Articles | Volume 13, issue 9
https://doi.org/10.5194/cp-13-1111-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-13-1111-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Masanobu Yamamoto
CORRESPONDING AUTHOR
Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Global Institution for Collaborative Research and Education, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Gradute School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Seung-Il Nam
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
Leonid Polyak
Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA
Daisuke Kobayashi
Gradute School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Kenta Suzuki
Gradute School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Tomohisa Irino
Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Gradute School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Koji Shimada
Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
Related authors
Hana Ishii, Osamu Seki, Masanobu Yamamoto, and Bella Duncan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4281, https://doi.org/10.5194/egusphere-2025-4281, 2025
Short summary
Short summary
We explore the utility of the archaeal-derived lipid biomarker as paleoenvironmental proxies in the Southern Ocean. Based on a reanalysis of the Southern Ocean dataset, we propose a new indicator for reconstructing zonal water mass movements in the Southern Ocean and temperatures in the Antarctic Zone. Applying this method to late Pleistocene sediment cores validates its reliability, confirming a valuable new tool for reconstructing the paleoenvironment of the Southern Ocean.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Hana Ishii, Osamu Seki, Masanobu Yamamoto, and Bella Duncan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4281, https://doi.org/10.5194/egusphere-2025-4281, 2025
Short summary
Short summary
We explore the utility of the archaeal-derived lipid biomarker as paleoenvironmental proxies in the Southern Ocean. Based on a reanalysis of the Southern Ocean dataset, we propose a new indicator for reconstructing zonal water mass movements in the Southern Ocean and temperatures in the Antarctic Zone. Applying this method to late Pleistocene sediment cores validates its reliability, confirming a valuable new tool for reconstructing the paleoenvironment of the Southern Ocean.
Dahae Kim, Jung-Hyun Kim, Youngkyu Ahn, Matthias Forwick, and Seung-Il Nam
Biogeosciences, 22, 4087–4105, https://doi.org/10.5194/bg-22-4087-2025, https://doi.org/10.5194/bg-22-4087-2025, 2025
Short summary
Short summary
The Arctic is warming rapidly, altering carbon storage in Svalbard’s Kongsfjorden. Our study analyzed sediment cores to track organic carbon shifts over time. We found that increasing Atlantic Water inflow enhanced marine carbon while reducing land-derived inputs. These findings suggest that Atlantification is reshaping carbon sequestration in Arctic fjords, with broader implications for the Arctic carbon cycle.
Riku Miyase, Yuzo Miyazaki, Tomohisa Irino, and Youhei Yamashita
EGUsphere, https://doi.org/10.5194/egusphere-2025-2525, https://doi.org/10.5194/egusphere-2025-2525, 2025
Short summary
Short summary
Water-soluble pyrogenic carbon (WSPyC) is long-lived in the ocean and plays a role in regulating climate. This study observed the variations in concentration and sources of WSPyC in atmospheric aerosols. The results suggest that WSPyC can form through the oxidation of soot during atmospheric transport, highlighting this process as an important pathway before aerosols are deposited into the ocean.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Cited articles
Aagaard, K., Weingartner, T. J., Danielson, S. L., Woodgate, R. A., Johnson, G. C., and Whitledge, T. E.: Some controls on flow and salinity in Bering Strait, Geophys. Res. Lett., 33, L19602, https://doi.org/10.1029/2006GL026612, 2006.
Anderson, L., Abbott, M. B., Finney, B. P., and Burns, S. J.: Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada, Quaternary Res., 64, 21–35, 2005.
Barletta, F., St-Onge, G., Channell, J. E. T., Rochon, A., Polyak, L., and Darby, D.: High resolution paleomagnetic secular variation and relative paleointensity records from the western Canadian Arctic: implication for Holocene stratigraphy and geomagnetic field behaviour, Can. J. Earth Sci., 45, 1265–1281, 2008.
Barron, J. A. and Anderson, L.: Enhanced Late Holocene ENSO/PDO expression along the margins of the eastern North Pacific, Quatern. Int., 235, 3–12, 2011.
Barron, J. A., Heusser, L., Herbert, T., and Lyle, M.: High-resolution climatic evolution of coastal northern California during the past 16,000 years, Paleoceanography, 18, 1020, https://doi.org/10.1029/2002PA000768, 2003.
Biscaye, P.: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Am. Bull., 76, 803–832, 1965.
Bischof, J. and Darby, D. A.: Mid- to Late Pleistocene ice drift in the western Arctic Ocean: Evidence for a different circulation in the Past, Science, 277, 74–78, 1997.
Bischof, J., Clark, D. L., and Vincent, J. S.: Origin of ice rafted debris: Pleistocene paleoceanography in the western Arctic Ocean, Paleoceanography, 11, 743–756, 1996.
Carmack, E., Barber, D., Christensen, J., Macdonald, R., Rudels, B., and Sakshaug, E.: Climate variability and physical forcing of the food webs and the carbon budget on pan-Arctic shelves, Prog. Oceanogr., 71, 145–181, 2006.
Coachman, L. K. and Aagaard, K.: On the water exchange through Bering Strait, Limnol. Oceanogr., 11, 44–59, 1966.
Danielson, S. L., Weingartner, T. J., Hedstrom, K. S., Aargaard, K., Woodgate, R., Curchister, E., and Stabeno, P. J.: Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient, Prog. Oceanogr., 125, 40–61, 2014.
Darby, D. A., Ortiz, J. D., Polyak, L., Lund, S., Jakobsson, M., and Woodgate, R. A.: The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments, Global Planet. Change, 68, 58–72, 2009.
Darby, D. A., Myers, W. B., Jakobsson, M., and Rigor, I.: Modern dirty sea ice characteristic and sources: The role of anchor ice, J. Geophys. Res., 116, C09008, https://doi.org/10.1029/2010JC006675, 2011.
Darby, D. A., Ortiz, J. D., Grosch, C. E., and Lund, S. P.: 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift, Nat. Geosci., 5, 897–900, 2012.
De Boer, A. M. and Nof, D.: The exhaust valve of the North Atlantic, J. Climate, 17, 417–422, 2004.
de Vernal, A., Hillaire-Marcel, C., and Darby, D. A.: Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene, Paleoceanography, 20, PA4018, https://doi.org/10.1029/2005PA001157, 2005.
de Vernal, A., Hillaire-Marcel, C., Solignac, S., Radi, T., and Rochon, A.: Reconstructing sea ice conditions in the Arctic and sub-Arctic prior to human observations, Geophysical Monograph 180, American Geophysical Union, Washington, USA, 27–45, 2008.
de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., and Bonnet, S. : Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas, Quaternary Sci. Rev., 79, 111–121, 2013.
Dyke, A. S. and Savelle, J. M.: Holocene history of the Bering Sea bowhead whale (Balaena mysticetus) in Its Beaufort Sea summer grounds off southwestern Victoria Island, western Canadian Arctic, Quaternary Res., 55, 371–379, 2001.
Elias, S., Short, S. K., and Phillips, R. L.: Paleoecology of late-glacial peats from the Bering land bridge, Chukchi Sea shelf region, northwestern Alaska, Quaternary Res., 38, 371–378, 1992.
Elvelhøi, A. and Rønningsland, T. M.: Semiquantitative calculation of the relative amounts of kaolinite and chlorite by X-ray diffraction, Mar. Geol., 27, M19–M23, https://doi.org/10.1016/0025-3227(78)90070-1, 1978.
Farmer, J. R., Cronin, T. M., de Vernal, A., Dwyer, G. S., Keigwin, L. D., and Thunell, R. C.: Western Arctic Ocean temperature variability during the last 8000 years, Geophys. Res. Lett., 38, L24602, https://doi.org/10.1029/2011GL049714, 2011.
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz, C., Bourgeois, J., Koerner, R. M., Mayewski, P., Wake, C., Kreutz, K., Steig, E., Zheng, J., Yalcin, K., Goto-Azuma, K., Luckman, B., and Rupper, S.: The Mt Logan Holocene–late Wisconsinan isotope record: tropical Pacific–Yukon connections, Holocene, 18, 667–677, 2008.
Frey, K. E., Perovich, D. K., and Light, B.: The spatial distribution of solar radiation under a melting Arctic sea ice cover, Geophys. Res. Lett., 38, L22501, https://doi.org/10.1029/2011GL049421, 2011.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard, N.J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J., and Willerslev, E.: A 10,000-year record of Arctic Ocean sea-ice variability – View from the beach, Science, 333, 747–750, 2011.
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J., and Bacon, S.: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre, Nat. Geosci., 5, 194–197, 2012.
Godfrey, J. S.: A sverdrup model of the depth-integrated flow for the ocean allowing for island circulations, Geophys. Astro. Fluid, 45, 89–112, 1989.
Griffin, G. M. and Goldberg, E. D.: Clay mineral distributions in the Pacific Ocean, in: The sea, III, edited by: Hill, M. N., 728–741, Interscience Pub., New York, USA, 1963.
Gudkovitch, Z. M.: On the nature of the Pacific current in Bering Strait and the cause of its seasonal variations, Deep-Sea Res., 9, 507–510, 1962.
Harada, N.: Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: its impact on biogeochemical cycles and marine ecosystems, Global Planet. Change, 136, 1–17, 2016.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth Planet. Sc. Lett., 266, 221–232, 2008.
Jakobsson, M., Pearce, C., Cronin, T. M., Backman, J., Anderson, L. G., Barrientos, N., Björk, G., Coxall, H., de Boer, A., Mayer, L. A., Mörth, C.-M., Nilsson, J., Rattray, J. E., Stranne, C., Semiletov, I., and O'Regan, M.: Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records, Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, 2017.
Kalinenko, V. V.: Clay minerals in sediments of the Arctic Seas, Lith. Min. Res. 36, 362–372, translated from: Litologiya I Poleznye Iskopaemye, 4, 418–429, 2001.
Katsuki, K., Khim, B.-K., Itaki, T., Harada, N., Sakai, H., Ikeda, T., Takahashi, K., Okazaki, Y., and Asahi, H.: Land–sea linkage of Holocene paleoclimate on the Southern Bering Continental Shelf, The Holocene, 19, 747–756, 2009.
Kaufman, D. S., Axford, Y. L., Henderson, A. C. G., McKay, N. P., Oswald, W. W., Saenger, C., Anderson, R. S., Bailey, H. L., Clegg, B., Gajewski, K., Hu, F. S., Jones, M. C., Massa, C., Routson, C. C., Werner, A., Wooller, M. J., and Yu, Z.: Holocene climate changes in eastern Beringia (NW North America) – a systematic review of multi-proxy evidence, Quaternary Sci. Rev., 147, 312–339, 2016.
Keigwin, L. D., Donelly, J. P., Cook, M. S., Driscoll, N. W., and Brigham-Grette, J.: Rapid sea-level rise and Holocene climate in the Chukchi Sea, Geology, 34, 861–864, 2006.
Kobayashi, D., Yamamoto, M., Irino, T., Nam, S.-I., Park, Y.-H., Harada, N., Nagashima, K., Chikita, K., and Saitoh, S.-I.: Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period, Polar Science, 10, 519–531, 2016.
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E.: Moisture transport across Central America as a positive feedback on abrupt climatic changes, Nature, 445, 908–911, https://doi.org/10.1038/nature05578, 2007.
Lee, S. H. and Whitledge, T. E.: Primary and new production in the deep Canada Basin during summer 2002, Polar Biology, 28, 190–197, 2005.
Lisé-Pronovost, A., St-Onge, G., Brachfeld, S., Barletta, F., and Darby, D.: Paleomagnetic constraints on the Holocene stratigraphy of the Arctic Alaskan margin, Global Planet. Change, 68, 85–99, 2009.
McKay, J. L., de Vernal, A., Hillaire-Marcel, C., Not, C., Polyak, L., and Darby, D.: Holocene fluctuations in Arctic sea-ice cover: dinocyst-based reconstructions for the eastern Chukchi Sea, Can. J. Earth Sci., 45, 1377–1397, 2008.
McNeely, R., Dyke, A. S., and Southon, J. R.: Canadian marine reservoir ages, preliminary data assessment, Open File Report – Geological Survey of Canada, 5049, no. 3, Ottawa, Canada, 2006.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L., Serreze, M. C., and White, J. W. C.: Arctic amplification: can the past constrain the future?, Quaternary Sci. Rev., 29, 1779–1790, 2010.
Müller, G.: Methods in Sedimentary Petrology, Scweizerbart Science Publishers, 283 pp., Stuttgart, Germany, 1967.
Naidu, A. S. and Mowatt, T. C.: Sources and dispersal patterns of clay minerals in surface sediments from the continental shelf areas off Alaska, Geol. Soc. Am. Bull., 94, 841–854, 1983.
Naidu, A. S., Creager, J. S., and Mowatt, T. C.: Clay mineral dispersal patterns in the North Bering and Chukchi Seas, Mar. Geol., 47, 1–15, 1982.
Nishihara, M., Morri, H., and Koga, Y.: Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum, J. Biochem., 101, 1007–1015, 1987.
Nishino, S., Shimada, K., Itoh, M., and Chiba, S.: Vertical double silicate maxima in the sea-ice reduction region of the western Arctic Ocean: implications for an enhanced biological pump due to sea-ice reduction, J. Oceanogr., 60, 871–883, 2009.
Nwaodua, E., Ortiz, J. D., and Griffith, E. M.: Diffuse spectral reflectance of surficial sediments indicates sedimentary environments on the shelves of the Bering Sea and western Arctic, Mar. Geol., 355, 218–233, 2014.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North Atlantic Oscillation over the past 5200 years, Nat. Geosci., 5, 808–812, 2012.
Ortiz, J. D., Polyak, L., Grebmeier, J. M., Darby, D., Eberl, D. D., Naidu, S., and Nof, D.: Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis, Global Planet. Change, 68, 73–84, 2009.
Ortiz, J. D., Nof, D., Polyak, L., St-Onge, G., Lisé-Pronovost, A., Naidu, S., Darby, D., and Brachfeld, S.: The late Quaternary flow through the Bering Strait has been forced by the Southern Ocean winds, J. Phys. Oceanogr., 42, 2014–2029, 2012.
Osterberg, E. C., Mayewski, P. A., Fisher, D. A., Kreutz, K. J., Maasch, K. A., Sneed, S. B., and Kelsey, E.: Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D., J. Geophys. Res.-Atmos., 119, 11189–11204, https://doi.org/10.1002/2014JD021847, 2014.
Overland, J. O., Adams, J. M., and Bond, N.: Decadal variability of the Aleutian Low and its relation to high-latitude circulation, J. Climate, 12, 1542–1548, 1999.
Paillard, D., Labeyrie, L., and Yion, P.: Macintosh program performs time-series analysis, EOS Trans. AGU 77, Washington, D.C., USA, p. 379, 1996.
Park, Y.-H., Yamamoto, M., Polyak, L., and Nam, S.-I.: Glycerol dialkyl glycerol tetraether variations in the northern Chukchi Sea, Arctic Ocean, during the Holocene, Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-529, 2016.
Petschick, R.: MacDiff 4.2.6., available at: http://www.geol-pal.uni-frankfurt.de/Staff/Homepages/Petschick/classicsoftware.html (last access: 2 September 2017), 2000.
Phillips, R. P. and Grantz, A.: Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic, Mar. Geol. 172, 91–115, 2001.
Pickart, R. S.: Shelfbreak circulation in the Alaskan Beaufort Sea: Mean structure and variability, J. Geophys. Res. 109, C04024, https://doi.org/10.1029/2003JC001912, 2004.
Pickart, R. S., Pratt, L. J., Torres, D. J., Whitledge, T. E., Proshutinsky, A. Y., Aagaard, K., Agnewd, T. A., Moore, G. W. K., and Dail, H. J.: Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea, Deep-Sea Res. Pt. II, 57, 5–26, 2010.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E. T., Xuan, C., Kaufman, D. S., Løvile, R., Schneider, D., Eberl, D. D., Adler, R. E., and Council, E. A.: Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean, Global Planet. Change, 68, 5–17, 2009.
Polyak, L., Belt, S., Cabedo-Sanz, P., Yamamoto, M., and Park, Y.-H.: Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies, The Holocene, 26, 1810–1821, 2016.
Porter, S. E.: Assessing whether climate variability in the Pacific Basin influences the climate over the North Atlantic and Greenland and modulates sea ice extent, PhD Thesis, Ohio State University, Columbus, USA, 222 pp., 2013.
Proshutinsky, A. Y. and Johnson, M. A.: Two circulation regimes of the wind-driven Arctic Ocean, J. Geophys. Res., 102, 12493–12514, 1997.
Qin, W., Amin, S. A., Martens-Habbena, W., Walker, C. B., Urakawa, H., Devol, A. H., Ingalls, A. E., Moffett, J. M., Armbrust, E. V., and Stahl, D. A.: Marine ammonia-oxidizing achaeal isolates display obligate mixotrophy and wide ecotypic variation, P. Natl. Acad. Sci. USA, 111, 12504–12509, 2014.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: Intcal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Richter, I. and Xie, S.: Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming, Clim. Dynam., 35, 551–566, https://doi.org/10.1007/s00382-009-0708-3, 2010.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of sea ice to the Arctic Oscillation, J. Climate, 15, 2648–2663, 2002.
Rimbu, N., Lohmann, G., Kim, J.-H., Arz, H. W., and Schneider, R.: Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data, Geophys. Res. Lett., 30, 1280, https://doi.org/10.1029/2002GL016570, 2003.
Roach, A. T., Aagaard, K., Pease, C. H., Salo, S. A., Weingartner, T., Pavlov, V., and Kulakov, M.: Direct measurements of transport and water properties through Bering Strait, J. Geophys. Res., 100, 18433–18457, 1995.
Sagawa, T., Kuwae, M., Tsuruoka, K., Nakamura, Y., Ikehara, M., and Murayama, M.: Solar forcing of centennial-scale East Asian winter monsoon variability in the mid-to late Holocene, Earth Planet. Sc. Lett., 395, 124–135, 2014.
Sakshaug, E.: Primary and secondary production in the Arctic ocean, in: The Organic Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and Macdonald, R. W., Springer, Berlin, Germany, 57–81, 2004.
Sandal, C. and Nof, D.: The Collapse of the Bering Strait Ice Dam and the Abrupt Temperature Rise in the Beginning of the Holocene, J. Phys. Oceanogr., 38, 1979–1991, 2008.
Sarnthein, M., Gebhardt, H., Kiefer, T., Kucera, M. Cook, M., and Erlenkeuserd, H.: Mid Holocene origin of the sea-surface salinity low in the subarctic North Pacific, Quaternary Sci. Rev., 23, 2089–2099, 2004.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334–1337, 2010.
Shimada, K., Carmack, E., Hatakeyama, K., and Takizawa, T.: Varieties of shallow temperature maximum waters in the Western Canadian Basin of the Arctic Ocean, Geophys. Res. Lett., 28, 3441–3444, 2001.
Shimada, K., Kamoshida, T., Itoh, M., Nishino, S., Carmack, E., McLaughlin, F., Zimmermann, S., and Proshutinsky, A.: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624, 2006.
Shtokman, V. B.: Vliyanie vetra na techeniya v Beringovo Prolive, prichiny ikh bol'shikh skorostei i preobladayueshego severnogo napravleniya, Trans. Inst. Okeanolog., Akad. Nauk SSSR, 25, 171–197, 1957.
Singh, H. K. A., Donohoe, A., Bitz, C. M., Nusbaumer, J., and Noone, D. C.: Greater aerial moisture transport distances with warming amplify interbasin salinity contrasts. Geophys. Res. Lett. 43, 8677–8684, https://doi.org/10.1002/2016GL069796, 2016.
Stein, R.: Developments in Marine Geology: Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment, Elsevier, Amsterdam, the Netherlands, 529 pp., 2008.
Stein, R., Fahl, K., Schade, I., Nanerung, A., Wassmuth, S., Niessen, F., and Nam, S.-I.: Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean), J. Quaternary Sci., 32, 362–379, 2017.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009.
Steinman, B. A., Abbott, M. B., Mann, M. E., Ortiz, J. D., Feng, S., Pompeani, D. P., Stansell, N. D., Anderson, L., Finney, B. P., and Bird, B. W.: Ocean-atmosphere forcing of centennial hydroclimate variability in the Pacific Northwest, Geophys. Res. Lett., 41, 2553–2560, https://doi.org/10.1002/2014GL059499, 2014.
Stigebrandt, A.: The North Pacific: A global-scale estuary, J. Phys. Oceanogr., 14, 464–470, 1984.
Vare L. L., Masse G., and Gregory, T. R.: Sea ice variations in the central Canadian Arctic Archipelago during the Holocene, Quaternary Sci. Rev., 28, 1354–1366, 2009.
Viscosi-Shirley, C., Mammone, K., Pisias, N., and Dymond, J.: Clay mineralogy and multi-element chemistry of surface sediments on Siberian-Arctic shelf: implications for sediment provenance and grain size sorting, Cont. Shelf Res., 23, 1175–1200, 2003.
Vogt, C.: Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes, Reports on Polar Research, 251, 1–309, 1997.
Volkman, J. K.: A review of sterol markers for marine and terrigenous organic matter, Org. Geochem., 9, 83–99, 1986.
Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shekekhova, E., and Tarasov, G.: Clay-mineral distribution in surface sediments of Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways – a synthesis, Boreas, 28, 216–233, 1999.
Walsh, J. J. and Dieterle, D. A.: CO2 cycling in the coastal ocean. I. A numerical analysis of the southeastern Bering Sea, with applications to the Chukchi sea and the northern Gulf of Mexico, Prog. Oceanogr., 34, 335–392, 1994.
Watanabe, E., Onodera, J., Harada, N., Honda, M., Kimoto, K., Kikuchi, T., Nishino, S., Matsuno, K., Yamaguchi, A., Ishida, A., and Kishi, J. M.: Enhanced role of eddies in the Arctic marine biological pump, Nat. Commun., 5, 3950, https://doi.org/10.1038/ncomms4950, 2014.
Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y., and Cavalieri, D.: Circulation on the north central Chukchi Sea shelf, Deep-Sea Res. Pt. II, 52, 3150–3174, 2005.
Winsor, P. and Chapman, D. C.: Pathways of Pacific water across the Chukchi Sea: A numerical model study, J. Geophys. Res., 109, C03002, https://doi.org/10.1029/2003JC001962, 2004.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in Bering Strait fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092, 2012.
Yamamoto-Kawai, M., Carmack, E., and McLaughlin, F.: Nitrogen balance and Arctic throughflow, Nature, 443, p. 43, https://doi.org/10.1038/443043a, 2006.
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the...
Special issue