Articles | Volume 14, issue 11
Clim. Past, 14, 1639–1651, 2018
https://doi.org/10.5194/cp-14-1639-2018
Clim. Past, 14, 1639–1651, 2018
https://doi.org/10.5194/cp-14-1639-2018

Research article 07 Nov 2018

Research article | 07 Nov 2018

Change in the North Atlantic circulation associated with the mid-Pleistocene transition

Gloria M. Martin-Garcia et al.

Related authors

Coccolithophore biodiversity controls carbonate export in the Southern Ocean
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020,https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019,https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018,https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018,https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Technical note: An empirical method for absolute calibration of coccolith thickness
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018,https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021,https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018,https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017,https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Central Arctic Ocean paleoceanography from  ∼  50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017,https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017,https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary

Cited articles

Adkins, J.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, 2013. 
Adkins, J. F., Ingersoll, A. P., and Pasquero, C: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating, Quaternary Sci. Rev., 24, 581–594, 2005. 
Bé, A. W. H: Recent planktonic foraminifera, Oceanic Micropaleontology, 1, edited by: Ramsay, A. T. S., Elsevier, New York, 1–100, 1977. 
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2014. 
Brambilla, E. and Talley, L. D: Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation, J. Geophys. Res., 113, C04025, https://doi.org/10.1029/2006JC004062, 2008. 
Download
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.