Articles | Volume 13, issue 7
https://doi.org/10.5194/cp-13-959-2017
https://doi.org/10.5194/cp-13-959-2017
Research article
 | 
27 Jul 2017
Research article |  | 27 Jul 2017

Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill

Related authors

Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793,https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023,https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Statistically parameterizing and evaluating a positive degree-day model to estimate surface melt in Antarctica from 1979 to 2022
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023,https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Sensitivity of the Ross Ice Shelf to environmental and glaciological controls
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022,https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021,https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary

Related subject area

Subject: Ice Dynamics | Archive: Modelling only | Timescale: Cenozoic
Antarctic tipping points triggered by the mid-Pliocene warm climate
Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya
Clim. Past, 20, 1919–1938, https://doi.org/10.5194/cp-20-1919-2024,https://doi.org/10.5194/cp-20-1919-2024, 2024
Short summary
Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023,https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
How changing the height of the Antarctic ice sheet affects global climate: a mid-Pliocene case study
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023,https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Modelling ice sheet evolution and atmospheric CO2 during the Late Pliocene
Constantijn J. Berends, Bas de Boer, Aisling M. Dolan, Daniel J. Hill, and Roderik S. W. van de Wal
Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019,https://doi.org/10.5194/cp-15-1603-2019, 2019
Short summary

Cited articles

Aitken, A., Roberts, J., van Ommen, T., Young, D., Golledge, N., Greenbaum, J., Blankenship, D., and Siegert, M.: Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion, Nature, 533, 385–389, 2016.
Bohaty, S. and Harwood, D.: Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy, Mar. Micropaleontol., 33, 241–272, 1998.
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model, J. Geophys. Res., 114, F03008, https://doi.org/10.1029/2008JF001179, 2009.
Clark, N., Williams, M., Hill, D., Quilty, P., Smellie, J., Zalasiewicz, J., Leng, M., and Ellis, M.: Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf, Naturwissenschaften, 101, 699–722, 2013.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections, Commitments and Irreversibility, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 1029–1136, 2013.
Download
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5  m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.