Articles | Volume 14, issue 7
https://doi.org/10.5194/cp-14-1097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracing winter temperatures over the last two millennia using a north-east Atlantic coastal record
Irina Polovodova Asteman
Department of Marine Sciences, University of Gothenburg, Carl
Skottsbergsgata 22B, 41319 Gothenburg, Sweden
Currently at: Marin Mätteknik (MMT) Sweden AB, Sven Källfelts
Gata 11, 42671, Gothenburg, Sweden
Helena L. Filipsson
Department of Geology, University of Lund, Sölvegatan 12,
22362 Lund, Sweden
Kjell Nordberg
CORRESPONDING AUTHOR
Department of Marine Sciences, University of Gothenburg, Carl
Skottsbergsgata 22B, 41319 Gothenburg, Sweden
Related authors
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Laurie M. Charrieau, Karl Ljung, Frederik Schenk, Ute Daewel, Emma Kritzberg, and Helena L. Filipsson
Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, https://doi.org/10.5194/bg-16-3835-2019, 2019
Short summary
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Laurie M. Charrieau, Lene Bryngemark, Ingemar Hansson, and Helena L. Filipsson
J. Micropalaeontol., 37, 191–194, https://doi.org/10.5194/jm-37-191-2018, https://doi.org/10.5194/jm-37-191-2018, 2018
Short summary
Short summary
Splitting samples into smaller subsamples is often necessary in micropalaeontological studies. Indeed, the general high abundance of microfossils – which makes them excellent tools to reconstruct past environments – also results in very time-consuming faunal analyses. Here we present an improved and cost-effective wet splitter for micropalaeontological samples aimed to reduce picking time, while keeping information loss to a minimum.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Wenxin Ning, Jing Tang, and Helena L. Filipsson
Earth Surf. Dynam., 4, 773–780, https://doi.org/10.5194/esurf-4-773-2016, https://doi.org/10.5194/esurf-4-773-2016, 2016
J. M. Bernhard, W. G. Phalen, A. McIntyre-Wressnig, F. Mezzo, J. C. Wit, M. Jeglinski, and H. L. Filipsson
Biogeosciences, 12, 5515–5522, https://doi.org/10.5194/bg-12-5515-2015, https://doi.org/10.5194/bg-12-5515-2015, 2015
Short summary
Short summary
We present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous bottom-dwelling organisms mineralize in sediments. These organisms, and their geochemical signatures in their carbonate, are the ocean’s storytellers helping us understand past marine conditions. For many species, the timing and location of their calcite growth is not known. Knowing this will enable us to reconstruct past marine environments with greater accuracy.
C. L. McKay, J. Groeneveld, H. L. Filipsson, D. Gallego-Torres, M. J. Whitehouse, T. Toyofuku, and O.E. Romero
Biogeosciences, 12, 5415–5428, https://doi.org/10.5194/bg-12-5415-2015, https://doi.org/10.5194/bg-12-5415-2015, 2015
Short summary
Short summary
We highlight the proxy potential of foraminiferal Mn/Ca determined by secondary ion mass spectrometry and flow-through inductively coupled plasma optical emission spectroscopy for recording changes in bottom-water oxygen conditions. Comparisons with Mn sediment bulk measurements from the same sediment core largely agree with the results. High foraminiferal Mn/Ca occurs in samples from times of high productivity export and corresponds with the benthic foraminiferal faunal composition.
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014, https://doi.org/10.5194/bg-11-4029-2014, 2014
J. Groeneveld and H. L. Filipsson
Biogeosciences, 10, 5125–5138, https://doi.org/10.5194/bg-10-5125-2013, https://doi.org/10.5194/bg-10-5125-2013, 2013
B. C. Lougheed, H. L. Filipsson, and I. Snowball
Clim. Past, 9, 1015–1028, https://doi.org/10.5194/cp-9-1015-2013, https://doi.org/10.5194/cp-9-1015-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Holocene
Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones
Upper-ocean temperature characteristics in the subantarctic southeastern Pacific based on biomarker reconstructions
Evaluation of the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of changing salinity
Technical Note: Past and future warming – direct comparison on multi-century timescales
Co-evolution of the terrestrial and aquatic ecosystem in the Holocene Baltic Sea
Holocene palaeoceanography of the Northeast Greenland shelf
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 2: Application and interpretation
Evaluation of oxygen isotopes and trace elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept
Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?
Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago
Empirical estimate of the signal content of Holocene temperature proxy records
Sedproxy: a forward model for sediment-archived climate proxies
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
Sedimentary archives of climate and sea-level changes during the Holocene in the Rhône prodelta (NW Mediterranean Sea)
Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt
Technical note: Estimating unbiased transfer-function performances in spatially structured environments
Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions)
Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition
Evidence for the non-influence of salinity variability on the Porites coral Sr/Ca palaeothermometer
Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea
Long-term variations in Iceland–Scotland overflow strength during the Holocene
Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation
Natural variability and anthropogenic effects in a Central Mediterranean core
The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability
Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach
Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach
Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Torben Kunz, Andrew M. Dolman, and Thomas Laepple
Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, https://doi.org/10.5194/cp-16-1469-2020, 2020
Short summary
Short summary
This paper introduces a method to estimate the uncertainty of climate reconstructions from single sediment proxy records. The method can compute uncertainties as a function of averaging timescale, thereby accounting for the fact that some components of the uncertainty are autocorrelated in time. This is achieved by treating the problem in the spectral domain. Fully analytic expressions are derived. A companion paper (Part 2) complements this with application-oriented examples of the method.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Maria Reschke, Kira Rehfeld, and Thomas Laepple
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, https://doi.org/10.5194/cp-15-521-2019, 2019
Short summary
Short summary
We empirically estimate signal-to-noise ratios of temperature proxy records used in global compilations of the middle to late Holocene by comparing the spatial correlation structure of proxy records and climate model simulations accounting for noise and time uncertainty. We find that low signal contents of the proxy records or, alternatively, more localised climate variations recorded by proxies than suggested by current model simulations suggest caution when interpreting multi-proxy datasets.
Andrew M. Dolman and Thomas Laepple
Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, https://doi.org/10.5194/cp-14-1851-2018, 2018
Short summary
Short summary
Climate proxies from marine sediments provide an important record of past temperatures, but contain noise from many sources. These include mixing by burrowing organisms, seasonal and habitat biases, measurement error, and small sample size effects. We have created a forward model that simulates the creation of proxy records and provides it as a user-friendly R package. It allows multiple sources of uncertainty to be considered together when interpreting proxy climate records.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Anne-Sophie Fanget, Maria-Angela Bassetti, Christophe Fontanier, Alina Tudryn, and Serge Berné
Clim. Past, 12, 2161–2179, https://doi.org/10.5194/cp-12-2161-2016, https://doi.org/10.5194/cp-12-2161-2016, 2016
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
Mathias Trachsel and Richard J. Telford
Clim. Past, 12, 1215–1223, https://doi.org/10.5194/cp-12-1215-2016, https://doi.org/10.5194/cp-12-1215-2016, 2016
Short summary
Short summary
In spatially structured environments, conventional cross validation results in over-optimistic transfer function performance estimates. H-block cross validation, where all samples within h kilometres of the test samples are omitted is a method for obtaining unbiased transfer function performance estimates. We assess three methods for determining the optimal h using simulated data and published transfer functions. Some transfer functions perform notably worse when h-block cross validation is used.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
M. Moreau, T. Corrège, E. P. Dassié, and F. Le Cornec
Clim. Past, 11, 523–532, https://doi.org/10.5194/cp-11-523-2015, https://doi.org/10.5194/cp-11-523-2015, 2015
Short summary
Short summary
The influence of salinity on the Porites Sr/Ca palaeothermometer is still poorly documented. We test the salinity effect on Porites Sr/Ca-based SST reconstructions using a large spatial compilation of published Porites data from the Pacific, Indian Ocean, and the Red Sea. We find no evidence of a salinity bias in the Sr/Ca SST proxy at monthly and interannual timescales using two different salinity products. This result is in agreement with laboratory experiments on coral species.
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, https://doi.org/10.5194/cp-9-2073-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Alessio, G. Vivaldo, C. Taricco, and M. Ghil
Clim. Past, 8, 831–839, https://doi.org/10.5194/cp-8-831-2012, https://doi.org/10.5194/cp-8-831-2012, 2012
B. Christiansen and F. C. Ljungqvist
Clim. Past, 8, 765–786, https://doi.org/10.5194/cp-8-765-2012, https://doi.org/10.5194/cp-8-765-2012, 2012
V. Nieto-Moreno, F. Martínez-Ruiz, S. Giralt, F. Jiménez-Espejo, D. Gallego-Torres, M. Rodrigo-Gámiz, J. García-Orellana, M. Ortega-Huertas, and G. J. de Lange
Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011, https://doi.org/10.5194/cp-7-1395-2011, 2011
C. Martín-Puertas, F. Jiménez-Espejo, F. Martínez-Ruiz, V. Nieto-Moreno, M. Rodrigo, M. P. Mata, and B. L. Valero-Garcés
Clim. Past, 6, 807–816, https://doi.org/10.5194/cp-6-807-2010, https://doi.org/10.5194/cp-6-807-2010, 2010
C. Andersson, F. S. R. Pausata, E. Jansen, B. Risebrobakken, and R. J. Telford
Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, https://doi.org/10.5194/cp-6-179-2010, 2010
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009, https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P.,
Kaufman, D. S., and PAGES 2k Consortium: Early onset of industrial-era
warming across the oceans and continents, Nature, 536, 411–418, 2016.
Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates
assuming a constant rate of supply of unsupported 210Pb to the sediment,
Catena, 5, 1–8, 1978.
Arneborg, L.: Turnover times for the water above sill level in Gull- mar
Fjord, Cont. Shelf Res., 24, 443–460, 2004.
Årthun, M., Eldervik, T., Viste, E., Drange, H., Furevik, T., Johnson, H.
L., and Keenlyside, N. S.: Skillful prediction of northern climate provided
by the ocean, Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875, 2017.
Barber, K. E., Chambers, F. M., and Maddy, D.: Late Holocene climatic history
of northern Germany and Denmark: peat macrofossil investigations at
Dosenmoor, Schleswig– Holstein and, Svanemose, Jutland, Boreas, 33,
132–144, 2004.
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S. A.: “Great
salinity anomalies” in the North Atlantic, Prog. Oceanogr., 41,
1–68, 1998.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160, 1998.
Bianchi, G. G. and McCave, I. N.: Holocene periodicity in North Atlantic
climate and deep-ocean flow south of Iceland, Nature, 397, 515–517,
1999.
Bjerknes, J.: Atmosphere-ocean interaction during the “Little Ice Age”, in:
WMO-IUGG Symposium on Research and Development Aspects of Longe-Range
Forecasting WMO-No. 162. TP. 79, Technical Note No. 66, 77–88, 1965.
Björk, J. and Nordberg, K.: Upwelling along the Swedish west coast
during the 20th century, Cont. Shelf Res., 23, 1143–1159, 2003.
Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin,
N.: Aerosols implicated as a prime driver of twentieth-century North Atlantic
climate variability, Nature, 484, 228–234, 2012.
Bronk Ramsey, C.: Improving the resolution of radiocarbon dating by
statistical analysis, in: Radiocarbon Dating: Archaeology, Text and Science,
edited by: Levy, T. E. and Higham, T. F. G., The Bible and Equinox, London,
57–64, 2005.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K. U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 Years of European Climate Variability and Human
Susceptibility, Science, 331, 578–582, 2011.
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and
Reynolds, D. J.: Variability of marine climate on the North Icelandic Shelf
in a 1357-year proxy archive based on growth increments in the bivalve
Arctica islandica, Palaeogeogr. Palaeocl., 373, 141–151, 2013.
Butruille, C., Krossa, V. R., Schwab, C., and Weinelt, M.: Reconstruction
of mid-to late-Holocene winter temperatures in the Skagerrak region using
benthic foraminiferal Mg ∕ Ca and δ18O, The Holocene, 27, 63–72,
2017.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.:
Observed fingerprint of a weakening Atlantic Ocean overturning circulation,
Nature, 556, 191–198, 2018.
Cage, A. G. and Austin, W. E. N.: Marine climate variability during the
last millennium: the Loch Sunart record, Scotland, UK, Quaternary Sci. Rev.,
29, 1633–1647, 2010.
Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Böhm, R.:
Temperature and precipitation variability in the European Alps since 1500,
Int. J. Climatol., 25, 1855–1880, 2005.
Central England air temperature dataset: http://www.metoffice.gov.uk/,
last access: 16 March 2017.
Cronin, T. M., Dwyer, G. S., Kamiya, T., Schwede, S., and Willard, D. A.:
Medieval Warm Period, Little Ice Age and 20th century variability from
Chesapeake Bay, Glob. Planet. Change, 36, 17–29, 2003.
Cunningham, L. K., Austin, W. E., Knudsen, K. L., Eiríksson, J.,
Scourse, J. D., Wanamaker Jr., A. D., Butler, P. G., Cage, A. G., Richter, T.,
Husum, K., Hald, M., Andersson, C., Zorita, E., Linderholm, H. W.,
Gunnarsson, B., Sicre, M.-A., Sejrup, H. P., Jiang, H., and Wilson, R. J. S.:
Reconstructions of surface ocean conditions from the northeast Atlantic and
Nordic seas during the last millennium, The Holocene, 23, 921–935, 2013.
Curry, R. G. and McCartney, M. S.: Ocean gyre circulation changes
associated with the North Atlantic Oscillation, J. Phys. Oceanogr., 31,
3371–3400, 2001.
Delworth, T. L. and Zeng, F.: The impact of the North Atlantic Oscillation on
climate through its influence on the Atlantic Meridional Overturning
Circulation, J. Clim., 29, 941–962, 2016.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang, R.:
The North Atlantic Oscillation as a driver of rapid climate change in the
Northern Hemisphere, Nat. Geosci., 9, 509–513, 2016.
Desprat, S., Goñi, M. F. S., and Loutre, M. F.: Revealing climatic
variability of the last three millennia in northwestern Iberia using pollen
influx data, Earth Planet. Sc. Lett., 213, 63–78, 2003.
Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Long-term
coordinated changes in the convective activity of the North Atlantic, Prog.
Oceanogr., 38, 241–295, 1996.
Dickson, R. R., Meincke, J., Malmberg, S.-A., and Lee, A. J.: The “Great
Salinity Anomaly” in the northern North Atlantic, 1968–1982, Prog.
Oceanogr., 20, 103–151, 1988.
Eiríksson, J., Bartels-Jonsdottir, H. B., Cage, A. G., Gudmundsdottir,
E. R., Klitgaard-Kristensen, D., Marret, F., Rodrigues, T., Abrantes, F.,
Austin, W. E. N., Jiang, H., Knudsen, K. L., and Sejrup, H. P.: Variability of
the North Atlantic Current during the last 2000 years based on shelf bottom
water and sea surface temperatures along an open ocean/shallow marine
transect in western Europe, The Holocene, 16, 1017–1029, 2006.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J.: The Atlantic
multidecadal oscillation and its relation to rainfall and river flows in the
continental US, Geophys. Res. Lett., 28, 2077–2080, 2001.
Faust, J. C., Fabian, K., Milzer, G., Giraudeau, J., and Knies, J.:
Norwegian fjord sediments reveal NAO related winter temperature and
precipitation changes of the past 2800 years, Earth Planet. Sc.
Lett., 435, 84–93, 2016.
Filipsson, H. L. and Nordberg, K.: Climate variations, an overlooked
factor influencing the recent marine environment. An example from Gullmar
Fjord, Sweden, illustrated by benthic foraminifera and hydrographic
data, Estuaries, 27, 867–881, 2004a.
Filipsson, H. L. and Nordberg, K.: A 200-year environmental record of a
low-oxygen fjord, Sweden, elucidated by benthic foraminifera, sediment
characteristics and hydrographic data, J. Foramin. Res., 34, 277–293, 2004b.
Filipsson, H. L. and Nordberg, K: Variations in organic carbon flux and
stagnation periods during the last 2400 years in a Skagerrak fjord basin,
inferred from benthic foraminiferal δ13C, in: Fjords: Depositional
Systems and Archives, Geological Society Special Publication, edited by:
Howe, J. A., Austin, W. E. N., Forwick, M., Powell, R. D., and Paetzel, M.,
261–270, 2010.
Filipsson, H. L., Nordberg, K., and Gustafsson, M.: Seasonal study of
δ18O and δ13C in living (stained) benthic
foraminifera from two Swedish fjords, Mar. Micropal., 53, 159–172, 2004.
Filipsson, H. L., Bernhard, J. M., Lincoln, S. A., and McCorkle, D. C.: A
culture-based calibration of benthic foraminiferal paleotemperature proxies:
δ18O and Mg ∕ Ca results, Biogeosciences, 7, 1335–1347,
https://doi.org/10.5194/bg-7-1335-2010, 2010.
Fröhlich, K., Grabczak, J., and Rozanski, K.: Deuterium and oxygen-18 in
the Baltic Sea, Chem. Geol., 72, 77–83, 1988.
Grove, J.: The Little Ice Age, Methuen and Co, London, 498 pp., 1988.
Gunnarson, B. E., Linderholm, H. W., and Moberg, A.: Improving a tree-ring
reconstruction from west-central Scandinavia: 900 years of warm-season
temperatures, Clim. Dynam., 36, 97–108, 2011.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminiferal
response to primary production and hydrography in the deepest part of the
Gullmar Fjord, Swedish West Coast, with comparisons to Hoglund's 1927
material, J. Foramin. Res., 31, 2–11, 2001.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and
Telford, R. J.: Variations in temperature and extent of Atlantic Water in the
northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26,
3423–3440, 2007.
Hald, M., Salomonsen, G. R., Husum, K., and Wilson, L. J.: A 2000-year record
of Atlantic Water temperature variability from the Malangen Fjord,
northeastern North Atlantic, The Holocene, 21, 1049–1059, 2011.
Hansen, B. and Østerhus, S.: North Atlantic-Nordic seas exchanges, Prog.
Oceanogr., 45, 109–208, 2000.
Harland, R., Nordberg, K., and Filipsson, H. L.: Dinoflagellate cysts and
hydrographical change in Gullmar Fjord, west coast of Sweden, Sci. Total
Environ., 355, 204–231, 2006.
Harland, R., Polovodova Asteman, I., and Nordberg, K.: A two-millennium
dinoflagellate cyst record from Gullmar Fjord, a Swedish Skagerrak sill
fjord, Palaeogeogr. Palaeocl., 392, 247–260, 2013.
Harrison, D.: Stora Döden/ The Black Death, Stockholm, Ordfront, 2000 (in
Swedish).
Hass, H. C.: Northern Europe climate variations during late Holocene:
evidence from marine Skagerrak, Palaeogeogr. Palaeocl., 123, 121–145, 1996.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and Valdimarsson,
H.: Influence of the Atlantic subpolar gyre on the thermohaline circulation,
Science, 309, 1841–1844, 2005.
Hays, P. D. and Grossman, E. L.: Oxygen isotopes in meteoric calcite cements
as indicators of continental paleoclimate, Geology, 19, 441–444, 1991.
Helama, S., Jones, P. D., and Briffa, K. R.: Dark Ages Cold Period: a
literature review and directions for future research, The Holocene, 27,
1600–1606, 2017.
Howe, J. A., Austin, W. E. N., Forwick, W., Paetzel, M., Harland, R., and
Cage, A. G.: Fjord systems and archives: a review, in: Fjords: Depositional
Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M.,
and Paetzel, M., Geol. Soc. Spec. Publ., 344, 261–270, 2010.
Hurrell, J. W.: Decadal trends in the north-Atlantic oscillation – regional
temperatures and precipitation, Science, 269, 676–679, 1995.
ICES database: http://www.ices.dk/marine-data/, last access: 8 March
2017.
Jackson, L. C., Kahana, R., Graham, T., Woollings, T., Mecking, J. V., and
Wood, R. A.: Global and European climate impacts of a slowdown of the AMOC in
a high resolution GCM, Clim. Dynam., 45, 3299–3316, 2015.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf,
S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang,
D.: Paleoclimate, in: IPCC WG1 Fourth Assessment Report, edited by: Solomon,
S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M.,
and Miller, H. L., Climate Change 2007, The Physical Science Basis, Cambridge
Univ. Press, 433–498, 2007.
Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L., and Seidenkrantz,
M. S.: Evidence for solar forcing of sea-surface temperature on the North
Icelandic Shelf during the late Holocene, Geology, 33, 73–76, 2005.
Keigwin, L. D. and Boyle, E. A.: Detecting Holocene changes in thermohaline
circulation, P. Natl. Acad. Sci. USA, 97, 1343–1346, 2000.
Keigwin, L. D. and Pickart, R. S.: Slope Water Current over the Laurentide
Fan on Interannual to Millenial Time Scales, Science, 286, 520–523, 1999.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
1997.
Kjennbakken, H., Sejrup, H. P., and Haflidason, H.: Mid-to late-Holocene
oxygen isotopes from Voldafjorden, western Norway, The Holocene, 21,
897–909, 2011.
Klitgaard-Kristensen, D., Sejrup, H. P., Haflidason, H., Berstad, I. M., and
Mikalsen, G.: Eight-hundred-year temperature variability from the Norwegian
continental margin and the North Atlantic thermohaline circulation,
Paleoceanography, 19, PA2007, https://doi.org/10.1029/2003PA000960, 2004.
Knox, J., Daccache, A., Hess, T., and Haro, D.: Meta-analysis of climate
impacts and uncertainty on crop yields in Europe, Env. Res. Lett., 11,
113004, 2016.
Kolling, H., Stein, R., Fahl, K., Perner, K., and Moros, M.: Short-term
variability in late Holocene sea ice cover on the East Greenland shelf and
its driving mechanisms, Palaeogeogr. Palaeocl., 485, 336–350, 2017.
Kuhlbrodt, T., Rahmstorf, S., Zickfeld, K., Vikebø, F., Sundby, S.,
Hofmann, M., Link, P., Bondeau, A., Cramer, W., and Jaeger, C.: An integrated
assessment of changes in the thermohaline circulation, Climatic Change, 96,
489–537, 2009.
Lamb, H. H.: 1977 Climate: present, past and future, New York, Methuen, 1995.
Lebreiro, S. M., Francés, G., Abrantes, F. F. G., Diz, P.,
Bartels-Jónsdóttir, H. B., Stroynowski, Z. N., Gil, I.M., Pena, L.
D., Rodrigues, T., Jones, P. D., Nombella, M. A., Alejo, I., Briffa, K. R.,
Harris, I., and Grimalt, J. O.: Climate change and coastal hydrographic
response along the Atlantic Iberian margin (Tagus Prodelta and Muros
Ría) during the last two millennia, The Holocene, 16, 1003–1015, 2006.
Leijonhufvud, L., Wilson, R., Moberg, A., Soderberg, J., Retso, D., and
Soderlind, U.: Five centuries of Stockholm winter/spring temperatures
reconstructed from documentary evidence and instrumental observations,
Climatic Change, 101, 109–141, 2010.
Linderholm, H. W. and Gunnarson, B. E.: Summer temperature variability in
central Scandinavia during the last 3600 years, Geografiska Annaler: Series
A, Phys. Geogr., 87, 231–241, https://doi.org/10.1111/j.0435-3676.2005.00255.x, 2005.
Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., and
Fuentes, M.: Fennoscandia revisited: a spatially improved tree-ring
reconstruction of summer temperatures for the last 900 years, Clim.
Dynam., 45, 933–947, 2015.
Lund, D. C., Lynch-Stieglitz, J., and Curry, W. B.: Gulf Stream density
structure and transport during the past millennium, Nature, 444, 601–604,
2006.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L.,
González-Rouco, F. J., Barriopedro, D., and Esper, J.: European summer
temperatures since Roman times, Environ. Res. Lett., 11, 024001,
https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mann, M. E. and Jones, P. D.: Global surface temperatures over the past two
millennia, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017814, 2003.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K.
M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for
cosmopolitan benthic foraminifera, Geochim. Cosmochim. Ac., 130, 1–11,
2014.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González Rouco, J. F., Jansen, E., Lambeck, K.,, Luterbacher, Naish, T.,
Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and
Timmermann, A.: Information from Paleoclimate Archives, in: Climate Change
2013: The Physical Science Basis, Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Mauquoy, D., van Geel, B., Blaauw, M., and van der Plicht, J.: Evidence
from northwest European bogs shows “Little Ice Age” climatic changes
driven by variations in solar activity, The Holocene, 12, 1–6, 2002.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q. Z.,
Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110,000-year-long
glaciochemical series, J. Geophys. Res.-Ocean., 102, 26345–26366, 1997.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions
and stable isotopic compositions of live (stained) benthic foraminifera from
the North Carolina and California continental margins, Deep-Sea Res. Pt. I,
44, 983–1024, 1997.
McDermott, F., Mattey, D. P., and Hawkesworth, C.: Centennial-scale Holocene
climate variability revealed by a high-resolution speleothem δ18O
record from SW Ireland, Science, 294, 1328–1331, 2001.
McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison,
J. A., Mortyn, P. G., Oppo, D.W., Seidenkrantz, M.-S., Sicre, M.-A., Phipps,
S. J., Selvaraj, K., Thirumalaj, K., Filipsson, H., and Ersek, V.: Robust
global ocean cooling trend for the pre-industrial Common Era, Nat. Geosci.,
8, 671–677, 2015.
Meeker, L. D. and Mayewski, P. A.: A 1400-year high-resolution record of
atmospheric circulation over the North Atlantic and Asia, The Holocene, 12,
257–266, 2002.
Mikalsen, G., Sejrup, H. P., and Aarseth, I.: Late-Holocene changes in ocean
circulation and climate: foraminiferal and isotopic evidence from Sulafjord,
western Norway, The Holocene, 11, 437–446, 2001.
Miller, G. H., Geirsdottir, A., Zhong, Y. F., Larsen, D. J., Otto- Bliesner,
B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J.,
Southon, J. R., Anderson, C., Bjornsson, H., and Thordarson, T.: Abrupt
onset of the Little Ice Age triggered by volcanism and sustained by
sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708,
https://doi.org/10.1029/2011GL050168, 2012.
Millet, L., Arnaud, F., Heiri, O., Magny, M., Verneaux, V., and Desmet, M.:
Late-Holocene summer temperature reconstruction from chironomid assemblages
of Lake Anterne, northern French Alps, The Holocene, 19, 317–328, 2009.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and
Karlén, W.: Highly variable Northern Hemisphere temperatures
reconstructed from low- and high-resolution proxy data, Nature, 433,
613–617, 2005
Morris, C. D.: Viking Orkney: a survey, in: The Prehistory of Orkney, editedn
by: Renfrew, C., Edinburgh University Press, Edinburgh, 1985.
Nardelli, M. P., Barras, C., Metzger, E., Mouret, A., Filipsson, H. L.,
Jorissen, F., and Geslin, E.: Experimental evidence for foraminiferal
calcification under anoxia, Biogeosciences, 11, 4029–4038,
https://doi.org/10.5194/bg-11-4029-2014, 2014.
Nordberg, K.: Oceanography in the Kattegat and Skagerrak over the past 8000
years, Paleoceanography, 6, 461–484, 1991
Nordberg, K., Gustafsson, M., and Krantz, A. L.: Decreasing oxygen
concentrations in the Gullmar Fjord, Sweden, as confirmed by benthic
foraminifera, and the possible association with NAO, J. Marine Syst., 23,
303–316, 2000.
Nordberg, K., Filipsson, H. L., Linné, P., and Gustafsson, M.: Stable
isotope evidence for the recent establishment of a new, opportunistic
foraminiferal fauna within Gullmar Fjord, Sweden, J. Mar. Micropal., 73,
117–128, 2009.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope
fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558,
1969.
Orme, L. C., Davies, S. J., and Duller, G. A. T.: Reconstructed centennial
variability of late Holocene storminess from Cors Fochno, Wales, UK, J.
Quaternary Sci., 30, 478–488, 2015.
Ortega, P., Montoya, M., González-Rouco, F., Mignot, J., and Legutke, S.:
Variability of the Atlantic meridional overturning circulation in the last
millennium and two IPCC scenarios, Clim. Dynam., 38, 1925–1947, 2012.
Orth, R., Vogel, M. M., Luterbacher, J., Pfister, C., and Seneviratne, S. I.:
Did European temperatures in 1540 exceed present-day records?, Env. Res.
Lett., 11, 114021, https://doi.org/10.1088/1748-9326/11/11/114021, 2016.
Otterå, O. H., Bentsen, M., Drange, H., and Suo, L.: External forcing as
a metronome for Atlantic multidecadal variability, Nat. Geosci., 3, 688–694,
2010.
PAGES 2K Consortium: Continental scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–982, 2013.
PAGES 2K Consortium: Data descriptor: A global multiproxy database for
temperature reconstructions of the common era, Nature Scientific Data, 4,
170088, https://doi.org/10.1038/sdata.2017.88, 2017.
Park, W. and Latif, M.: Multidecadal and multicentennial variability of the
meridional overturning circulation, Geophys. Res. Lett., 35, L22703,
https://doi.org/10.1029/2008GL035779, 2008.
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H.: 500 years of gridded
high-resolution precipitation reconstructions over Europe and the connection
to large-scale circulation, Clim. Dynam., 26, 387–405, 2006.
Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.: Mid to late
Holocene strengthening of the East Greenland Current linked to warm
subsurface Atlantic water, Quaternary Sci. Rev., 129, 296–307, 2015.
Pettersson, O. and Ekman, G.: Grunddragen af Skageracks och Kattegats
hydrografi, Kongl. Svenska Vetenskaps-akademiens handlingar, 24, 130 pp.,
1891.
Polovodova, I., Nordberg, K., and Filipsson, H. L.: The benthic foraminiferal
record of the Medieval Warm Period and the recent warming in the Gullmar
Fjord, Swedish west coast, Mar. Micropaleontol., 81, 95–106, 2011.
Polovodova Asteman, I. and Nordberg, K.: Foraminiferal fauna from a deep
basin in Gullmar Fjord: the influence of seasonal hypoxia and North Atlantic
Oscillation, J. Sea Res., 79, 40–49, 2013.
Polovodova Asteman, I., Nordberg, K., and Filipsson, H. L.: The Little Ice
Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast,
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013,
2013.
Poole, D. A. R., Dokken, T. M., Hald, M., and Polyak, L.: Stable isotope
fractionation in recent benthic foraminifera from the Barents and Kara Seas,
PhD, University of Bergen, 1994.
Porter, S. C.: Pattern and forcing of Northern-Hemisphere glacier variations
during the last millenium, Quaternary Res., 26, 27–48, 1986.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W.,
Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K.
B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M.,
Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G.,
Manning, S., Ramsey, C. Bronk, Reimer, R. W., Remmele, S., Southon, J. R.,
Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer,
C. E.: Int- Cal04 terrestrial radiocarbon age calibration,
0–26 cal kyr BP, Radiocarbon, 46, 1029–1058, 2004.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffman, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: Int
Cal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP,
Radiocarbon, 55, 1869–1887, 2013.
Reverdin, G.: North Atlantic subpolar gyre surface variability (1895–2009),
J. Clim., 23, 4571–4584, 2010.
Reverdin, G., Cayan, D., Dooley, H. D., Ellett, D. J., Levitus, S., Du
Penhoat, Y., and Dessier, A.: Surface salinity of the North Atlantic: can we
reconstruct its fluctuations over the last one hundred years?, Prog.
Oceanogr., 33, 303–346, 1994.
Richter, T. O., Peeters, F. J., and van Weering, T. C.: Late Holocene
(0–2.4 kaBP) surface water temperature and salinity variability, Feni
Drift, NE Atlantic Ocean, Quaternary Sci. Rev., 28, 1941–1955, 2009.
Risebrobakken, B., Dokken, T., Smedsrud, L. H., Andersson, C., Jansen, E.,
Moros, M., and Ivanova, E. V.: Early Holocene temperature variability in the
Nordic Seas: The role of oceanic heat advection versus changes in orbital
forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117, 2011.
Rydberg, L.: Circulation in the Gullmaren – a silll fjord with externally
maintained stratification. Inst. of Oceanography, Univ. of Gothenburg,
Report no: 23 (mimeo), Gothenburg, 1977.
Salvesen, H.: Jord i Jämtland, Östersund, AB Wisenska bokhandelens
förlag, 187 pp., 1979.
Schmittner, A., Latif, M., and Schneider, B.: Model projections of the North
Atlantic thermohaline circulation for the 21st century accessed by
observations, Geophys. Res. Lett., 32, L23710, https://doi.org/10.1029/2005GL024368,
2005.
Seidenkrantz, M. S., Aagaard-Sørensen, S., Sulsbrück, H., Kuijpers,
A., Jensen, K. G., and Kunzendorf, H.: Hydrography and climate of the last
4400 years in a SW Greenland fjord: implications for Labrador Sea
palaeoceanography, The Holocene, 17, 387–401, 2007.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and
the benthonic foraminifera genus Uvigerina: isotopic changes in the
ocean during the last glacial, Collogues Internationaux du CNRS nr. 219,
203–209, 1974.
Sicre, M. A., Hall, I. R., Mignot, J., Khodri, M., Ezat, U., Truong, M. X.,
Eiriksson, J., and Knudsen, K. L.: Sea surface temperature variability in the
subpolar Atlantic over the last two millennia, Paleoceanography, 26, PA4218,
https://doi.org/10.1029/2011PA00216, 2011.
Sicre, M.-A., Weckström, K., Seidenkrantz, M.-S., Kuijpers, A., Benetti,
M., Masse, G., Ezat, M., Schmidt, S., Bouloubassi, I., Olsen, J., Khodri, M.,
and Mignot, J.: Labrador current variability over the last 2000 years, Earth
Planet. Sc. Lett., 400, 26–32, 2014.
SMHI-SHARK database,
https://www.smhi.se/klimatdata/oceanografi/havsmiljodata/marina-miljoovervakningsdata,
last access: 15 March 2017.
SMHI: Meteorological observations of air temperatures,
https://www.smhi.se/klimatdata, last access: 15 March 2017.
Stuiver, M. and Pollach, H. A.: Discussions of reporting 14C data,
Radiocarbon, 19, 355–363, 1977.
Stuiver, M., Grootes, P. M., and Braziunas, T. F.: The GISP2 δ18O
climate record of the past 16,500 years and the role of sun, ocean and
volcanoes, Quaternary Res., 44, 341–354, 1995.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.1 [WWW program],
available at: http://calib.org, last access: 16 February 2017.
Svansson A : Physical and chemical oceanography of the Skagerrak and the
Kattegat, I. Open Sea Conditions, Institute of Marine Research, Report No.
1. Lysekil: Fishery Board of Sweden, 1–88, 1975.
Tarutani T., Clayton R. N., and Mayeda T. K.: The effect of polymorphism and
magnesium substitution on oxygen isotope fractionation between calcium
carbonate and water, Geochim. Cosmochim. Ac., 33, 987–996, 1969.
Thornalley, D. J., Elderfield, H., and McCave, I. N.: Holocene oscillations
in temperature and salinity of the surface subpolar North Atlantic, Nature,
457, 711–714, 2009.
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C.
M., Davis, R., Hall, I. P., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T.,
Yashayaev, I., and Keigwin, L.: Anomalously weak Labrador Sea convection and
Atlantic overturning during the past 150 years, Nature, 556, 227–232, 2018.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank,
D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the
Medieval Climate Anomaly, Science, 324, 78–80, 2009.
Van der Schrier, G. and Barkmeijer, J.: Bjerknes hypothesis on the coldness
during AD 1790–1820 revisited, Clim. Dynam., 25, 537–553, 2005.
Wagner, S. and Zorita, E.: The influence of volcanic, solar and CO2
forcing on the temperatures in the Dalton minimum (1790–1830): a model
study, Clim. Dynam., 25, 205–218, 2005.
Wang, T., Surge, D., and Mithen, S.: Seasonal temperature variability of the
Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP)
reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland, Palaeogeogr. Palaeocl., 317/318, 104–113,
2012.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30,
3109–3123, 2011.
Wetter, O., Pfister, C., Werner, J. P., Zorita, E., Wagner, S., Senevirante,
S. I., Herget, J., Grünewald, U., Luterbacher, J., Alcoforado, M.-J.,
Barriendos, M., Bieber, U., Brázdil, R., Burmeister, K. H., Camenish, S.,
Contino, A., Dobrovolny, P., Glaser, R., Himmelsbach, I., Kiss, A., Kotyza,
O., Labbe, T., Limanowka, D., Litzenburger, L., Nordl, Ø., Pribyl, K.,
Retsö, D., Riemann, D., Rohr, C., Siegfried, W., et al.: The year-long
unprecedented European heat and drought of 1540 – a worst case, Climatic
Change, 125, 349–63, 2014.
Zicheng, Y. and Ito, E.: Historical solar variability and midcontinent
drought, Pages Newsl., 8, 6–7, 2000.
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord...