Articles | Volume 14, issue 11
https://doi.org/10.5194/cp-14-1727-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1727-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene
Palaeontology, Geobiology and Earth Archives Research Centre, School of
Biological, Earth and Environmental Sciences, University of New South Wales,
Australia
Climate Change Research Centre, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Australia
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH),
School of Biological, Earth and Environmental Sciences, University of New
South Wales, Sydney, Australia
Richard T. Jones
formerly at: Department of Geography, Exeter University, Devon, EX4 4RJ,
UK
deceased
Chris J. Fogwill
Palaeontology, Geobiology and Earth Archives Research Centre, School of
Biological, Earth and Environmental Sciences, University of New South Wales,
Australia
Climate Change Research Centre, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Australia
School of Geography, Geology and the Environment, Keele University,
Staffordshire, ST5 5BG, UK
Jackie Hatton
Department of Geography, Exeter University, Devon, EX4 4RJ, UK
Alan N. Williams
Climate Change Research Centre, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Australia
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH),
School of Biological, Earth and Environmental Sciences, University of New
South Wales, Sydney, Australia
Extent Heritage Pty Ltd, 3/73 Union Street, Pyrmont, NSW 2009, Australia
Alan Hogg
Waikato Radiocarbon Dating Laboratory, University of Waikato, Private Bag 3105,
Hamilton, New Zealand
Scott Mooney
Palaeontology, Geobiology and Earth Archives Research Centre, School of
Biological, Earth and Environmental Sciences, University of New South Wales,
Australia
Philip Jones
Climatic Research Unit, School of Environmental Sciences, University of
East Anglia, Norwich, UK
David Lister
Climatic Research Unit, School of Environmental Sciences, University of
East Anglia, Norwich, UK
Paul Mayewski
Climate Change Institute, University of Maine, Orono, ME, USA
Chris S. M. Turney
Palaeontology, Geobiology and Earth Archives Research Centre, School of
Biological, Earth and Environmental Sciences, University of New South Wales,
Australia
Climate Change Research Centre, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Australia
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH),
School of Biological, Earth and Environmental Sciences, University of New
South Wales, Sydney, Australia
Related authors
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5 m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
Z. A. Thomas, F. Kwasniok, C. A. Boulton, P. M. Cox, R. T. Jones, T. M. Lenton, and C. S. M. Turney
Clim. Past, 11, 1621–1633, https://doi.org/10.5194/cp-11-1621-2015, https://doi.org/10.5194/cp-11-1621-2015, 2015
Short summary
Short summary
Using a combination of speleothem records and model simulations of the East Asian Monsoon over the penultimate glacial cycle, we search for early warning signals of past tipping points. We detect a characteristic slower response to perturbations prior to an abrupt monsoon shift at the glacial termination; however, we do not detect these signals in the preceding shifts. Our results have important implications for detecting tipping points in palaeoclimate records outside glacial terminations.
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Mately, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-328, https://doi.org/10.5194/essd-2024-328, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR Version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update on past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Yuzhen Yan, Nicole E. Spaulding, Michael L. Bender, Edward J. Brook, John A. Higgins, Andrei V. Kurbatov, and Paul A. Mayewski
Clim. Past, 17, 1841–1855, https://doi.org/10.5194/cp-17-1841-2021, https://doi.org/10.5194/cp-17-1841-2021, 2021
Short summary
Short summary
Here we reconstruct the rate of snow accumulation during the Last Interglacial period in an East Antarctic ice core located near the present-day northern edge of the Ross Ice Shelf. We find an order-of-magnitude increase in the accumulation rate during the peak warming in the Last Interglacial. This large increase in mass accumulation is compatible with less ice cover in the Ross Sea, perhaps created by a partly collapsed West Antarctic Ice Sheet, whose stability in a warming world is uncertain.
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Abhijith U. Venugopal, Nancy A. N. Bertler, Rebecca L. Pyne, Helle A. Kjær, V. Holly L. Winton, Paul A. Mayewski, and Giuseppe Cortese
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-151, https://doi.org/10.5194/cp-2020-151, 2020
Manuscript not accepted for further review
Short summary
Short summary
We present a new and highly resolved glacial record of nitrate and calcium from a deep ice core obtained from Roosevelt Island, West Antarctica. Our data show a dependent association among nitrate and non-sea salt calcium (mineral dust) as observed previously in East Antarctica. The spatial pattern indicates that mineral dust is scavenging nitrate from the atmosphere and the westerlies are dispersing the dust-bound nitrate across Antarctica, making nitrate a potential paleo-westerly wind proxy.
Mai Winstrup, Paul Vallelonga, Helle A. Kjær, Tyler J. Fudge, James E. Lee, Marie H. Riis, Ross Edwards, Nancy A. N. Bertler, Thomas Blunier, Ed J. Brook, Christo Buizert, Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Aja Ellis, B. Daniel Emanuelsson, Richard C. A. Hindmarsh, Elizabeth D. Keller, Andrei V. Kurbatov, Paul A. Mayewski, Peter D. Neff, Rebecca L. Pyne, Marius F. Simonsen, Anders Svensson, Andrea Tuohy, Edwin D. Waddington, and Sarah Wheatley
Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, https://doi.org/10.5194/cp-15-751-2019, 2019
Short summary
Short summary
We present a 2700-year timescale and snow accumulation history for an ice core from Roosevelt Island, Ross Ice Shelf, Antarctica. We observe a long-term slightly decreasing trend in accumulation during most of the period but a rapid decline since the mid-1960s. The latter is linked to a recent strengthening of the Amundsen Sea Low and the expansion of regional sea ice. The year 1965 CE may thus mark the onset of significant increases in sea-ice extent in the eastern Ross Sea.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones
Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, https://doi.org/10.5194/essd-10-1613-2018, 2018
Short summary
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5 m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.
Philip D. Jones, Colin Harpham, Alberto Troccoli, Benoit Gschwind, Thierry Ranchin, Lucien Wald, Clare M. Goodess, and Stephen Dorling
Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017, https://doi.org/10.5194/essd-9-471-2017, 2017
Short summary
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
Franciele Schwanck, Jefferson C. Simões, Michael Handley, Paul A. Mayewski, Jeffrey D. Auger, Ronaldo T. Bernardo, and Francisco E. Aquino
The Cryosphere, 11, 1537–1552, https://doi.org/10.5194/tc-11-1537-2017, https://doi.org/10.5194/tc-11-1537-2017, 2017
Short summary
Short summary
The West Antarctic Ice Sheet (WAIS) is more susceptible to marine influences than the East Antarctica Ice Sheet (EAIS). During recent decades, rapid changes have occurred in the WAIS sector, including flow velocity acceleration, retraction of ice streams, and mass loss. In this study, we use an ice core located near the Pine Island Glacier ice divide to reconstruct mineral dust and marine aerosol transport and the influence of climate variables on the elemental concentration.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Steven J. Phipps, Christopher J. Fogwill, and Christian S. M. Turney
The Cryosphere, 10, 2317–2328, https://doi.org/10.5194/tc-10-2317-2016, https://doi.org/10.5194/tc-10-2317-2016, 2016
Short summary
Short summary
We explore the effects of melting of the East Antarctic Ice Sheet on the Southern Ocean. Using a climate model, we find that melting changes the ocean circulation and causes warming of more than 1 °C at depth. We also discover the potential existence of a "domino effect", whereby the initial warming spreads westwards around the Antarctic continent. Melting of just one sector could therefore destabilise the wider Antarctic Ice Sheet, leading to substantial increases in global sea level.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
C. S. M. Turney, C. J. Fogwill, A. R. Klekociuk, T. D. van Ommen, M. A. J. Curran, A. D. Moy, and J. G. Palmer
The Cryosphere, 9, 2405–2415, https://doi.org/10.5194/tc-9-2405-2015, https://doi.org/10.5194/tc-9-2405-2015, 2015
Short summary
Short summary
Recent trends in ocean circulation, sea ice and climate over the Southern Ocean and Antarctica are highly complex. Here we report a new snow core from the South Pole alongside reanalysis of 20th century global atmospheric circulation. We demonstrate for the first time that atmospheric pressure anomalies in the mid-latitudes act as "gatekeepers" to meridional exchange over continental Antarctica, modulated by the tropical Pacific, with potentially significant impacts on surface mass balance.
Z. A. Thomas, F. Kwasniok, C. A. Boulton, P. M. Cox, R. T. Jones, T. M. Lenton, and C. S. M. Turney
Clim. Past, 11, 1621–1633, https://doi.org/10.5194/cp-11-1621-2015, https://doi.org/10.5194/cp-11-1621-2015, 2015
Short summary
Short summary
Using a combination of speleothem records and model simulations of the East Asian Monsoon over the penultimate glacial cycle, we search for early warning signals of past tipping points. We detect a characteristic slower response to perturbations prior to an abrupt monsoon shift at the glacial termination; however, we do not detect these signals in the preceding shifts. Our results have important implications for detecting tipping points in palaeoclimate records outside glacial terminations.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
A. Rouillard, G. Skrzypek, S. Dogramaci, C. Turney, and P. F. Grierson
Hydrol. Earth Syst. Sci., 19, 2057–2078, https://doi.org/10.5194/hess-19-2057-2015, https://doi.org/10.5194/hess-19-2057-2015, 2015
Short summary
Short summary
We reconstructed a 100-year monthly history of flooding and drought of a large wetland in arid northwest Australia, using hydroclimatic data calibrated against 25 years of satellite images. Severe and intense regional rainfall, as well as the sequence of events, determined surface water expression on the floodplain. While inter-annual variability was high, changes to the flood regime over the last 20 years suggest the wetland may become more persistent in response to the observed rainfall trend.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
H. Pang, S. Hou, S. Kaspari, and P. A. Mayewski
The Cryosphere, 8, 289–301, https://doi.org/10.5194/tc-8-289-2014, https://doi.org/10.5194/tc-8-289-2014, 2014
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013, https://doi.org/10.5194/gi-2-305-2013, 2013
M. Jenkins, S. Kaspari, S. Kang, B. Grigholm, and P. A. Mayewski
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4855-2013, https://doi.org/10.5194/tcd-7-4855-2013, 2013
Revised manuscript not accepted
K. M. Willett, C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker
Clim. Past, 9, 657–677, https://doi.org/10.5194/cp-9-657-2013, https://doi.org/10.5194/cp-9-657-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
North Atlantic Oscillation polarity during the past 3000 years derived from sediments of a large lowland lake, Schweriner See, in NE Germany
Patterns of centennial to millennial Holocene climate variation in the North American mid-latitudes
Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Mid-Holocene reinforcement of North Atlantic atmospheric circulation variability from a western Baltic lake sediment record
Holocene sea level and environmental change at the southern Cape – an 8.5 kyr multi-proxy paleoclimate record from Lake Voëlvlei, South Africa
Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin' Mountain range
Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum
Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans
Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event – a hypothesis
Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago
The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon
Drought and vegetation change in the central Rocky Mountains and western Great Plains: potential climatic mechanisms associated with megadrought conditions at 4200 cal yr BP
Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years
Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks
Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact
Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains
A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years
Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns
The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison
Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32° S)
Effects of dating errors on nonparametric trend analyses of speleothem time series
Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies
Relationship between Holocene climate variations over southern Greenland and eastern Baffin Island and synoptic circulation pattern
Marie-Luise Adolph, Sambor Czerwiński, Mirko Dreßler, Paul Strobel, Marcel Bliedtner, Sebastian Lorenz, Maxime Debret, and Torsten Haberzettl
Clim. Past, 20, 2143–2165, https://doi.org/10.5194/cp-20-2143-2024, https://doi.org/10.5194/cp-20-2143-2024, 2024
Short summary
Short summary
We reconstruct environmental changes derived from sediments of Schweriner See, a large lake in NE Germany, for the past 3000 years. We infer variations in North Atlantic large-scale atmospheric circulation systems, namely the North Atlantic Oscillation (NAO), by combining sedimentological, geochemical, and biological parameters. Our results suggest distinct shifts between positive and negative NAO phases affecting winter temperatures, precipitation, and westerly wind strength at our study site.
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Paul Strobel, Marcel Bliedtner, Andrew S. Carr, Peter Frenzel, Björn Klaes, Gary Salazar, Julian Struck, Sönke Szidat, Roland Zech, and Torsten Haberzettl
Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, https://doi.org/10.5194/cp-17-1567-2021, 2021
Short summary
Short summary
This study presents a multi-proxy record from Lake Voёlvlei and provides new insights into the sea level and paleoclimate history of the past 8.5 ka at South Africa’s southern Cape coast. Our results show that sea level changes at the southern coast are in good agreement with the western coast of South Africa. In terms of climate our record provides valuable insights into changing sources of precipitation at the southern Cape coast, i.e. westerly- and easterly-derived precipitation contribution.
Olga Ukhvatkina, Alexander Omelko, Dmitriy Kislov, Alexander Zhmerenetsky, Tatyana Epifanova, and Jan Altman
Clim. Past, 17, 951–967, https://doi.org/10.5194/cp-17-951-2021, https://doi.org/10.5194/cp-17-951-2021, 2021
Short summary
Short summary
We present the first precipitation reconstructions for three sites along a latitudinal gradient in the Sikhote-Alin' mountains (Russian Far East). The reconstructions are based on Korean pine tree rings. We found that an important limiting factor for this species growth was precipitation during the spring-to-early-summer period. The periodicity found in our reconstructions suggests the influence of El Niño–Southern Oscillation and Pacific Dedacadal Oscillation on the region's climate.
Florian Mekhaldi, Markus Czymzik, Florian Adolphi, Jesper Sjolte, Svante Björck, Ala Aldahan, Achim Brauer, Celia Martin-Puertas, Göran Possnert, and Raimund Muscheler
Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, https://doi.org/10.5194/cp-16-1145-2020, 2020
Short summary
Short summary
Due to chronology uncertainties within paleoclimate archives, it is unclear how climate oscillations from different records relate to one another. By using radionuclides to synchronize Greenland ice cores and a German lake record over 11 000 years, we show that two oscillations observed in these records were not synchronous but terminated and began with the onset of a grand solar minimum. Both this and changes in ocean circulation could have played a role in the two climate oscillations.
Fucai Duan, Zhenqiu Zhang, Yi Wang, Jianshun Chen, Zebo Liao, Shitao Chen, Qingfeng Shao, and Kan Zhao
Clim. Past, 16, 475–485, https://doi.org/10.5194/cp-16-475-2020, https://doi.org/10.5194/cp-16-475-2020, 2020
Short summary
Short summary
We reconstruct a detailed history of the East Asian summer monsoon (EASM) using stalagmite records in central China during the last millennium. We estimate responses of the EASM to anthropogenic global warming by comparing its relative intensity between the Current Warm Period and Medieval Climate Anomaly, two recent warm periods. We also study potential links of the EASM to the tropical Pacific and North Atlantic oceans. This work advances our understanding of EASM dynamics.
Aurel Perşoiu, Monica Ionita, and Harvey Weiss
Clim. Past, 15, 781–793, https://doi.org/10.5194/cp-15-781-2019, https://doi.org/10.5194/cp-15-781-2019, 2019
Short summary
Short summary
We present a reconstruction of winter climate around 4.2 ka cal BP in Europe, west Asia, and northern Africa that shows generally low temperatures and heterogeneously distributed precipitation. We hypothesize that in the extratropical Northern Hemisphere the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively blocked the moisture-carrying westerlies from reaching west Asia and also resulted in outbreaks of northerly cold and dry winds.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Jule Xiao, Shengrui Zhang, Jiawei Fan, Ruilin Wen, Dayou Zhai, Zhiping Tian, and Dabang Jiang
Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, https://doi.org/10.5194/cp-14-1417-2018, 2018
Short summary
Short summary
Multiple proxies of a sediment core at Hulun Lake in the northern margin of the EASM reveal a prominent dry event at the interval of 4210–3840 cal. yr BP that could be the regional manifestation of the 4.2 ka BP event. Future studies should be focused on the investigation of high-quality, high-resolution proxy records from climatically sensitive and geographically representative regions in order to explore the spatiotemporal pattern of the 4.2 ka BP event and the associated dynamic mechanism.
Vachel A. Carter, Jacqueline J. Shinker, and Jonathon Preece
Clim. Past, 14, 1195–1212, https://doi.org/10.5194/cp-14-1195-2018, https://doi.org/10.5194/cp-14-1195-2018, 2018
Short summary
Short summary
Between 4200 and 4000 cal yr BP, paleoecological evidence suggests a megadrought occurred in the central Rocky Mountains and western Great Plains. Modern climate analogues were used to explore potential climate mechanisms responsible for the ecological changes. Analogues illustrate that warm and dry conditions persisted through the growing season as a result of anomalously higher-than-normal heights centred over the Great Plains which suppressed moisture transport to the region.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Mandy Freund, Benjamin J. Henley, David J. Karoly, Kathryn J. Allen, and Patrick J. Baker
Clim. Past, 13, 1751–1770, https://doi.org/10.5194/cp-13-1751-2017, https://doi.org/10.5194/cp-13-1751-2017, 2017
Short summary
Short summary
To understand how climate change will influence Australian rainfall we must first understand the long-term context of droughts and floods. We reconstruct warm and cool season rainfall in Australia's eight major climatic regions for several centuries into the past, building the clearest picture yet of long-term rainfall variability across the Australian continent. We find recent rainfall increases in the warm season in the north, and declines in the cool season in the south, to be highly unusual.
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
B. Wilhelm, H. Vogel, C. Crouzet, D. Etienne, and F. S. Anselmetti
Clim. Past, 12, 299–316, https://doi.org/10.5194/cp-12-299-2016, https://doi.org/10.5194/cp-12-299-2016, 2016
Short summary
Short summary
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by reconstructing the Foréant record. Both influences result in a higher flood frequency during past cold periods. Atlantic influences seem to result in more frequent high-intensity flood events during past warm periods, suggesting an increase in flood intensity under the global warming. However, no high-intensity events occurred during the 20th century.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan
Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, https://doi.org/10.5194/cp-10-1925-2014, 2014
R. de Jong, L. von Gunten, A. Maldonado, and M. Grosjean
Clim. Past, 9, 1921–1932, https://doi.org/10.5194/cp-9-1921-2013, https://doi.org/10.5194/cp-9-1921-2013, 2013
M. Mudelsee, J. Fohlmeister, and D. Scholz
Clim. Past, 8, 1637–1648, https://doi.org/10.5194/cp-8-1637-2012, https://doi.org/10.5194/cp-8-1637-2012, 2012
J. C. Stager, P. A. Mayewski, J. White, B. M. Chase, F. H. Neumann, M. E. Meadows, C. D. King, and D. A. Dixon
Clim. Past, 8, 877–887, https://doi.org/10.5194/cp-8-877-2012, https://doi.org/10.5194/cp-8-877-2012, 2012
B. Fréchette and A. de Vernal
Clim. Past, 5, 347–359, https://doi.org/10.5194/cp-5-347-2009, https://doi.org/10.5194/cp-5-347-2009, 2009
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and
England, M. H.: Evolution of the Southern Annular Mode during the past
millennium, Nat. Clim. Change, 4, 1–6, https://doi.org/10.1038/NCLIMATE2235, 2014.
Barrow, C.: Postglacial pollen diagrams from south Georgia (sub-Antarctic)
and West Falkland island (South Atlantic), J. Biogeogr., 5, 251–274,
https://doi.org/10.2307/3038040, 1978.
Brock, F., Lee, S., Housley, R. A., and Bronk Ramsey, C.: Variation in the
radiocarbon age of different fractions of peat: A case study from
Ahrenshöft, northern Germany, Quat. Geochronol., 6, 550–555,
https://doi.org/10.1016/j.quageo.2011.08.003, 2011.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci.
Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Dealing with outliers and offsets in radiocarbon dating,
Radiocarbon, 51, 1023–1045, 2009.
Bronk Ramsey, C.: OxCal Program Version 4.3, 2017.
Bronk Ramsey, C. and Lee, S.: Recent and Planned Developments of the Program
OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.2458/azu_js_rc.55.16215, 2013.
Broughton, D. A. and Mcadam, J. H.: The current status and distribution of
the Falkland Islands pteridophyte flora, Fern Gaz., 17, 21–38, 2003.
Cai, W., Santoso, A., Wang, G., Yeh, S., An, S., Cobb, K. M., Collins, M.,
Guilyardi, E., Jin, F., Kug, J., Lengaigne, M., and Mcphaden, M. J.: ENSO and
greenhouse warming, Nat. Clim. Change, 5, 849–859,
https://doi.org/10.1038/nclimate2743, 2015.
Carre, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Angeles
Falcon, R., Julien, M., and Lavallee, D.: Holocene history of ENSO variance
and asymmetry in the eastern tropical Pacific, Science, 345,
1045–1048, 2014.
Clark, J. S.: Particle Motion and the Theory of Charcoal Analysis: Source
Area, Transport, Deposition, and Sampling, Quaternary Res., 30, 67–80, 1988.
Clark, R., Huber, U. M., and Wilson, P.: Late Pleistocene sediments and
environmental change at Plaza Creek, Falkland Islands, South Atlantic, J.
Quaternary Sci., 13, 95–105,
https://doi.org/10.1002/(SICI)1099-1417(199803/04)13:2<95::AID-JQS351>3.0.CO;2-G, 1998.
Clem, K. R., Renwick, J. A., and McGregor, J.: Large-Scale Forcing of the
Amundsen Sea Low and Its Influence on Sea Ice and West Antarctic
Temperature, J. Climate, 30, 8405–8424, https://doi.org/10.1175/JCLI-D-16-0891.1, 2017.
Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., and
Steinitz-Kannan, M.: Holocene changes in eastern tropical Pacific climate
inferred from a Galápagos lake sediment record, Quaternary Sci. Rev.,
27, 1166–1180, https://doi.org/10.1016/j.quascirev.2008.02.015, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Ding, Q., Steig, E. J., Battisti, D. S., and Küttel, M.: Winter warming
in West Antarctica caused by central tropical Pacific warming, Nat. Geosci.,
4, 398–403, https://doi.org/10.1038/ngeo1129, 2011.
Dixon, D. A., Mayewski, P. A., Goodwin, I. D., Marshall, G. J., Freeman, R.,
Maasch, A. and Sneed, S. B.: An ice-core proxy for northerly air mass
incursions into West Antarctica, Int. J. Climatol., 32, 1455–1465,
https://doi.org/10.1002/joc.2371, 2012.
Faegri, K. and Iverson, J.: Textbook of pollen analysis, Blackwell, Oxford,
UK, 1975.
Fletcher, M.-S. and Moreno, P. I.: Have the Southern Westerlies changed in a
zonally symmetric manner over the last 14 000 years? A hemisphere-wide take
on a controversial problem, Quatern. Int., 253, 32–46,
https://doi.org/10.1016/j.quaint.2011.04.042, 2012.
Fogt, R. L., Wovrosh, A. J., Langen, R. A., and Simmonds, I.: The
characteristic variability and connection to the underlying synoptic
activity of the Amundsen-Bellingshausen Seas Low, J. Geophys. Res.-Atmos.,
117, 1–22, https://doi.org/10.1029/2011JD017337, 2012.
Grimm, E. C.: CONISS: A Fortran 77 Program for stratigraphically constrained
cluster analysis by the method of incrementatl sum of squares, Comput.
Geosci., 13, 13–35, 1987.
Hafsten, U.: The Quaternary history of vegetation in the South Atlantic
Islands, Philos. T. R. Soc. B, 152, 516–529,
https://doi.org/10.1098/rspb.1960.0059, 1960.
Hancock, G. J., Leslie, C., Everett, S. E., Tims, S. G., Brunskill, G. J.,
and Haese, R.: Plutonium as a chronomarker in Australian and New Zealand
sediments: A comparison with 137Cs, J. Environ. Radioactiv., 102,
919–929, https://doi.org/10.1016/j.jenvrad.2009.09.008, 2011.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T.
P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C.
S. M., and Zimmerman, S. R. H.: SHCAL13 Southern Hemisphere calibration,
0–50 000 years cal BP, Radiocarbon, 55, 1889–1903, 2013.
Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., and Phillips, T.: The
influence of the amundsen-bellingshausen seas low on the climate of West
Antarctica and its representation in coupled climate model simulations, J.
Climate, 26, 6633–6648, https://doi.org/10.1175/JCLI-D-12-00813.1, 2013.
Hua, Q. and Barbetti, M.: Review of tropospheric bomb 14C data for carbon
cycle modeling and age calibration purposes, Radiocarbon, 46, 1273–1298,
2004.
Huber, U. M., Markgraf, V., and Schäbitz, F.: Geographical and temporal
trends in Late Quaternary fire histories of Fuego-Patagonia, South America,
Quaternary Sci. Rev., 23, 1079–1097, 2004.
Iglesias, V., Whitlock, C., Markgraf, V., and Bianchi, M. M.:
Postglacial history of the Patagonian forest/steppe ecotone (41–43 S),
Quaternary Sci. Rev., 94, 120–135, 2014.
IPCC AR5: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M.: Cambridge University Press, Cambridge, UK and New York
NY, USA, 2013.
Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O.,
Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., Eisenman, I.,
England, M. H., Fogt, R. L., Frankcombe, L. M., Marshall, G. J.,
Masson-Delmotte, V., Morrison, A. K., Orsi, A. J., Raphael, M. N., Renwick,
J. A., Schneider, D. P., Simpkins, G. R., Steig, E. J., Stenni, B.,
Swingedouw, D., and Vance, T. R.: Assessing recent trends in high-latitude
Southern Hemisphere surface climate, Nat. Clim. Change, 6, 917–926,
https://doi.org/10.1038/nclimate3103, 2016.
Jones, P. D., Harpham, C., and Lister, D.: Long-term trends in gale days and
storminess for the Falkland Islands, Int. J. Climatol., 36, 1413–1427,
https://doi.org/10.1002/joc.4434, 2016.
Juggins, S.: Rioja: Analysis of Quaternary Science Data, R package, 2017.
Kilian, R. and Lamy, F.: A review of Glacial and Holocene paleoclimate
records from southernmost Patagonia (49-55 S), Quaternary Sci. Rev.,
53, 1–23, 2012.
Kreutz, K. J., Mayewski, P. A., Pittalwala, I., Meeker, L. D., Twickler,
M. S., and Whitlow, S. I.: Sea level pressure variability in the Amundsen Sea
region inferred from a West Antarctic glaciochemical record, J. Geophys.
Res., 105, 4047–4059, 2000.
Lachlan-Cope, T. and Connolley, W.: Teleconnections between the tropical
Pacific and the Amundsen- Bellinghausens Sea: Role of the El Niño/Southern
Oscillation, J. Geophys. Res., 111, D23101, https://doi.org/10.1029/2005JD006386, 2006.
Lamy, F., Kilian, R., Arz, H. W., Francois, J., Kaiser, J., and Prange, M.:
Holocene changes in the position and intensity of the southern westerly wind
belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker,
D. C. E., Heuven, S. Van, Hoppema, M., Metzl, N., Sweeney, C., and Takahashi,
T.: The reinvigoration of the Southern Ocean carbon sink, Science,
349, 1221–1224, 2015.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J.,
Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T.,
Metzl, N., Gillett, N. and Heimann, M.: Saturation of the Southern Ocean
CO2 Sink Due to Recent Climate Change, Science, 316, 1735–1738, 2007.
Lister, D. and Jones, P.: Long-term temperature and precipitation records
from the Falkland Islands, Int. J. Climatol., 35, 1224–1231,
https://doi.org/10.1002/joc.4049, 2014.
Macphail, M. and Cantrill, D. J.: Age and implications of the Forest
Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen
and spores, Palaeogeogr. Palaeoclim. Palaeoecol., 240,
602–629, 2006.
Makou, M. C., Eglinton, T. I., Oppo, D. W., and Hughen, K. A.: Postglacial
changes in El Niño and La Niña behavior, Geology, 38, 43–46,
https://doi.org/10.1130/G30366.1, 2010.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and
reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Mayewski, P. A., Maasch, K. A., Dixon, D., Sneed, S. B., Oglesby, R.,
Korotkikh, E., Potocki, M., Grigholm, B., Kreutz, K., Kurbatov, A. V,
Spaulding, N., Stager, J. C., Taylor, K. C., Steig, E. J., White, J.,
Bertler, N. A. N., and Jan, R.: West Antarctica's Sensitivity to Natural and
Human-forced Climate Change Over the Holocene, J. Quaternary Sci., 28, 40–48,
https://doi.org/10.1002/jqs.2593, 2013.
Mayewski, P. A., Carleton, A. M., Birkel, S. D., Dixon, D., Kurbatov, A. V.,
Korotkikh, E., Mcconnell, J., Curran, M., Cole-dai, J., Jiang, S., and
Plummer, C.: Ice core and climate reanalysis analogs to predict Antarctic
and Southern Hemisphere climate changes, Quaternary Sci. Rev., 155, 50–66,
https://doi.org/10.1016/j.quascirev.2016.11.017, 2017.
Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y., and Teng, H.:
Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific
decadal climate variability, Nat. Geosci., 9, 590–595,
https://doi.org/10.1038/ngeo2751, 2016.
Mildenhall, D. C.: Exotic pollen rain on the Chatham Islands during the late
pleistocene, New Zeal. J. Geol. Geophys., 19, 327–333,
https://doi.org/10.1080/00288306.1976.10423562, 1976.
Moreno, P. I., François, J. P., Villa-Martinez, R. P., and Moy, C. M.:
Millennial-scale variability in Southern Hemisphere westerly wind activity
over the last 5000 years in SW Patagonia, Quaternary Sci. Rev., 28, 25–38,
https://doi.org/10.1016/j.quascirev.2008.10.009, 2009.
Moreno, P. I., Villa-Martínez, R., Cárdenas, M. L., and Sagredo, E.
A.: Deglacial changes of the southern margin of the southern westerly winds
revealed by terrestrial records from SW Patagonia (52∘ S), Quaternary Sci. Rev.,
41, 1–21, https://doi.org/10.1016/j.quascirev.2012.02.002, 2012.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent
and fronts of the Antarctic Circumpolar Current, Deep. Res. Part I, 42,
641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Pike, J., Swann, G. E. A., Leng, M. J., and Snelling, A. M.: Glacial
discharge along the west Antarctic Peninsula during the Holocene, Nat.
Geosci., 6, 199–202, https://doi.org/10.1038/ngeo1703, 2013.
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle,
F. E., Ballouche, A., Bradshaw, R. H., Carcaillet, C., Cordova, C., and Mooney,
S.: Changes in fire regimes since the Last Glacial Maximum: an
assessment based on a global synthesis and analysis of charcoal data, Clim.
Dynam., 30, 887–907, 2008.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G.,
Broeke, M. R. Van Den, and Padman, L.: Antarctic ice-sheet loss driven by
basal melting of ice shelves, Nature, 484, 502–505,
https://doi.org/10.1038/nature10968, 2012.
Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D.,
Dixon, D. A., Hosking, J. S., Jones, J. M., and Hobbs, W. R.: THE AMUNDSEN
SEA LOW: Variability, Change, and Impact on Antarctic Climate, B. Am.
Meteorol. Soc., January, 1, 111–122, https://doi.org/10.1175/BAMS-D-14-00018.1, 2016.
Rein, B., Lu, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W. C., Nin,
E., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo, W. C.:
El Niño variability off Peru during the last 20 000 years,
Paleoceanography, 20, 1–18, https://doi.org/10.1029/2004PA001099, 2005.
Roberts, D. E.: Quaternary history of the Falkland Islands (Doctoral
dissertation, University of Aberdeen), 1984.
Russell, A. and McGregor, G. R.: Southern hemisphere atmospheric
circulation: Impacts on Antarctic climate and reconstructions from Antarctic
ice core data, Clim. Change, 99, 155–192, https://doi.org/10.1007/s10584-009-9673-4,
2010.
Schneider, D. P., Deser, C., and Okumura, Y.: An assessment and
interpretation of the observed warming of West Antarctica in the austral
spring, Clim. Dynam., 38, 323–347, https://doi.org/10.1007/s00382-010-0985-x, 2012.
Sime, L. C., Kohfeld, K. E., Le, C., Wolff, E. W., Boer, A. M. De, Graham,
R. M., and Bopp, L.: Southern Hemisphere westerly wind changes during the
Last Glacial Maximum: model-data comparison, Quaternary Sci. Rev., 64,
104–120, https://doi.org/10.1016/j.quascirev.2012.12.008, 2010.
Stockmarr, J. A.: Tabletes with spores used in absolute pollen analysis,
Pollen spores, 13, 615–621, 1971.
Thomas, Z., Turney, C., Allan, R., Colwell, S., Kelly, G., Lister, D.,
Jones, P., Beswick, M., Alexander, L., Lippmann, T., Herold, N., and Jones,
R.: A new daily observational record from Grytviken, South Georgia:
exploring 20th century extremes in the South Atlantic, J. Climate, 31,
1743–1755, https://doi.org/10.1175/JCLI-D-17-0353.1, 2018.
Thomas, Z. A.: Using natural archives to detect climate and environmental
tipping points in the Earth System, Quaternary Sci. Rev., 152, 60–71,
https://doi.org/10.1016/j.quascirev.2016.09.026, 2016.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/ngeo1296, 2011.
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The
Amundsen Sea low, Int. J. Bifurcat. Chaos, 1829, 1818–1829,
https://doi.org/10.1002/joc.3558, 2013.
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S.,
Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of
21st century warming on Antarctic Peninsula consistent with natural
variability, Nature, 535, 411–415, https://doi.org/10.1038/nature18645, 2016.
Turney, C. S. M., Jones, R. T., Fogwill, C., Hatton, J., Williams, A. N.,
Hogg, A., Thomas, Z. A., Palmer, J., Mooney, S., and Reimer, R. W.: A
250-year periodicity in Southern Hemisphere westerly winds over the last 2600
years, Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016,
2016a.
Turney, C. S. M., Jones, R. T., Lister, D., Jones, P., Williams, A. N.,
Hogg, A., Thomas, Z. A., Compo, G. P., Yin, X., Fogwill, C. J., Palmer, J.,
Colwell, S., Allan, R., and Visbeck, M.: Anomalous mid-twentieth century
atmospheric circulation change over the South Atlantic compared to the last
6000 years, Environ. Res. Lett., 11, 064009,
https://doi.org/10.1088/1748-9326/11/6/064009, 2016b.
Turney, C. S. M., Fogwill, C. J., Palmer, J. G., van Sebille, E., Thomas, Z.,
McGlone, M., Richardson, S., Wilmshurst, J. M., Fenwick, P., Zunz, V.,
Goosse, H., Wilson, K.-J., Carter, L., Lipson, M., Jones, R. T., Harsch, M.,
Clark, G., Marzinelli, E., Rogers, T., Rainsley, E., Ciasto, L., Waterman,
S., Thomas, E. R., and Visbeck, M.: Tropical forcing of increased Southern
Ocean climate variability revealed by a 140-year subantarctic temperature
reconstruction, Clim. Past, 13, 231–248,
https://doi.org/10.5194/cp-13-231-2017, 2017a.
Turney, C. S. M., Wilmshurst, J. M., Jones, R. T., Wood, J. R., Palmer, J.
G., Hogg, A. G., Fenwick, P., Crowley, S. F., Privat, K., and Thomas, Z.:
Reconstructing atmospheric circulation over southern New Zealand:
Establishment of modern westerly air flow 5500 years ago and implications
for Southern Hemisphere Holocene climate change, Quaternary Sci. Rev., 159,
77–87, https://doi.org/10.1016/j.quascirev.2016.12.017, 2017b.
Upson, R., Williams, J. J., Wilkinson, T. P., Clubbe, C. P., Ilya, M.,
Maclean, D., Mcadam, J. H., and Moat, J. F.: Potential Impacts of Climate
Change on Native Plant Distributions in the Falkland Islands, PLoS One, 11,
e0167026, https://doi.org/10.1371/journal.pone.0167026, 2016.
van Oldenborgh, G. J. and Burgers, G.: Searching for decadal variations in
ENSO precipitation teleconnections, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL023110, 2005.
Villa-Martínez, R., Moreno, P. I., and Valenzuela, M. A.: Deglacial and
postglacial vegetation changes on the eastern slopes of the central
Patagonian Andes (47∘ S), Quaternary Sci. Rev., 32, 86–99,
https://doi.org/10.1016/j.quascirev.2011.11.008, 2012.
Visbeck, M.: A station-based southern annular mode index from 1884 to 2005,
J. Climate, 22, 940–950, https://doi.org/10.1175/2008JCLI2260.1, 2009.
Wace, N. and Dickson, J.: Part II. The terrestrial botany of the Tristan
da Cunha Islands, Philos. T. R. Soc. B, 249, 273–360,
https://doi.org/10.1098/rstb.1965.0014, 1965.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved Version Released, Eos, Trans. Am. Geophys. Union,
94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Whitlock, C., Larsen, C., Smol, J. P., Birks, H. J. B., and Last, W. M.:
Tracking environmental change using lake sediments, Track. Environ.
Change Using Lake Sed., 3, 75–97, 2001.
Wilson, P., Clark, R., Birnie, J., and Moore, D. M.: Late Pleistocene and
Holocene landscape evolution and environmental change in the Lake Sulivan
area, Falkland Islands, South Atlantic, Quaternary Sci. Rev., 21,
1821–1840, https://doi.org/10.1016/S0277-3791(02)00008-2, 2002.
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands....