Articles | Volume 14, issue 11
https://doi.org/10.5194/cp-14-1583-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1583-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of radiative forcing factors on ground–air temperature coupling during the last millennium: implications for borehole climatology
Universidad Complutense de Madrid, 28040 Madrid, Spain
Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas-Universidad Complutense de Madrid, 28040 Madrid, Spain
J. Fidel González-Rouco
Universidad Complutense de Madrid, 28040 Madrid, Spain
Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas-Universidad Complutense de Madrid, 28040 Madrid, Spain
Elena García-Bustamante
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
Jorge Navarro-Montesinos
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
Norman Steinert
Universidad Complutense de Madrid, 28040 Madrid, Spain
Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas-Universidad Complutense de Madrid, 28040 Madrid, Spain
Related authors
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, and Jason E. Smerdon
Clim. Past, 16, 1285–1307, https://doi.org/10.5194/cp-16-1285-2020, https://doi.org/10.5194/cp-16-1285-2020, 2020
Short summary
Short summary
This work analyses the behavior of atmospheric dynamics and hydroclimate in climate simulations of the last millennium. In particular, how external forcing factors, like solar and volcanic activity and greenhouse gas emissions, impact variables like temperature, pressure, wind, precipitation, and soil moisture is assessed. The results of these analyses show that changes in the forcing could alter the zonal circulation and the intensity and distribution of monsoons and convergence zones.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Camilla Therese Mathison, Eleanor Burke, Eszter Kovacs, Gregory Munday, Chris Huntingford, Chris Jones, Chris Smith, Norman Steinert, Andy Wiltshire, Laila Gohar, and Rebecca Varney
EGUsphere, https://doi.org/10.5194/egusphere-2023-2932, https://doi.org/10.5194/egusphere-2023-2932, 2024
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emission scenarios and rapidly provide regional impacts information. PRIME allows large ensembles to be run on multi-centennial timescales including analysis of many important variables for impacts assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios giving confidence in using PRIME for novel scenarios.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Jörg Schwinger, Ali Asaadi, Norman Julius Steinert, and Hanna Lee
Earth Syst. Dynam., 13, 1641–1665, https://doi.org/10.5194/esd-13-1641-2022, https://doi.org/10.5194/esd-13-1641-2022, 2022
Short summary
Short summary
We test whether climate change can be partially reversed if CO2 is removed from the atmosphere to compensate for too large past and near-term emissions by using idealized model simulations of overshoot pathways. On a timescale of 100 years, we find a high degree of reversibility if the overshoot size remains small, and we do not find tipping points even for intense overshoots. We caution that current Earth system models are most likely not able to skilfully model tipping points in ecosystems.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, and Jason E. Smerdon
Clim. Past, 16, 1285–1307, https://doi.org/10.5194/cp-16-1285-2020, https://doi.org/10.5194/cp-16-1285-2020, 2020
Short summary
Short summary
This work analyses the behavior of atmospheric dynamics and hydroclimate in climate simulations of the last millennium. In particular, how external forcing factors, like solar and volcanic activity and greenhouse gas emissions, impact variables like temperature, pressure, wind, precipitation, and soil moisture is assessed. The results of these analyses show that changes in the forcing could alter the zonal circulation and the intensity and distribution of monsoons and convergence zones.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw
Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, https://doi.org/10.5194/cp-9-547-2013, 2013
L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita
Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, https://doi.org/10.5194/cp-9-393-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Millenial/D-O
Methodological and physical biases in global to subcontinental borehole temperature reconstructions: an assessment from a pseudo-proxy perspective
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Cited articles
Alexeev, V. A., Nicolsky, D. J., Romanovsky, V. E., and Lawrence, D. M.: An
evaluation of deep soil configurations in the CLM3 for improved
representation of permafrost, Geophys. Res. Lett., 34, L09502,
https://doi.org/10.1029/2007GL029536, 2007. a
Ammann, C. M. and Wahl, E.: The importance of the geophysical context in
statistical evaluations of climate reconstruction procedures, Climate Change,
85, 71–88, 2007. a
Anderson, R., Canadell, J., Randerson, J., Jackson, R., Hungate, B.,
Baldocchi,
D., Ban-Weiss, G., Bonan, G., Caldeira, K., Cao, L., Diffenbaugh, N., Gurney,
K., Kueppers, L., Law, B., Luyssaert, S., and O'Halloran, T.: Biophysical
considerations in forestry for climate protection, Front. Ecol.
Environ., 9, 174–182, https://doi.org/10.1890/090179, 2011. a, b, c
Bartlett, M. G., Chapman, D. S., and Harris, R. N.: Snow and the ground
temperature record of climate change, J. Geophys. Res., 109, F04008,
https://doi.org/10.1029/2004JF000224, 2004. a, b, c, d
Bartlett, M. G., Chapman, D. S., and Harris, R. N.: Snow effect on North
American ground temperatures, 1950–2002, J. Geophys. Res., 110, F03008,
https://doi.org/10.1029/2005JF000293, 2005. a, b, c
Beltrami, H. and Kellman, L.: An examination of short- and long-term
air-ground temperature coupling, Glob. Planet. Change, 38, 291–303, https://doi.org/10.1016/S0921-8181(03)00112-7, 2003. a
Beltrami, H., González-Rouco, J. F., and Stevens, M. B.: Subsurface
temperatures during the last millennium: Model and Observation, Geophys. Res.
Lett., 33, L09705, https://doi.org/10.1029/2006GL026,050, 2006. a
Berger, A., Loutre, M.-F., and Tricot, C.: Insolation and Earth's orbital
periods, J. Geophys. Res.-Atmos., 98, 10341–10362,
https://doi.org/10.1029/93JD00222, a
Betts, R. A.: Biogeophysical impacts of land use on present-day climate:
near-surface temperature change and radiative forcing, Atmos. Sci.
Lett., 2, 39–51, https://doi.org/10.1006/asle.2001.0023, 2001. a
Betts, R. A., Falloon, P. D., Goldewijk, K. K., and Ramankutty, N.:
Biogeophysical effects of land use on climate: Model simulations of radiative
forcing and large-scale temperature change, Agr. Forest
Meteorol., 142, 216–233,
https://doi.org/10.1016/j.agrformet.2006.08.021, 2007. a
Bodri, L. and Cermak, V.: Borehole temperatures, climate change and the
pre-observational surface air temperature mean: allowance for hydraulic
conditions, Glob. Planet. Change, 45, 265– 276,
https://doi.org/10.1016/j.gloplacha.2004.09.001, 2005. a
Brovkin, V., Claussen, M., Driesschaert, E., Fichefet, T., Kicklighter, D.,
Loutre, M. F., Matthews, H. D., Ramankutty, N., Schaeffer, M., and Sokolov,
A.: Biogeophysical effects of historical land cover changes simulated by six
Earth system models of intermediate complexity, Clim. Dynam., 26,
587–600, https://doi.org/10.1007/s00382-005-0092-6, 2006. a
Chapman, D. S., Bartlett, M. G., and Harris, R. N.: Comment on “Ground vs.
surface air temperature trends: implications for borehole surface temperature
reconstructions” by M. E. Mann and G. Schmidt, Geophys. Res. Lett., 31,
L07205, https://doi.org/10.1029/2003GL019054, 2004. a
Christiansen, B. and Ljungqvist, F. C.: The extra-tropical Northern
Hemisphere temperature in the last two millennia: reconstructions of
low-frequency variability, Clim. Past, 8, 765–786,
https://doi.org/10.5194/cp-8-765-2012, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer,
R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization, Geosci.
Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ferguson, G., Beltrami, H., and Woodbury, A. D.: Perturbation of ground
surface
temperature reconstructions by groundwater flow?, Geophys. Res. Lett., 33,
L13708, https://doi.org/10.1029/2006GL026634, 2006. a
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann,
C. M.,
Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J.,
Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S.
F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response
to external forcing in simulations and reconstructions of the last
millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013. a, b, c, d
Gao, C. C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: an improved ice core-based index for climate models, J.
Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008. a
García-García, A., Cuesta-Valero, F. J., Beltrami, H., and Smerdon,
J. E.: Simulation of air and ground temperatures in PMIP3/CMIP5 last
millennium simulations: implications for climate reconstructions from
borehole temperature profiles, Environ. Res. Lett., 11, 044022, https://doi.org/10.1088/1748-9326/11/4/044022, 2016. a, b, c, d
González-Rouco, J. F., Beltrami, H., Zorita, E., and Stevens, M. B.:
Borehole climatology: a discussion based on contributions from climate
modeling, Clim. Past, 5, 97–127, https://doi.org/10.5194/cp-5-97-2009, 2009. a, b, c, d
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change,
Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010. a
Hartmann, D., Klein Tank, A., Rusticucci, M., Alexander, L., Brönnimann,
S.,
Charabi, Y., Dentener, F., Dlugokencky, E., Easterling, D., Kaplan, A.,
Soden, B., Thorne, P., Wild, M., and Zhai, P.: Observations: Atmosphere and
Surface, book section 2,Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 159–254, doi10.1017/CBO9781107415324.008, 2013. a, b
Hegerl, G., Zwiers, F., and Tebaldi, C.: Patterns of change: whose
fingerprint
is seen in global warming?, Environ. Res. Lett., 6, 044025,
https://doi.org/10.1088/1748-9326/6/4/044025, 2011. a
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate
sensitivity constrained by temperature reconstrcutions over the past seven
centuries, Nature, 440, 1029–1032, 2006. a
Hinkel, K., Paetzold, F., Nelson, F., and Bockheim, J.: Patterns of soil
temperature and moisture in the active layer and upper permafrost at Barrow,
Alaska: 1993–1999, Glob. Planet. Change, 29, 293–309,
https://doi.org/10.1016/S0921-8181(01)00096-0, 2001. a
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual
Version 5.1, 2015. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R., Feedema, J., Fischer,
G.,
Goldewijk, K. K., Hibbard, K., Janetos, A., Jones, C., Kindermann, G.,
Kinoshita, T., Riahi, K., andS. Smith, E. S., Stehfest, E., Thomson, A.,
Thorton, P., van Vuuren, D., and Wang, Y.: Harmonization of Global Land Use
Scenarios for the Period 1500–2100 for IPCC-AR5, Integrated Land
Ecosystem-Atmosphere Processes Study (iLEAPS) Newsletter, 7, 6–8, 2009. a, b, c
Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G., Avissar,
R., Baldocchi, D. D., Bonan, G. B., Caldeira, K., Diffenbaugh, N. S., Field,
C. B., Hungate, B. A., Jobbágy, E. G., Kueppers, L. M., Nosetto, M. D., and
Pataki, D. E.: Protecting climate with forests, Environ. Res.
Lett., 3, 044006, https://doi.org/10.1088/1748-9326/3/4/044006, 2008. a
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., Van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E.,
Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goose,
H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope,
A. W., Villalba, R., Wanner, H., Wilff, E., and Xoplake, E.: High-resolution
palaeoclimatology of the last millennium: A review of current status and
future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009. a, b
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and
Morice, C. P.: Hemispheric and large-scale land-surface air temperature
variations: An extensive revision and an update to 2010, J.
Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012. a
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P.,
Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C.,
Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N.,
LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C.,
Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C.,
Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt,
G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M.,
Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G.,
Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.:
The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific
objective, and experimental design for the PMIP4
past1000 simulations, Geosci. Model Dev., 10,
4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017. a
Kane, D., Hinkel, K., Goering, D., Hinzman, L., and Outcalt, S.:
Non-conductive heat transfer associated with frozen soils, Glob.
Planet. Change, 29, 275–292, 2001. a
Kohl, T.: Palaeoclimatic temperature signals – ,can they be washed out?,
Tectonophysics, 291, 225–234, 1998. a
Kukkonen, I. T. and Clauser, C.: Simulation of heat transfer at the Kola
deep-hole site- implications for advection, heat refraction and paleoclimatic
effects, Geophys. J. Int., 41, 175–191, 1994. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson,
S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K.,
Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional
and structural advances in Version 4 of the Community Land Model, J.
Adv. Model. Earth Sy., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011. a, b, c
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer,
G.,
Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law,
B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U,
K. T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao,
L.: Observed increase in local cooling effect of deforestation at higher
latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011. a
Legutke, S. and Voss, R.: The Hamburg Atmosphere-Ocean Coupled Circulation
Model ECHO-G, Tech. Rep. 18, DKRZ, Hamburg, 1999. a
MacDougall, A. H. and Beltrami, H.: Impact of deforestation on subsurface
temperature profiles: implications for the borehole paleoclimate record,
Environ. Res. Lett., 12, 074014, https://doi.org/10.1088/1748-9326/aa7394, 2017. a, b
MacDougall, A. H., Beltrami, H., González-Rouco, J. F., Stevens, M. B., and
Bourlon, E.: Comparison of observed and General Circulation Model derived
continental sub-surface heat flux in the Northern Hemisphere, J. Geophys.
Res., 115, D12109, https://doi.org/10.1029/2009JD013170, 2010. a
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., Van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and N2O ice
core records extended to 2000 years BP, Geophys. Res. Lett., 33, L14810,
https://doi.org/10.1029/2006GL026152,
2006. a
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., Williams, A. P., and
Horton, R. M.: Blue Water Trade-Offs With Vegetation in a CO2-Enriched
Climate, Geophys. Res. Lett., 45, 3115–3125,
https://doi.org/10.1002/2018GL077051, 2018. a
Mann, M. E. and Schmidt, G. A.: Ground vs. Surface air temperature trends:
implications for borehole surface temperature reconstructions, Geophys. Res.
Let., 30, 1607, https://doi.org/10.1029/2003GL017170, 2003. a, b
Mareschal, J.-C. and Beltrami, H.: Evidence for recent warming from perturbed
geothermal gradients: examples from eastern Canada, Clim. Dynam., 6,
135–143, https://doi.org/10.1007/BF00193525, 1992. a
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González-Rouco, J., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T.,
Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X.,
and Timmermann, A.: Information from Paleoclimate Archives, book section 5,
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 383–464, https://doi.org/10.1017/CBO9781107415324.013, 2013. a, b, c
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing, book section 8, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 659–740,
https://doi.org/10.1017/CBO9781107415324.018, 2013. a, b
Neale, R. B., Gettelman, A., Park, S., Conley, A. J., Kinnison, D., Marsh,
D.,
Smith, A. K., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D.,
Iacono, M. J., Easter, R. C., Liu, X., Taylor, M. A., Chieh Chen, C.,
Lauritzen, P. H., Williamson, D. L., Garcia, R., Francois Lamarque, J.,
Mills, M., Tilmes, S., Ghan, S. J., Rasch, P. J., and Meteorology, M.:
Description of the NCAR Community Atmosphere Model (CAM 5.0), Tech. Note
NCAR/TN-486+STR, Natl. Cent. for Atmos., 1–289, 2012. a, b
Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence, D. M.:
Improved modeling of permafrost dynamics in a GCM land-surface scheme,
Geophys. Res. Lett., 34, L8501, https://doi.org/10.1029/2007GL029,525, 2007. a
Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E.,
Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S.,
Dai, A., and Qian, T.: Improvements to the Community Land Model and their
impact on the hydrological cycle, J. Geophys. Res..-Biogeo., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008. a
Oleson, K. W., Lawrence, D. M., B, G., Flanner, M. G., Kluzek, E., J, P.,
Levis, S., Swenson, S. C., Thornton, E., Feddema, J., Heald, C. L., francois
Lamarque, J., Yue Niu, G., Qian, T., Running, S., Sakaguchi, K., Yang, L.,
Zeng, X., Zeng, X., and Decker, M.: Technical Description of version 4.0 of the Community Land Model (CLM), Tech. Note NCAR/TN-478+STR, Natl. Cent. for Atmos.,
http://n2t.net/ark:/85065/d7zw1kbp (last access: 15 April 2018), 2010. a, b
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate Variability
and Change since 850 CE: An Ensemble Approach with the Community Earth System
Model, B. Am. Meteorol. Soc., 97, 735–754,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016. a, b, c, d
Outcalt, S. I., Nelson, F. E., and Hinkel, K. M.: The zero-curtain effect:
Heat
and mass transfer across an isothermal region in freezing soil, Water
Resou. Res., 26, 1509–1516, https://doi.org/10.1029/WR026i007p01509, 1990. a
Pollack, H. N. and Smerdon, J. E.: Borehole climate reconstructions: spatial
structure and hemispheric averages, J. Geophys. Res., 109, D11106, https://doi.org/10.1029/2003JD004,163, 2004. a
Pollack, H. N., Huang, S., and Shen, P. Y.: Climate change record in
subsurface
temperatures: a global perspective, Science, 282, 279–281, 1998. a
Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A reconstruction of
global agricultural areas and land cover for the last millennium, Global
Biogeochem. Cy., 22, GB3018, https://doi.org/10.1029/2007GB003153, 2008. a, b, c, d
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeophysical
versus biogeochemical climate response to historical anthropogenic land cover
change, Geophys. Res. Lett., 37, L08702,
https://doi.org/10.1029/2010GL043010, 2010. a
Ramankutty, N. and Foley, J. A.: Estimating historical chagnes in global land
cover: croplands from 1700 to 1992, Global Biogeochem. Cy., 13,
997–1027, 1992. a
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P.,
Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R.,
Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K.,
Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for
use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4,
33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011. a, b
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P.,
Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R.,
Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K.,
Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for
use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model
Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012. a
Smerdon, J. E.: Climate models as a test bed for climate reconstruction
methods: pseudoproxy experiments, WIREs Climate Change, 3, 63–77, 2012. a
Smerdon, J. E. and Stieglitz, M.: Simulating heat transport of harmonic
temperature signals in the Earth's shallow subsurface: lower-boundary
sensitivities, Geophys. Res. Lett., 33, L14402, https://doi.org/10.1029/2006GL026816, 2006. a, b
Smerdon, J. E., Pollack, H. N., Enz, J. W., and Lewis, M. J.:
Conduction-dominated heat transport of the annual temperature signal in soil,
J. Geophys. Res., 108, 2431, https://doi.org/10.1029/2002JB002351, 2003. a, b, c
Smerdon, J. E., Pollack, H. N., Cermak, V., Enz, J. W., Kresl, M., Safanda,
J.,
and Wehmiller, J. F.: Air-ground temperature coupling and subsurface
propagation of annual temperature signals, J. Geophys. Res., 109, D21107,
https://doi.org/10.1029/2004JD005056, 2004. a, b
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M.,
Jayne, S., M. Jochum, W. Large, K. L., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP)
Reference Manual, Tech. Rep. LAUR-10-01853, Los Alamos National Laboratory,
http://tinyurl.com/SJBBD10/doc/sci/POPRefManual.pdf (last access: 3 May 2018),
2010.
a
Solow, A. R.: Testing for Climate Change: An Application of the Two-Phase
Regression Model, J. Clim. Appl. Meteorol., 26, 1401–1405,
https://doi.org/10.1175/1520-0450(1987)026<1401:TFCCAA>2.0.CO;2, 1987. a, b
Stieglitz, M., Dery, S. J., Romanovsky, V. E., and Ostercamp, T. E.: The role
of snow cover in the warming of the artic permafrost, Geophys. Res. Lett.,
30, 1721, https://doi.org/10.1029/2003GL017337, 2003. a
Tao, W., Chen, J., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on
convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Trenberth, K. E.: Some effects of finite sample size and persistence on
meteorological statistics. Part I: autocorrelations, Mon. Weather Rev., 112,
2359–2368, 1984. a
Vieira, A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution of the
solar irradiance during the Holocene, Astron. Astrophys., 531, 1–20,
https://doi.org/10.1051/0004-6361/201015843, 2011. a
von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B.,
Silva, R. L., Hodnett, M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M. J.,
Cardoso, F. L., and Kabat, P.: Comparative measurements and seasonal
variations in energy and carbon exchange over forest and pasture in South
West Amazonia, Theor. Appl. Climatol., 78, 5–26,
https://doi.org/10.1007/s00704-004-0041-z, 2004. a
Short summary
Air–ground temperature coupling is the central assumption of borehole temperature reconstructions. Here, this premise is assessed from a pseudo-reality perspective by considering last millennium ensembles of simulations from the Community Earth System Model. The results show that long-term variations in the energy fluxes at the surface during industrial times, due to the influence of external forcings, impact the long-term air–ground temperature coupling.
Air–ground temperature coupling is the central assumption of borehole temperature...