, 1996.
Boyle, E. A.: Vertical oceanic nutrient fractionation and
glacial/interglacial CO2 cycles, Nature, 331, 55–56, 1988.
Boyle, E. A. and Keigwin, L. D.: Deep circulation of the North Atlantic
over the last 200 000 years: Geochemical evidence, Science, 218, 784–787,
1982.
Broecker, W. S.: Ocean chemistry during glacial time, Geochim. Cosmochim.
Acta, 46, 1689–1705, https://doi.org/10.1016/0016-7037(82)90110-7, 1982.
Broecker, W. S. and Peng, T. H.: The oceanic salt pump: Does it contribute
to the glacial-interglacial difference in atmospheric CO2 content?, Global Biogeochem. Cy., 1, 251–259, https://doi.org/10.1029/GB001i003p00251, 1987.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento, J.
L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from
Si(OH)4 to depletion in the glacial Southern Ocean, Geophys. Res.
Lett., 29, 1564, https://doi.org/10.1029/2001gl014349, 2002.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A
re-assessment, Global Biogeochem. Cy., 19, GB4011, https://doi.org/10.1029/2004GB002368,
2005.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Burton, M. R., Sawyer, G. M., and Granieri, D.: Deep carbon emissions from
volcanoes, Rev. Mineral. Geochem, 75, 323–354, 2013.
Cartapanis, O., Bianchi, D., Jaccard, S. L., and Galbraith, E. D.: Global
pulses of organic carbon burial in deep-sea sediments during glacial maxima,
Nat. Commun., 7, 10796, https://doi.org/10.1038/ncomms10796, 2016.
Cartigny, P., Jendrzejewski, N., Pineau, F., Petit, E., and Javoy, M.:
Volatile (C, N, Ar) variability in MORB and the respective roles of mantle
source heterogeneity and degassing: the case of the Southwest Indian Ridge,
Earth Planet. Sc. Lett., 194, 241–257, https://doi.org/10.1016/S0012-821X(01)00540-4, 2001.
Catubig, N. R., Archer, D. E., Francois, R., deMenocal, P., Howard, W., and
Yu, E. F.: Global deep-sea burial rate of calcium carbonate during the last
glacial maximum, Paleoceanography, 13, 298–310, https://doi.org/10.1029/98pa00609, 1998.
Chavrit, D., Humler, E., and Grasset, O.: Mapping modern CO2 fluxes and
mantle carbon content all along the mid-ocean ridge system, Earth Planet. Sc. Lett., 387, 229–239, https://doi.org/10.1016/j.epsl.2013.11.036, 2014.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C.,
and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during
the Last Glacial Maximum, Nat. Geosci., 5, 74–79, 2012.
Coltice, N., Simon, L., and Lécuyer, C.: Carbon isotope cycle and mantle
structure, Geophys. Res. Lett., 31, L05603, https://doi.org/10.1029/2003GL018873, 2004.
Copard, Y., Amiotte-Suchet, P., and Di-Giovanni, C.: Storage and release of
fossil organic carbon related to weathering of sedimentary rocks, Earth Planet. Sc. Lett., 258, 345–357, https://doi.org/10.1016/j.epsl.2007.03.048, 2007.
Covault, J. A. and Graham, S. A.: Submarine fans at all sea-level stands:
Tectono-morphologic and climatic controls on terrigenous sediment delivery
to the deep sea, Geology, 38, 939–942, https://doi.org/10.1130/g31081.1, 2010.
Curry, W. B., Duplessy, J.-C., Labeyrie, L., and Shackleton, N. J.: Changes
in the distribution of δ13C of deep water ΣCO2 between the
last glaciation and the Holocene, Paleoceanography and Paleoclimatology, 3,
317–341, 1988.
Dadey, K. A., Janecek, T., and Klaus, A.: Dry-bulk density: its use and
determination, in: Proc. ODP, Sci. Results, edited by: Taylor, B., Fujioka,
K., et al., 126, College Station, TX (Ocean Drilling Program), 551–554.
https://doi.org/10.2973/odp.proc.sr.126.157.1992, 1992.
Degens, E. T.: Biogeochemistry of Stable Carbon Isotopes, in: Organic Geochemistry,
edited by: Eglinton, G. and Murphy, M. J., Springer, Berlin, Heidelberg,
304–329, 1969.
Deines, P.: The carbon isotope geochemistry of mantle xenoliths, Earth-Sci.
Rev., 58, 247–278, https://doi.org/10.1016/S0012-8252(02)00064-8, 2002.
Dickson, A. G. and Goyet, C.: Handbook of methods for the analysis of the
various parameters of the carbon dioxide system in sea water, Version 2, San
Diego, ORNL/CDIAC-74, 1994.
Dubois, N., Kienast, M., Kienast, S., Calvert, S. E., Francois, R., and
Anderson, R. F.: Sedimentary opal records in the eastern equatorial Pacific:
It is not all about leakage, Global Biogeochem. Cy., 24, GB4020,
https://doi.org/10.1029/2010gb003821, 2010.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global
particle export from the surface ocean and cycling through the ocean
interior and on the seafloor, Global Biogeochem. Cy., 21, GB4006, https://doi.org/10.1029/2006GB002907, 2007.
Dunne, J. P., Hales, B., and Toggweiler, J. R.: Global calcite cycling
constrained by sediment preservation controls, Global Biogeochem. Cy.,
26, GB3023, https://doi.org/10.1029/2010GB003935, 2012.
Eggleston, S. and Galbraith, E. D.: The devil's in the disequilibrium:
multi-component analysis of dissolved carbon and oxygen changes under a broad
range of forcings in a general circulation model, Biogeosciences, 15,
3761–3777, https://doi.org/10.5194/bg-15-3761-2018, 2018.
Farrell, J. W. and Prell, W. L.: Climatic change and CaCO3 preservation: an
800 000 year bathymetric reconstruction from the central equatorial Pacific
Ocean, Paleoceanography, 4, 447–466, 1989.
Fortin, D., Francus, P., Gebhardt, A. C., Hahn, A., Kliem, P.,
Lisé-Pronovost, A., Roychowdhury, R., Labrie, J., and St-Onge, G.:
Destructive and non-destructive density determination: method comparison and
evaluation from the Laguna Potrok Aike sedimentary record, Quaternary Sci. Rev.,
71, 147–153, https://doi.org/10.1016/j.quascirev.2012.08.024,
2013.
Foster, G. L. and Vance, D.: Negligible glacial-interglacial variation in
continental chemical weathering rates, Nature, 444, 918–921, 2006.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by
phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 6, 185–198, https://doi.org/10.1029/92GB00190, 1992.
Gaillardet, J., Dup
ré, B., Louvat, P., and Allègre, C. J.: Global
silicate weathering and CO2 consumption rates deduced from the chemistry of
large rivers, Chem. Geol., 159, 3–30, https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Galbraith, E. D. and Jaccard, S. L.: Deglacial weakening of the oceanic
soft tissue pump: global constraints from sedimentary nitrogen isotopes and
oxygenation proxies, Quaternary Sci. Rev., 109, 38–48, https://doi.org/10.1016/j.quascirev.2014.11.012, 2015.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Gerlach, T.: Volcanic versus anthropogenic carbon dioxide, Eos, Trans. AGU,
92, 201–202, https://doi.org/10.1029/2011EO240001, 2011.
Gibbs, M. T. and Kump, L. R.: Global chemical erosion during the Last
Glacial Maximum and the present: Sensitivity to changes in lithology and
hydrology, Paleoceanography, 9, 529–543, https://doi.org/10.1029/94PA01009, 1994.
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde,
M., Ramsey, C. B., Satow, C., and Roberts, A. P.: Rapid coupling between ice
volume and polar temperature over the past 150 000 years, Nature, 491,
744–747, https://doi.org/10.1038/nature11593, 2012.
Guihou, A., Pichat, S., Govin, A., Nave, S., Michel, E., Duplessy, J.-C.,
Telouk, P., and Labeyrie, L.: Enhanced Atlantic Meridional Overturning
Circulation supports the Last Glacial Inception, Quaternary Sci. Rev., 30,
1576–1582, 2011.
Hain, M. P., Sigman, D. M., and Haug, G. H.: Carbon dioxide effects of
Antarctic stratification, North Atlantic Intermediate Water formation, and
subantarctic nutrient drawdown during the last ice age: Diagnosis and
synthesis in a geochemical box model, Global Biogeochem. Cy., 24, GB4023,
https://doi.org/10.1029/2010GB003790, 2010.
Hain, M. P., Sigman, D. M., and Haug, G. H.: 8.18 – The Biological Pump in
the Past, in: Treatise on Geochemistry, Second Edition, edited by: Turekian,
H. D. H. and Karl, K., Elsevier, Oxford, 485–517, 2014.
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J.:
Global chemical weathering and associated P-release – The role of
lithology, temperature and soil properties, Chem. Geol., 363, 145–163, https://doi.org/10.1016/j.chemgeo.2013.10.025, 2014.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115, https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D.,
and Ehlers, T. A.: Worldwide acceleration of mountain erosion under a
cooling climate, Nature, 504, 423–426, https://doi.org/10.1038/nature12877, 2013.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield,
P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K.,
Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.
H., Dubi, A., and Hatziolos, M. E.: Coral Reefs Under Rapid Climate Change
and Ocean Acidification, Science, 318, 1737–1742, https://doi.org/10.1126/science.1152509,
2007.
Huybers, P. and Langmuir, C.: Feedback between deglaciation, volcanism, and
atmospheric CO2, Earth Planet. Sc. Lett., 286, 479–491, https://doi.org/10.1016/j.epsl.2009.07.014, 2009.
International Hydrographic Organization: Limits of Oceans and Seas, Special
Publication, 23, hdl:10013/epic.37175.d001, 1953.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A:
Global and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field,
C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M.,
Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 1132 pp.,
2014.
Jaccard, S., Haug, G., Sigman, D., Pedersen, T., Thierstein, H., and
Röhl, U.: Glacial/interglacial changes in subarctic North Pacific
stratification, Science, 308, 1003–1006, 2005.
Jaccard, S., Hayes, C. T., Martínez-García, A., Hodell, D.,
Anderson, R. F., Sigman, D., and Haug, G.: Two modes of change in Southern
Ocean productivity over the past million years, Science, 339, 1419–1423,
2013.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., Haug, G. H., Francois, R.,
Pedersen, T. F., Dulski, P., and Thierstein, H. R.: Subarctic Pacific
evidence for a glacial deepening of the oceanic respired carbon pool, Earth Planet. Sc. Lett., 277, 156–165, https://doi.org/10.1016/j.epsl.2008.10.017, 2009.
Jahnke, R. A.: The global ocean flux of particulate organic carbon: Areal
distribution and magnitude, Global Biogeochem. Cy., 10, 71–88,
https://doi.org/10.1029/95GB03525, 1996.
Jellinek, A. M., Manga, M., and Saar, M. O.: Did melting glaciers cause
volcanic eruptions in eastern California? Probing the mechanics of dike
formation, J. Geophys. Res.-Sol. Ea., 109, B09206,
https://doi.org/10.1029/2004JB002978, 2004.
Keil, R.: Anthropogenic Forcing of Carbonate and Organic Carbon Preservation
in Marine Sediments, Annu. Rev. Mar. Sci., 9, 151–172,
https://doi.org/10.1146/annurev-marine-010816-060724, 2017.
Kohfeld, K. E. and Chase, Z.: Temporal evolution of mechanisms controlling
ocean carbon uptake during the last glacial cycle, Earth Planet. Sc. Lett., 472, 206–215, https://doi.org/10.1016/j.epsl.2017.05.015, 2017.
Kump, L. R. and Arthur, M. A.: Interpreting carbon-isotope excursions:
carbonates and organic matter, Chem. Geol., 161, 181–198, https://doi.org/10.1016/S0009-2541(99)00086-8, 1999.
Kutterolf, S., Jegen, M., Mitrovica, J. X., Kwasnitschka, T., Freundt, A.,
and Huybers, P. J.: A detection of Milankovitch frequencies in global
volcanic activity, Geology, 41, 227–230, https://doi.org/10.1130/g33419.1, 2013.
Labeyrie, L. D., Duplessy, J.-C., Duprat, J., Juillet-Leclerc, A., Moyes,
J., Michel, E., Kallel, N., and Shackleton, N. J.: Changes in the vertical
structure of the North Atlantic Ocean between glacial and modern times,
Quaternary Sci. Rev., 11, 401–413, 1992.
Lambeck, K. and Chappell, J.: Sea Level Change Through the Last Glacial
Cycle, Science, 292, 679–686, https://doi.org/10.1126/science.1059549, 2001.
Lee, H., Muirhead, J. D., Fischer, T. P., Ebinger, C. J., Kattenhorn, S. A.,
Sharp, Z. D., and Kianji, G.: Massive and prolonged deep carbon emissions
associated with continental rifting, Nat. Geosci., 9, 145–149,
https://doi.org/10.1038/ngeo2622, 2016.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Longhurst, A.: Seasonal cycles of pelagic production and consumption, Prog.
Oceanogr., 36, 77–167, https://doi.org/10.1016/0079-6611(95)00015-1, 1995.
Lund, D. C., Asimow, P. D., Farley, K. A., Rooney, T. O., Seeley, E.,
Jackson, E. W., and Durham, Z. M.: Enhanced East Pacific Rise hydrothermal
activity during the last two glacial terminations, Science, 351, 478–482,
https://doi.org/10.1126/science.aad4296, 2016.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J. M., Ivanova, E. V., Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E. F., and Zahn, R.: Atlantic meridional overturning
circulation during the Last Glacial Maximum, Science, 316, 66–69,
https://doi.org/10.1126/science.1137127, 2007.
Marchitto, T. M., Lehman, S. J., Ortiz, J. D., Fluckiger, J., and van Geen,
A.: Marine radiocarbon evidence for the mechanism of deglacial atmospheric
CO2 rise, Science, 316, 1456–1459, https://doi.org/10.1126/science.1138679\textbar ISSN0036-8075, 2007.
Menviel, L., Joos, F., and Ritz, S. P.: Simulating atmospheric CO2, 13C and
the marine carbon cycle during the Last Glacial–Interglacial cycle:
possible role for a deepening of the mean remineralization depth and an
increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68, https://doi.org/10.1016/j.quascirev.2012.09.012, 2012.
Milliman, J. D.: Production and accumulation of calcium carbonate in the
ocean: Budget of a nonsteady state, Global Biogeochem. Cy., 7, 927–957, https://doi.org/10.1029/93GB02524, 1993.
Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and
Walsh, J. J.: The importance of continental margins in the global carbon
cycle, Geophys. Res. Lett., 32, L01602, https://doi.org/10.1029/2004GL021346, 2005.
Ödalen, M., Nycander, J., Oliver, K. I. C., Brodeau, L., and Ridgwell, A.:
The influence of the ocean circulation state on ocean carbon storage and
CO2 drawdown potential in an Earth system model, Biogeosciences, 15,
1367–1393, https://doi.org/10.5194/bg-15-1367-2018, 2018.
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M.,
Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine
sediment core δ13C data over the last 150 000 years, Clim. Past,
6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010.
Omta, A. W., van Voorn, G. A. K., Rickaby, R. E. M., and Follows, M. J.: On
the potential role of marine calcifiers in glacial-interglacial dynamics,
Global Biogeochem. Cy., 27, 692–704, https://doi.org/10.1002/gbc.20060, 2013.
Opdyke, B. N. and Walker, J. C. G.: Return of the coral reef hypothesis:
Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2,
Geology, 20, 733–736, https://doi.org/10.1130/0091-7613(1992)020<0733:rotcrh>2.3.co;2, 1992.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005.
Peterson, C. D., Lisiecki, L. E., and Stern, J. V.: Deglacial whole-ocean
δ13C change estimated from 480 benthic foraminiferal records,
Paleoceanography, 29, 549–563, https://doi.org/10.1002/2013PA002552, 2014.
Petsch, S. T.: 12.8 – Weathering of Organic Carbon A2 – Holland, Heinrich
D., in: Treatise on Geochemistry, Second Edition, edited by: Turekian, K. K.,
Elsevier, Oxford, 217–238, 2014.
Reghellin, D., Dickens, G. R., and Backman, J.: The relationship between wet
bulk density and carbonate content in sediments from the Eastern Equatorial
Pacific, Mar. Geol., 344, 41–52, https://doi.org/10.1016/j.margeo.2013.07.007, 2013.
Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., and
Maury, O.: Dynamic biogeochemical provinces in the global ocean, Global Biogeochem. Cy., 27, 1046–1058, https://doi.org/10.1002/gbc.20089, 2013.
Rickaby, R. E. M., Elderfield, H., Roberts, N., Hillenbrand, C. D., and
Mackensen, A.: Evidence for elevated alkalinity in the glacial Southern
Ocean, Paleoceanography, 25, PA1209, https://doi.org/10.1029/2009PA001762, 2010.
Ronge, T. A., Tiedemann, R., Lamy, F., Kohler, P., Alloway, B. V., De
Pol-Holz, R., Pahnke, K., Southon, J., and Wacker, L.: Radiocarbon
constraints on the extent and evolution of the South Pacific glacial carbon
pool, Nat. Commun., 7, 11487, https://doi.org/10.1038/ncomms11487, 2016.
Roth, R. and Joos, F.: Model limits on the role of volcanic carbon
emissions in regulating glacial–interglacial CO2 variations, Earth Planet. Sc. Lett., 329–330, 141–149, https://doi.org/10.1016/j.epsl.2012.02.019, 2012.
Ryan, D. A., Opdyke, B. N., and Jell, J. S.: Holocene sediments of Wistari
Reef: towards a global quantification of coral reef related neritic
sedimentation in the Holocene, Palaeogeogr. Palaeocl.,
175, 173–184, https://doi.org/10.1016/S0031-0182(01)00370-4,
2001.
Sarmiento, J. L. and Toggweiler, J. R.: A new model for the role of the
oceans in determining atmospheric PCO2, Nature, 308, 621–624, 1984.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, New Jersey, USA, 2006.
Sarmiento, J. L., Dunne, J., Gnanadesikan, A., Key, R. M., Matsumoto, K.,
and Slater, R.: A new estimate of the CaCO3 to organic carbon export ratio,
Global Biogeochem. Cy., 16, 1107, https://doi.org/10.1029/2002gb001919, 2002.
Schmittner, A. and Somes, C.: Complementary Constraints from Carbon (13C)
and Nitrogen (15N) Isotopes on the Glacial Ocean's Soft-Tissue Biological
Pump, Paleoceanography, 31, 669–693, https://doi.org/10.1002/2015PA002905.
Schumer, R. and Jerolmack, D. J.: Real and apparent changes in sediment
deposition rates through time, J. Geophys. Res.-Earth, 114, F00A06, https://doi.org/10.1029/2009JF001266, 2009.
Seiter, K., Hensen, C., Schröter, J., and Zabel, M.: Organic carbon
content in surface sediments–defining regional provinces, Deep-Sea Res.
Pt. I, 51, 2001–2026, https://doi.org/10.1016/j.dsr.2004.06.014, 2004.
Shackleton, N. J.: Carbon-13 in Uvigerina: Tropical rain forest history and
the equatorial Pacific carbonate dissolution cycle, The fate of fossil fuel
CO2 in the oceans, New York (Plenum), 401–428, 1977.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Sigman, D. M. and Haug, G. H.: 6.18 – The Biological Pump in the Past, in:
Treatise on Geochemistry, edited by: Heinrich, D. H. and Karl, K. T.,
Pergamon, Oxford, 491–528, 2003.
Stott, L., Southon, J., Timmermann, A., and Koutavas, A.: Radiocarbon age
anomaly at intermediate water depth in the Pacific Ocean during the last
deglaciation, Paleoceanography, 24, PA2223, https://doi.org/10.1029/2008pa001690, 2009.
Sun, X. and Turchyn, A. V.: Significant contribution of authigenic
carbonate to marine carbon burial, Nat. Geosci., 7, 201–204, https://doi.org/10.1038/ngeo2070, 2014.
Sundquist, E. T. and Visser, K.: 8.09 – The Geologic History of the Carbon
Cycle, in: Treatise on Geochemistry, edited by: Holland, H. D. and
Turekian, K. K., Pergamon, Oxford, 425–472, 2003.
Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the
ocean's deepest water, Paleoceanography, 14, 571–588, https://doi.org/10.1029/1999PA900033,
1999.
Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F., and West, A. J.:
Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks,
P. Natl. Acad. Sci. USA, 144, 8716–8721, https://doi.org/10.1073/pnas.1702953114, 2017.
Vance, D., Teagle, D. A. H., and Foster, G. L.: Variable Quaternary chemical
weathering fluxes and imbalances in marine geochemical budgets, Nature, 458,
493–496, 2009.
Vecsei, A. and Berger, W. H.: Increase of atmospheric CO2 during
deglaciation: Constraints on the coral reef hypothesis from patterns of
deposition, Global Biogeochem. Cy., 18, GB1035, https://doi.org/10.1029/2003GB002147,
2004.
von Blanckenburg, F., Bouchez, J., Ibarra, D. E., and Maher, K.: Stable
runoff and weathering fluxes into the oceans over Quaternary climate cycles,
Nat. Geosci., 8, 538–542, https://doi.org/10.1038/ngeo2452, 2015.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Wallmann, K., Schneider, B., and Sarnthein, M.: Effects of eustatic
sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2
and seawater composition over the last 130 000 years: a model study,
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, 2016.
Wang, X.-C. and Druffel, E. R. M.: Radiocarbon and stable carbon isotope
compositions of organic compound classes in sediments from the NE Pacific
and Southern Oceans, Mar. Chem., 73, 65–81, https://doi.org/10.1016/S0304-4203(00)00090-6, 2001.
Weber, M. E., Niessen, F., Kuhn, G., and Wiedicke, M.: Calibration and
application of marine sedimentary physical properties using a multi-sensor
core logger, Mar. Geol., 136, 151–172, 1997.
Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., and Zhang,
F.: Loss of Carbon from the Deep Sea Since the Last Glacial Maximum,
Science, 330, 1084–1087, 2010.
Yu, J., Anderson, R. F., Jin, Z., Rae, J. W. B., Opdyke, B. N., and Eggins,
S. M.: Responses of the deep ocean carbonate system to carbon reorganization
during the Last Glacial–interglacial cycle, Quaternary Sci. Rev., 76, 39–52, https://doi.org/10.1016/j.quascirev.2013.06.020, 2013.
Yu, J., Anderson, R. F., and Rohling, E. J.: Deep Ocean Carbonate Chemistry
and Glacial-Interglacial Atmospheric CO2 Changes, Oceanography, 27, 16–25, https://doi.org/10.5670/oceanog.2014.04, 2014.
Zech, R.: A permafrost glacial hypothesis – Permafrost carbon might help
explaining the Pleistocene ice ages, Quaternary Science Journal, 61, 84–92,
2012.
Zeebe, R. E. and Caldeira, K.: Close mass balance of long-term carbon
fluxes from ice-core CO2 and ocean chemistry records, Nat. Geosci., 1,
312–315, 2008.
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the...