Articles | Volume 12, issue 10
https://doi.org/10.5194/cp-12-1949-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1949-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Geophysical Institute, University of Bergen, Allégaten 70, 5007 Bergen, Norway
Uni Research Climate, Nygårdsgaten 112, 5008 Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Babette A. A. Hoogakker
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
Arne Winguth
Department of Earth and Environmental Sciences, University of Texas Arlington, P.O. Box 19049, Arlington, TX 76019, USA
Related authors
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Christoph Heinze and Klaus Hasselmann
Biogeosciences, 16, 751–753, https://doi.org/10.5194/bg-16-751-2019, https://doi.org/10.5194/bg-16-751-2019, 2019
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Christoph Heinze, Tatiana Ilyina, and Marion Gehlen
Biogeosciences, 15, 3521–3539, https://doi.org/10.5194/bg-15-3521-2018, https://doi.org/10.5194/bg-15-3521-2018, 2018
Short summary
Short summary
The ocean becomes increasingly acidified through uptake of additional man-made CO2 from the atmosphere. This is impacting ecosystems. In order to find out whether reduced biological production of calcium carbonate shell material of biota is occurring at a large scale, we carried out a model study simulating the changes in oceanic 230Th concentrations with reduced availability of calcium carbonate particles in the water. 230Th can serve as a useful magnifying glass for acidification impacts.
Jörg Schwinger, Jerry Tjiputra, Nadine Goris, Katharina D. Six, Alf Kirkevåg, Øyvind Seland, Christoph Heinze, and Tatiana Ilyina
Biogeosciences, 14, 3633–3648, https://doi.org/10.5194/bg-14-3633-2017, https://doi.org/10.5194/bg-14-3633-2017, 2017
Short summary
Short summary
Transient global warming under the high emission scenario RCP8.5 is amplified by up to 6 % if a pH dependency of marine DMS production is assumed. Importantly, this additional warming is not spatially homogeneous but shows a pronounced north–south gradient. Over the Antarctic continent, the additional warming is almost twice the global average. In the Southern Ocean we find a small DMS–climate feedback that counteracts the original reduction of DMS production due to ocean acidification.
Teresa Beaty, Christoph Heinze, Taylor Hughlett, and Arne M. E. Winguth
Biogeosciences, 14, 781–797, https://doi.org/10.5194/bg-14-781-2017, https://doi.org/10.5194/bg-14-781-2017, 2017
Short summary
Short summary
In this study HAMOCC2.0 is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing within the model. Atmospheric pCO2 is increased at a rate of 1 % annually until stabilized. Our study suggests that expansion in the Pacific Ocean within the model is controlled largely by changes in particulate organic carbon export (POC). The vertical expansion of the OMZs in the Atlantic and Indian oceans is linked to reduced oxygen solubility.
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze
Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, https://doi.org/10.5194/gmd-6-301-2013, 2013
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2675, https://doi.org/10.5194/egusphere-2024-2675, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use an Earth System Model to simulate ocean oxygen during two past warm periods, the Last Interglacial (~129–115 ka) and Marine Isotope Stage (MIS) 9e (~336-321 ka). The global ocean is overall less oxygenated compared to the preindustrial simulation. Large regions in the Mediterranean Sea are oxygen deprived in the Last Interglacial simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African Monsoon and enhanced river run-off.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Christoph Heinze and Klaus Hasselmann
Biogeosciences, 16, 751–753, https://doi.org/10.5194/bg-16-751-2019, https://doi.org/10.5194/bg-16-751-2019, 2019
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Christoph Heinze, Tatiana Ilyina, and Marion Gehlen
Biogeosciences, 15, 3521–3539, https://doi.org/10.5194/bg-15-3521-2018, https://doi.org/10.5194/bg-15-3521-2018, 2018
Short summary
Short summary
The ocean becomes increasingly acidified through uptake of additional man-made CO2 from the atmosphere. This is impacting ecosystems. In order to find out whether reduced biological production of calcium carbonate shell material of biota is occurring at a large scale, we carried out a model study simulating the changes in oceanic 230Th concentrations with reduced availability of calcium carbonate particles in the water. 230Th can serve as a useful magnifying glass for acidification impacts.
Taylor M. Hughlett, Arne M. E. Winguth, and Nan Rosenbloom
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-23, https://doi.org/10.5194/cp-2018-23, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This study used the Community Earth System Model version 1.2 to isolate and compare changes in radiative forcing due to orbital and atmospheric pCO2 concentrations for the Younger Dryas cooling event. It was determined that while neither parameter alone could induce a cooling comparative to the Younger Dryas, the changes in orbital parameters and the resultant changing of radiative forcing imparts a more pronounced effect on the climate than radiative changes due to pCO2.
Jörg Schwinger, Jerry Tjiputra, Nadine Goris, Katharina D. Six, Alf Kirkevåg, Øyvind Seland, Christoph Heinze, and Tatiana Ilyina
Biogeosciences, 14, 3633–3648, https://doi.org/10.5194/bg-14-3633-2017, https://doi.org/10.5194/bg-14-3633-2017, 2017
Short summary
Short summary
Transient global warming under the high emission scenario RCP8.5 is amplified by up to 6 % if a pH dependency of marine DMS production is assumed. Importantly, this additional warming is not spatially homogeneous but shows a pronounced north–south gradient. Over the Antarctic continent, the additional warming is almost twice the global average. In the Southern Ocean we find a small DMS–climate feedback that counteracts the original reduction of DMS production due to ocean acidification.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Teresa Beaty, Christoph Heinze, Taylor Hughlett, and Arne M. E. Winguth
Biogeosciences, 14, 781–797, https://doi.org/10.5194/bg-14-781-2017, https://doi.org/10.5194/bg-14-781-2017, 2017
Short summary
Short summary
In this study HAMOCC2.0 is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing within the model. Atmospheric pCO2 is increased at a rate of 1 % annually until stabilized. Our study suggests that expansion in the Pacific Ocean within the model is controlled largely by changes in particulate organic carbon export (POC). The vertical expansion of the OMZs in the Atlantic and Indian oceans is linked to reduced oxygen solubility.
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber, A. N. LeGrande, D. Pollard, N. Sagoo, M. Siddall, A. Winguth, and P. J. Valdes
Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, https://doi.org/10.5194/cp-10-451-2014, 2014
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze
Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, https://doi.org/10.5194/gmd-6-301-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Abernathey, R., Cerovecki, I., Holland, P., Newsom, E., Mazloff, M., and Talley, L.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., https://doi.org/10.1038/NGEO2749, in press, 2016.
Adkins, J., McIntyre, K., and Schrag, D.: The salinity, temperature, and delta O-18 of the glacial deep ocean, Science, 298, 1769–1773, https://doi.org/10.1126/science.1076252, 2002.
Anklin, M., Barnola, J., Beer, J., Blunier, T., Chappellaz, J., Clausen, H., Dahljensen, D., Dansgaard, W., Deangelis, M., Delmas, R., Duval, P., Fratta, M., Fuchs, A., Fuhrer, K., Gundestrup, N., Hammer, C., Iversen, P., Johnsen, S., Jouzel, J., Kipfstuhl, J., Legrand, M., Lorius, C., Maggi, V., Miller, H., Moore, J., Oeschger, H., Orombelli, G., Peel, D., Raisbeck, G., Raynaud, D., Schotthvidberg, C., Schwander, J., Shoji, H., Souchez, R., Stauffer, B., Steffensen, J., Stievenard, M., Sveinbjornsdottir, A., Thorsteinsson, T., and Wolff, E.: Climate instability during the last interglacial period recorded in the grip ice core, Nature, 364, 203–207, 1993.
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260–263, https://doi.org/10.1038/367260a0, 1994.
Archer, D., Lyle, M., Rodgers, K., and Froelich, P.: What controls opal preservation in tropical deep-sea sediments, Paleoceanography, 8, 7–21, https://doi.org/10.1029/92PA02803, 1993.
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189, https://doi.org/10.1029/1999RG000066, 2000.
Armstrong, R., Lee, C., Hedges, J., Honjo, S., and Wakeham, S.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002.
Bainbridge, A. E.: GEOSECS Atlantic Expedition, Volume 1, Hydrographic Data 1972–1973, National Science Foundation. Superintendent of Documents, US Government Prining Office, Washington D.C., 20402, 121 pp., 1981.
Barker, S. and Elderfield, H.: Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833–836, https://doi.org/10.1126/science.1072815, 2002.
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–338, https://doi.org/10.1038/nature14330, 2015.
Barnola, J., Raynaud, D., Korotkevich, Y., and Lorius, C.: Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408–414, https://doi.org/10.1038/329408a0, 1987.
Becquey, S. and Gersonde, R.: Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic – The Pleistocene record from ODP Site 1090, Palaeogeogr. Palaeocl., 182, 221–239, https://doi.org/10.1016/S0031-0182(01)00497-7, 2002.
Becquey, S. and Gersonde, R.: A 0.55-Ma paleotemperature record from the Subantarctic zone: Implications for Antarctic Circumpolar Current development, Paleoceanography, 18, 1014, https://doi.org/10.1029/2000PA000576, 2003.
Bellerby, R. G. J., Schulz, K. G., Riebesell, U., Neill, C., Nondal, G., Heegaard, E., Johannessen, T., and Brown, K. R.: Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment, Biogeosciences, 5, 1517–1527, https://doi.org/10.5194/bg-5-1517-2008, 2008.
Berger, W. and Keir, R.: Glacial-Holocene Changes in Atmospheric CO2 and the Deep-Sea Record, American Geophysical Union, Washington, D.C., edited by: Hansen, J. E. and Takahashi, T., Geophysical Monograph, 29, 337–351, https://doi.org/10.1029/GM029p0337, 1984.
Berger, W. and Wefer, G.: Productivity of the glacial ocean – discussion of the iron hypothesis, Limnol. Oceanogr., 36, 1899–1918, https://doi.org/10.4319/lo.1991.36.8.1899, 1991.
Bickert, T.: Rekonstruktion der spätquartären Bodenwasserzirkulation im östlichen Südatlantik über stabile Isotope benthischer Foraminiferen, Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, 27, 205 pp., 1992.
Bickert, T. and Mackensen, A.: Last Glacial to Holocene changes in South Atlantic deep water circulation, edited by: Wefer, G., Mulitza, S., and Ratmeyer, S., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 671–695, 1996.
Bickert, T. and Wefer, G.: Late Quaternary deep water circulation in the South Atlantic: Reconstruction from carbonate dissolution and benthic stable isotopes, edited by: Wefer, G., Berger, W. H., Siedler, G., and Webb, D., Springer-Verlag, Berlin, 599–620, 1996.
Bidle, K. and Azam, F.: Accelerated dissolution of diatom silica by marine bacterial assemblages, Nature, 397, 508–512, https://doi.org/10.1038/17351, 1999.
Bolin, B. and Eriksson, E.: Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion, edited by: Bolin, B., Rockefeller Inst., New York, Rossby Memorial Volume, 130–142, 1959.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, https://doi.org/10.1038/365143a0, 1993.
Boudreau, B.: Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments, Springer, Berlin and Heidelberg, 414 pp., 1997.
Boudreau, B. and Imboden, D.: Mathematics of tracer mixing in sediments. 3. The theory of nonlocal mixing within sediments, Am. J. Sci. 287, 693–719, https://doi.org/10.2475/ajs.287.7.693, 1987.
Boyle, E.: Vertical oceanic nutrient fractionation and glacial interglacial CO2 cycles, Nature, 331, 55–56, https://doi.org/10.1038/331055a0, 1988a.
Boyle, E.: Glacial interglacial deep ocean circulation contrast, Chem. Geol., 70, 108–108, https://doi.org/10.1016/0009-2541(88)90504-9, 1988b.
Broecker, W.: Ocean chemistry during glacial time, Geochim. Cosmochim. Ac., 46, 1689–1705, https://doi.org/10.1016/0016-7037(82)90110-7, 1982.
Broecker, W.: Oxygen isotope constraints on surface ocean temperatures, Quaternary Res., 26, 121–134, https://doi.org/10.1016/0033-5894(86)90087-6, 1986.
Broecker, W. and Peng, T.: Carbon cycle – 1985 Glacial to interglacial changes in the operation of the global carbon cycle, Radiocarbon, 28, 309–327, 1986.
Broecker, W., Peacock, S., Walker, S., Weiss, R., Fahrbach, E., Schroeder, M., Mikolajewicz, U., Heinze, C., Key, R., Peng, T., and Rubin, S.: How much deep water is formed in the Southern Ocean?, J. Geophys. Res.-Oceans, 103, 15 833–15 843, https://doi.org/10.1029/98JC00248, 1998.
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380, 2007.
Caldeira, K. and Wickett, M. E.: Oceanography: anthropogenic carbon and ocean pH, Nature, 425, 365–365, https://doi.org/10.1038/425365a, 2003.
Carter, L. and Manighetti, B.: Glacial/interglacial control of terrigenous and biogenic fluxes in the deep ocean off a high input, collisional margin: A 139 kyr-record from New Zealand, Mar. Geol., 226, 307–322, https://doi.org/10.1016/j.margeo.2005.11.004, 2006.
Carter, L., Manighetti, B., Ganssen, G., and Northcote, L.: Southwest Pacific modulation of abrupt climate change during the Antarctic Cold Reversal – Younger Dryas, Palaeogeogr. Palaeocl., 260, 284–298, https://doi.org/10.1016/j.palaeo.2007.08.013, 2008.
Charles, C., Froelich, P., Zibello, M., Mortlock, R., and Morley, J.: Biogenic opal in southern ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation, Paleoceanography, 6, 697–728, https://doi.org/10.1029/91PA02477, 1991.
Chuey, J., Rea, D., and Pisias, N.: Late Pleistocene Paleoclimatology of the central equatorial Pacific – a quantitative record of eolian and carbonate deposition, Quaternary Res., 28, 323–339, https://doi.org/10.1016/0033-5894(87)90001-9, 1987.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., Lourantou, A., Harrison, S., Prentice, I., Kelley, D., Koven, C., and Piao, S.: Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum, Nat. Geosci., 5, 74–79, https://doi.org/10.1038/NGEO1324, 2012.
CLIMAP Project Members: The surface of the ice-age Earth, Science, 191, 1131–1137, 1976.
CLIMAP Project Members: Seasonal Reconstruction of the Earth's surface at the Last Glacial Maximum, Geol. Soc. Am. Map Chart Ser., 36, 1981.
Conway, T., Wolff, E., Roethlisberger, R., Mulvaney, R., and Elderfield, H.: Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum, Nature Communications, 6, 1–9, https://doi.org/10.1038/ncomms8850, 2015.
Crowley, T.: Ice-age terrestrial carbon changes revisited, Global Biogeochem. Cy., 9, 377–389, https://doi.org/10.1029/95GB01107, 1995.
Curry, W. and Oppo, D.: Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the last glacial cycle, Paleoceanography, 12, 1–14, https://doi.org/10.1029/96PA02413, 1997.
Curry, W., Duplessy, J., Labeyrie, L., and Shackleton, N.: Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene, Paleoceanography, 3, 317–341, https://doi.org/10.1029/PA003i003p00317, 1988.
Cutler, K., Edwards, R., Taylor, F., Cheng, H., Adkins, J., Gallup, C., Cutler, P., Burr, G., and Bloom, A.: Rapid sea-level fall and deep-ocean temperature change since the last interglacial period, Earth Planet. Sc. Lett., 206, 253–271, https://doi.org/10.1016/S0012-821X(02)01107-X, 2003.
Dansgaard, W., Johnsen, S., Clausen, H., Dahljensen, D., Gundestrup, N., Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjornsdottir, A., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.
Dickson, A., Sabine, C., and Christian, J., eds.: Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization, Sidney BC, Canada, PICES Special Publication 3, IOCCP Report No. 8, 191 pp., 2007.
Dixit, S., Van Cappellen, P., and van Bennekom, A.: Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments, Mar. Chem., 73, 333–352, https://doi.org/10.1016/S0304-4203(00)00118-3, 2001.
Downes, S., Farneti, R., Uotila, P., Griffies, S., Marsland, S., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Boening, C., Bozec, A., Canuto, V., Danabasoglu, E. C. G., Danilov, S., Diansky, N., Drange, H., Fogli, P., Gusev, A., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A., Nurser, A., Patara, L., Samuels, B., Sidorenko, D., Spence, P., Tsujino, H., Wang, Q., and Yeager, S.: An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations, Ocean Model., 94, 67–94, https://doi.org/10.1016/j.ocemod.2015.07.022, 2015.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.: Late Quaternary variations of sea surface salinity and temperature in the western tropical Atlantic: Evidence from delta O-18 of Globigerinoides sacculifer, Paleoceanography, 12, 764–772, https://doi.org/10.1029/97PA02270, 1997.
Dwyer, G., Cronin, T., Baker, P., Raymo, M., Buzas, J., and Correge, T.: North-Atlantic deep-water temperature-change during the late Pliocene and late quaternary climatic cycles, Science, 270, 1347–1351, https://doi.org/10.1126/science.270.5240.1347, 1995.
Edmond, J. and Gieskes, J.: On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions, Geochim. Cosmochim. Ac., 34, 1261–1291, https://doi.org/10.1016/0016-7037(70)90041-4, 1970.
Farneti, R., Downes, S., Griffies, S., Marsland, S., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Boening, C., Bozec, A., Canuto, V., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H., Fogli, P., Gusev, A., Hallberg, R., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A., Nurser, A., Patara, L., Samuels, B., Sidorenko, D., Tsujino, H., Uotil, P., Wang, Q., and Yeager, S.: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations, Ocean Model., 93, 84–120, https://doi.org/10.1016/j.ocemod.2015.07.009, 2015.
Freudenthal, T.: Reconstruction of productivity gradients in the Canary Island Region off Morocco by means of sinking particles and sediments, Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, 165, 147 pp., 1998.
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno, A., and Wefer, G.: Upwelling intensity and filament activity off Morocco during the last 250,000 years, Deep-Sea Res. Pt. 2, 49, 3655–3674, https://doi.org/10.1016/S0967-0645(02)00101-7, 2002.
Gattuso, J. and Hansson, L. (Eds.): Ocean acidification, Oxford University Press, New York, 326 pp., 2011.
Gordon, A.: Deep Antarctic convection west of Maud Rise, J. Phys. Oceanogr., 8, 600–612, https://doi.org/10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2, 1978.
Gottschalk, J., Skinner, L., Lippold, J., Vogel, H., Frank, N., Jaccard, S., and Waelbroeck, C.: Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes, Nature Communications, 7, 1–11, https://doi.org/10.1038/ncomms11539, 2016.
Greene, A. M., Seager, R., and Broecker, W. S.: Tropical snowline depression at the Last Glacial Maximum: Comparison with proxy records using a single-cell tropical climate model, J. Geophys. Res.-Atmos., 107, 4061, https://doi.org/10.1029/2001JD000670, 2002.
Griffiths, J. D., Barker, S., Hendry, K. R., Thornalley, D. J. R., van de Flierdt, T., Hall, I. R., and Anderson, R. F.: Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4, Paleoceanography, 28, 307–318, https://doi.org/10.1002/palo.20030, 2013.
Haugan, P. and Drange, H.: Effects of CO2 on the ocean environment, Energ. Convers. Manage., 37, 1019–1022, https://doi.org/10.1016/0196-8904(95)00292-8, 1996.
Heinze, C.: Towards the time dependent modeling of sediment core data on a global basis, Geophys. Res. Lett., 28, 4211–4214, https://doi.org/10.1029/2001GL013479, 2001.
Heinze, C. and Hasselmann, K.: Inverse multiparameter modeling of paleoclimate carbon cycle indices, Quaternary Res., 40, 281–296, https://doi.org/10.1006/qres.1993.1082, 1993.
Heinze, C. and Maier-Reimer, E.: The Hamburg Oceanic Carbon Cycle Circulation Model Version “HAMOCC2s” for long time integrations, Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany, Series: Technical Reports, no. 20, ISSN 0940-9327, 1999.
Heinze, C., Maier-Reimer, E., and Wynn, K.: Glacial pCO2 reduction by the world ocean: Experiments with the Hmburg carbon cycle model, Paleoceanography, 6, 395–430, https://doi.org/10.1029/91PA00489, 1991.
Heinze, C., Maier-Reimer, E., Winguth, A., and Archer, D.: A global oceanic sediment model for long-term climate studies, Global Biogeochem. Cy., 13, 221–250, https://doi.org/10.1029/98GB02812, 1999.
Heinze, C., Hupe, A., Emaier-Reimer, Dittert, N., and Ragueneau, O.: Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations, Global Biogeochem. Cy., 17, 1086, https://doi.org/10.1029/2002GB001943, 2003.
Heinze, C., Gehlen, M., and Land, C.: On the potential of 230Th, 231Pa, and 10Be for marine rain ratio determinations: A modeling study, Global Biogeochem. Cy., 20, GB2018, https://doi.org/10.1029/2005GB002595, 2006.
Heinze, C., Kriest, I., and Maier-Reimer, E.: Age offsets among different biogenic and lithogenic components of sediment cores revealed by numerical modeling, Paleoceanography, 24, PA4214, https://doi.org/10.1029/2008PA001662, 2009.
Hodell, D.: Late Pleistocene paleoceanography of the South Atlantic sector of the Southern Ocean: Ocean Drilling Program Hole 704A, Paleoceanography, 8, 47–67, https://doi.org/10.1029/92PA02774, 1993.
Hodell, D., Charles, C., Curtis, J., Mortyn, P., Ninnemann, U., and Venz, K.: Data Report: Oxygen isotope stratigraphy of ODP Leg 117 sites 1088, 1089, 1090, 1093, and 1094, edited by: Gersonde, R., Hodell, D. A., and Blum, P., ODP, College Station, TX, 1–26, https://doi.org/10.2973/odp.proc.sr.177.120.2003, 2003a.
Hodell, D., Venz, K., Charles, C., and Ninnemann, U.: Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean, Geochem. Geophy. Geosy., 4, 1004, https://doi.org/10.1029/2002GC000367, 2003b.
Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W., Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R., Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last 120?kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, 2016.
Hoogakker, B., Elderfield, H., Schmiedl, G., McCave, I., and Rickaby, R.: Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin, Nat. Geosci., 8, 40–43, https://doi.org/10.1038/NGEO2317, 2015.
Howard, W. and Prell, W.: Late Quaternary surface circulation of the southern Indian Ocean and its relationship to orbital variations, Paleoceanography, 7, 79–117, https://doi.org/10.1029/91PA02994, 1992.
Hyun, S., Ahagon, N., and Yoon, H.: Milankovitch cycles and paleoceanographic evolution within sediments from ODP Sites 980 and 983 of the North Atlantic Ocean, Geosci. J., 9, 235–242, https://doi.org/10.1007/BF02910583, 2005.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K. P.: Phytoplankton calcification in a high-CO2 world., Science, 320, 336–40, https://doi.org/10.1126/science.1154122, 2008.
Imbrie, J., McIntyre, A., and Mix, A.: Oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies, edited by: Berger, A., Schneider, S. H., and J.-C. Duplessy, Kluwer Academic, Boston, 121–164, 1989.
Ingle, S.: Solubility of calcite in the ocean, Mar. Chem., 3, 301–319, https://doi.org/10.1016/0304-4203(75)90010-9, 1975.
Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M., Plattner, G.-K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., and Weaver, A. J.: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, 2013.
Jouzel, J.: EPICA Dome C Ice Cores Deuterium Data, IGBP PAGES, World Data Center for Paleoclimatology, Data Contribution Series no. 2004-038. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, https://doi.org/10.3334/CDIAC/cli.007, 2004.
Jouzel, J., Lorius, C., Petit, J., Genthon, C., Barkov, N., Kotlyakov, V., and Petrov, V.: Vostok ice core – a continuous isotope temperature record over the last climatic cycle (160,000 years), Nature, 329, 403–408, https://doi.org/10.1038/329403a0, 1987.
Jung, S. and Sarnthein, M.: Stable isotope data of sediment cores GIK23415-9, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.112912, 2003a.
Jung, S. and Sarnthein, M.: Stable isotope data of sediment cores GIK23414-9, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.112911, 2003b.
Jung, S. and Sarnthein, M.: Stable isotope analysis of foraminifera from sediment cores GIK17049-6, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.112908, 2004a.
Jung, S. and Sarnthein, M.: Stable isotope data of sediment cores GIK23418-8, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.136425, 2004b.
Kawahata, H., Suzuki, A., and Ahagon, N.: Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330,000 years, Mar. Geol., 149, 155–176, https://doi.org/10.1016/S0025-3227(98)00039-5, 1998.
Kawahata, H., Okamoto, T., Matsumoto, E., and Ujiie, H.: Fluctuations of eolian flux and ocean productivity in the mid-latitude North Pacific during the last 200 kyr, Quaternary Sci. Rev., 19, 1279–1291, https://doi.org/10.1016/S0277-3791(99)00096-7, 2000.
Kawamura, H., Holbourn, A., and Kuhnt, W.: Climate variability and land-ocean interactions in the Indo Pacific Warm Pool: A 460-ka palynological and organic geochemical record from the Timor Sea, Marine Micropaleontol., 59, 1–14, https://doi.org/10.1016/j.marmicro.2005.09.001, 2006.
Keigwin, L.: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic, Paleoceanography, 19, PA4012, https://doi.org/10.1029/2004PA001029, 2004.
Kirst, G.: Rekonstruktion von Oberflächenwassertemperaturen im östlichen Südatlantik anhand von Alkenonen, Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, 118, 130 pp., 1998.
Kirst, G., Schneider, R., Müller, P., Von Storch, I., and Wefer, G.: Late Quaternary temperature variability in the Benguela Current System derived from alkenones, Quaternary Res., 52, 92–103, https://doi.org/10.1006/qres.1999.2040, 1999.
Klaas, C. and Archer, D.: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001GB001765, 2002.
Kuhn, G.: Calcium carbonate content of sediment core PS2489-2, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.56102, 1999.
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., Gallardo, L., and Pol-Holz, R. D.: Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42, 6014–6023, https://doi.org/10.1002/2015GL064250, 2015.
LaMontagne, R., Murray, R., Wei, K., Leinen, M., and Wang, C.: Decoupling of carbonate preservation, carbonate concentration, and biogenic accumulation: A 400-kyr record from the central equatorial Pacific Ocean, Paleoceanography, 11, 553–562, https://doi.org/10.1029/96PA02249, 1996.
Lanczos, C.: Linear differential operators, D. Van Nostrand Company Ltd., London, New York, 564 pp., 1961.
Laws, E., Falkowski, P., Smith, W., Ducklow, H., and McCarthy, J.: Temperature effects on export production in the open ocean, Global Biogeochem. Cy., 14, 1231–1246, https://doi.org/10.1029/1999GB001229, 2000.
Lean, C. and McCave, I.: Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean, Earth Planet. Sc. Lett., 163, 247–260, https://doi.org/10.1016/S0012-821X(98)00191-5, 1998.
Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, 2014.
Li, Y. and Gregory, S.: Diffusion of ions in sea water and deep sea sediments, Geochim. Cosmochim. Ac., 38, 703–714, https://doi.org/10.1016/0016-7037(74)90145-8, 1974.
Little, M., Schneider, R., Kroon, D., Bickert, T., and Wefer, G.: Rapid palaeoceanographic changes in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera, Palaeogeogr. Palaeocl., 130, 135–161, https://doi.org/10.1016/S0031-0182(96)00136-8, 1997.
Lyle, M., Mix, A., and Pisias, N.: Patterns of CaCO3 deposition in the eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a southeast Pacific depositional spike during marine isotope stage (MIS) 2, Paleoceanography, 17, 1013, https://doi.org/10.1029/2000PA000538, 2002.
Mackensen, A. and Bickert, T.: Stable Carbon Isotopes in Benthic Foraminifera: Proxies for Deep and Bottom water Circulation and New Production, edited by: Fischer, G. and Wefer, G., Springer, Berlin, Heidelberg, 229–254, 1999.
Mackensen, A., Grobe, H., Hubberten, H., and Kuhn, G.: Benthic foraminiferal assemblages and the δ13C-signal in the Atlantic sector of the Southern Ocean: glacial-to-interglacial contrasts, edited by: Zahn, R., Pederson, T. F., Kaminiski, M. A., and Labeyrie, L., Springer-Verlag, Berlin, Heidelberg, 105–144, 1994.
Maeda, L., Kawahata, H., and Nohara, M.: Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western North Pacific during the late Quaternary, Mar. Geol., 189, 197–214, https://doi.org/10.1016/S0025-3227(02)00405-X, 2002.
Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S., Prentice, I., Schulz, M., and Rodhe, H.: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res.-Atmos., 104, 15895–15916, https://doi.org/10.1029/1999JD900084, 1999.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model – preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677, https://doi.org/10.1029/93GB01355, 1993.
Maier-Reimer, E. and Hasselmann, K.: Transport and storage of CO2 in the ocean – an inorganic ocean-circulation carbon cycle model, Clim. Dynam., 2, 63–90, https://doi.org/10.1007/BF01054491, 1987.
Maier-Reimer, E., Mikolajewicz, U., and Hasselmann, K.: Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731–757, https://doi.org/10.1175/1520-0485(1993)023<0731:MCOTHL>2.0.CO;2, 1993.
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1 – Technical Description Release 1.1, Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany, Series: Berichte zur Erdsystemforschung, no. 14, ISSN 1614-1199, 2005.
MARGO Project Members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, https://doi.org/10.1038/NGEO412, 2009.
Martin, B.: Statistics for physicists, Academic Press, London and New York, 209 pp., 1971.
Martin, J., Coale, K., Johnson, K., Gordon, S. F. R., Tanner, S., Hunter, C., ELROD, V., Coley, J. N. T., Barber, R., Lindley, S., Watson, A., Vanscoy, K., Law, C., Liddicoat, M., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson, A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F., Lee, K., Yao, W., Zhang, J., Friedrich, G., Sakamoto, C., Chavez, F., Buck, K., Kolber, Z., Greene, R., Falkowski, P., Chisholm, S., Hoge, F., Swift, R., Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale, N.: Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123–129, https://doi.org/10.1038/371123a0, 1994.
Martinson, D., Pisias, N., Hays, J., Imbrie, J., Moore, T., and Shackleton, N.: Age Dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy, Quaternary Res., 27, 1–29, https://doi.org/10.1016/0033-5894(87)90046-9, 1987.
Matsumoto, K., Sarmiento, J., and Brzezinski, M.: Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2, Global Biogeochem. Cy., 16, 1031, https://doi.org/10.1029/2001GB001442, 2002.
Matsumoto, K., Hashioka, T., and Yamanaka, Y.: Effect of temperature-dependent organic carbon decay on atmospheric pCO2, J. Geophys. Res.-Biogeo., 112, G02007, https://doi.org/10.1029/2006JG000187, 2007.
Matsu'ura, M. and Hirata, N.: Generalized least-squares solution to quasi-linear inverse problems with a priori information, J. Phys. Earth, 30, 451–468, https://doi.org/10.1029/RG010i001p00251, 1982.
McCave, I., Carter, L., and Hall, I.: Glacial-interglacial changes in water mass structure and flow in the SW Pacific Ocean, Quaternary Sci. Rev., 27, 1886–1908, https://doi.org/10.1016/j.quascirev.2008.07.010, 2008.
McIntyre, A.: Surface water response of the equatorial Atlantic Ocean to orbital forcing, Paleoceanography, 4, 19–55, https://doi.org/10.1029/PA004i001p00019, 1989.
McIntyre, A. and Imbrie, J.: Stable isotopes of sediment core V30-97 (specmap.011), data set, PANGAEA, https://doi.org/10.1594/PANGAEA.56356, 2000.
Mehrbach, C., Culberson, C., Hawley, J., and Pytkowic, R.: Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Mignot, J., Swingedouw, D., Deshayes, J., Marti, O., Talandier, C., Seferian, R., Lengaigne, M., and Madec, G.: On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state comparison, Ocean Model., 72, 167–184, https://doi.org/10.1016/j.ocemod.2013.09.001, 2013.
Mix, A. C.: Carbon 13 in Pacific deep and intermediate waters, 0–370 KA: Implications for ocean circulation and Pleistocene CO2, Paleoceanography, 6, 205–226, https://doi.org/10.1029/90PA02303, 1991.
Mollenhauer, G., Schneider, R., Müller, P., Spiess, V., and Wefer, G.: Glacial/interglacial variability in the Benguela upwelling system: Spatial distribution and budgets of organic carbon accumulation, Global Biogeochem. Cy., 16, 1134, https://doi.org/10.1029/2001GB001488, 2002.
Moy, A., Howard, W., and Gagan, M.: Late Quaternary palaeoceanography of the Circumpolar Deep Water from the South Tasman Rise, J. Quaternary Sci., 21, 763–777, https://doi.org/10.1002/jqs.1067, 2006.
Müller, P.: Carbon and nitrogen data of sediment core GeoB1711-4, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.143593, 2006.
Murray, R., Knowlton, C., Leinen, M., Mix, A., and Polsky, C.: Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr, Paleoceanography, 15, 570–592, https://doi.org/10.1029/1999PA000457, 2000.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr, Nature, 295, 220–223, https://doi.org/10.1038/295220a0, 1982.
Ninkovich, D. and Shackleton, N.: Distribution, stratigraphic position and age of ash layer-L, in Panama Basin region, Earth Planet. Sc. Lett., 27, 20–34, https://doi.org/10.1016/0012-821X(75)90156-9, 1975.
O'ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum, Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, 2013.
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years, Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010.
Olsen, S., Shaffer, G., and Bjerrum, C.: Ocean oxygen isotope constraints on mechanisms for millennial-scale climate variability, Paleoceanography, 20, PA1014, https://doi.org/10.1029/2004PA001063, 2005.
Orr, J.: Global Ocean Storage of Anthropogenic Carbon (GOSAC), Tech. rep., IPSL/CNRS, Saclay, France, eC Environment and Climate Programme (Contract ENV4-CT97-0495), 2002.
Parsons, T. and Takahashi, M.: Biological Oceanographic Processes, Pergamon Press, London, 166 pp., 1973.
Pierre, C., Saliege, J., Urrutiaguer, M., and Giraudeau, J.: Stable isotope record of the last 500 k.y. at Site 1087 (Southern Cape Basin), Proc. Ocean Drill. Program Sci. Results, 19, 22 pp., 2004.
Pisias, N. and Mix, A.: Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: Evidence from Radiolaria microfossils, Paleoceanography, 12, 381–393, https://doi.org/10.1029/97PA00583, 1997.
Ragueneau, O., Treguer, P., Leynaert, A., Anderson, R., Brzezinski, M., DeMaster, D., Dugdale, R., Dymond, J., Fischer, G., Francois, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D., and Quéguiner, B.: A review of the Si cycle in the modem ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317–365, https://doi.org/10.1016/S0921-8181(00)00052-7, 2000.
Rau, A., Rogers, J., Lutjeharms, J., Giraudeau, J., Lee-Thorp, J., M.-T. Chen, and Waelbroeck, C.: A 450-kyr record of hydrological conditions on the western Agulhas Bank Slope, south of Africa, Mar. Geol., 180, 183–201, https://doi.org/10.1016/S0025-3227(01)00213-4, 2002.
Raven, J.: Ocean acidification due to increasing atmospheric carbon dioxide, The Royal Society (Science Policy Section), London, 60 pp., 2005.
Rea, D., Chambers, L., Chuey, J., Janacek, T., Leinen, M., and Pisias, N.: A 420,000-year record of cyclicity in oceanic and atmospheric processes from the eastern equatorial Pacific, Paleoceanography, 1, 577–586, https://doi.org/10.1029/PA001i004p00577, 1986.
Retallack, G. J.: Methane release from igneous intrusion of coal during late permian extinction events, J. Geol., 116, 1–20, https://doi.org/10.1086/524120, 2008.
Ridgwell, A.: An end to the rain ratio reign?, Geochem. Geophy. Geosy., 4, 1051, https://doi.org/10.1029/2003GC000512, 2003.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M.: Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364–367, https://doi.org/10.1038/35030078, 2000.
Riebesell, U., Schulz, K., Bellerby, R., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J., and Zöllner, E.: Enhanced biological carbon consumption in a high CO2 ocean, Nature, 450, 545–548, https://doi.org/10.1038/nature06267, 2007.
Roberts, J., Gottschalk, J., Skinner, L., Peck, V., Kender, S., Elderfield, H., Waelbroeck, C., Riveiros, N., and Hodell, D.: Evolution of South Atlantic density and chemical stratification across the last deglaciation, P. Natl. Acad. Sci. USA, 113, 514–519, https://doi.org/10.1073/pnas.1511252113, 2016.
Roy, T., Bopp, L., Gehlen, M., Schneider, B., Cadule, P., Froelicher, T., Segschneider, J., Tjiputra, J., Heinze, C., and Joos, F.: Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis, J. Climate, 24, 2300–2318, https://doi.org/10.1175/2010JCLI3787.1, 2011.
Ruddiman, W. and Farrell, J.: Calcium carbonate content of sediment core RC13-228, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.51105, 1996a.
Ruddiman, W. and Farrell, J.: Calcium carbonate content of sediment core V25-59, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.51257, 1996b.
Ruddiman, W., Raymo, M., Martinson, D., Clement, B., and Backman, J.: Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean, Paleoceanography, 4, 353–412, https://doi.org/10.1029/PA004i004p00353, 1989.
Sarnthein, M., Erlenkeuser, H., Grafenstein, R. V., and Schröder, C.: Stable-isotope stratigraphy for the last 750,000 years: “Meteor” core 13519 from the eastern equatorial Atlantic, Meteor. Forschungsergeb., Reihe C, 38, 9–24, 1984.
Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrei, L., Erlenkeuser, H., and Ganssen, G.: Changes in east Atlantic deep-water circulation over the last 30,000 years – 8 time slice reconstructions, Paleoceanography, 9, 209–267, https://doi.org/10.1029/93PA03301, 1994.
Schlünz, B.: Riverine Organic Carbon Input into the Ocean in Relation to Late Quaternary Climate Change, Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, 116, 136 pp., 1998.
Schlünz, B., Schneider, R., Müller, P., and Wefer, G.: (Table 2) Total organic and inorganic carbon contents, and stable carbon isotope ratios of sediment core GeoB3935-2, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.54943, 2000a.
Schlünz, B., Schneider, R., Müller, P., and Wefer, G.: Late Quaternary organic carbon accumulation south of Barbados: influence of the Orinoco and Amazon rivers?, Deep-Sea Res. Pt. 1, 47, 1101–1124, https://doi.org/10.1016/S0967-0637(99)00076-X, 2000b.
Schmiedl, G. and Mackensen, A.: Late quaternary paleoproductivity and deep water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera, Palaeogeogr. Palaeocl., 130, 43–80, https://doi.org/10.1016/S0031-0182(96)00137-X, 1997.
Schmiedl, G. and Mackensen, A.: Stable oxygen isotope records of different benthic foraminiferal species of core GeoB3004-1 from the western Arabian Sea, data set, PANGAEA, https://doi.org/10.1594/PANGAEA.548185, 2006.
Shackleton, N.: Carbon-13 in Uvigerina: Tropical rain forest history and the equatorial Pacific carbonate dissolution cycles, in: The fate of fossil fuel CO2 in the oceans, edited by: Andersen, N. R. and Malahoff, A., Plenum, New York, 401–428, 1977.
Shackleton, N. and Pisias, N.: Atmospheric carbon dioxide, orbital forcing, and climate, American Geophysical Union, Washington, D.C., edited by: Sundquist, E. T. and Broecker, W. S., Geophysical Monograph 32, 303–317, 1985.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable carbon cycle-climate relationship during the Late Pleistocene., Science, 310, 1313–1317, https://doi.org/10.1126/science.1120130, 2005.
Sigman, D. and Boyle, E.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–69, https://doi.org/10.1038/35038000, 2000.
Skinner, L., Shackleton, N., and Elderfield, H.: Millennial-scale variability of deep-water temperature and delta δ18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP, Geochem. Geophy. Geosy., 4, 1098, https://doi.org/10.1029/2003GC000585, 2003.
Smith, C. and Rabouille, C.: What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux, Limnol. Oceanogr., 47, 418–426, https://doi.org/10.4319/lo.2002.47.2.0418, 2002.
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J., Schlosser, P., Broecker, W., and Bonani, G.: Cooling of tropical Brazil (5 °C) during the last glacial maximum, Science, 269, 379–383, https://doi.org/10.1126/science.269.5222.379, 1995.
Svensen, H., Planke, S., Polozov, A., Schmidbauer, N., Corfu, F., Podladchikov, Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Thomson, J., Nixon, S., Summerhayes, C., Schönfeld, J., Zahn, R., and Grootes, P.: Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics, Earth Planet. Sc. Lett., 165, 255–270, https://doi.org/10.1016/S0012-821X(98)00265-9, 1999.
Thomson, J., Nixon, S., Summerhayes, C., Rohling, E., Schönfeld, J., Zahn, R., Grootes, P., Abrantes, F., Gaspar, L., and Vaqueiro, S.: Enhanced productivity on the Iberian margin during glacial/interglacial transitions revealed by barium and diatoms, J. Geol. Soc., 157, 667–677, https://doi.org/10.1144/jgs.157.3.667, 2000.
Toggweiler, J., Russell, J., and Carson, S.: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, https://doi.org/10.1029/2005PA001154, 2006.
Turley, C. and Mackie, P.: Bacterial and cyanobacterial flux to the deep NE Atlantic on sedimenting particles, Deep-Sea Res. Pt. 1, 42, 1453–1474, https://doi.org/10.1016/0967-0637(95)00056-C, 1995.
Ullman, W. and Aller, R.: Diffusion coefficients in nearshore marine sediments, Limnol. Oceanogr., 27, 552–556, https://doi.org/10.4319/lo.1982.27.3.0552, 1982.
Van Cappellen, P., Dixit, S., and van Beusekom, J.: Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates, Global Biogeochem. Cy., 16, 1075, https://doi.org/10.1029/2001GB001431, 2002.
Verardo, D. and McIntyre, A.: Production and destruction: Control of biogenous sedimentation in the tropical Atlantic 0–300,000 Years B.P., Paleoceanography, 9, 63–86, https://doi.org/10.1029/93PA02901, 1994.
Watson, A. and Garabato, A.: The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change, Tellus B, 58, 73–87, https://doi.org/10.1111/j.1600-0889.2005.00167.x, 2006.
Watson, A., Vallis, G., and Nikurashin, M.: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci., 8, 861–864, https://doi.org/10.1038/NGEO2538, 2015.
Weiss, R.: The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res., 17, 721–735, https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
Weiss, R.: Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Weyhenmeyer, C., Burns, S., Waber, H., Aeschbach-Hertig, W., Kipfer, R., Loosli, H., and Matter, A.: Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters, Science, 287, 842–845, https://doi.org/10.1126/science.287.5454.842, 2000.
Wiggins, R.: The general linear inverse problem: Implication of surface waves and free oscillations for Earth structure, Rev. Geophys., 10, 251–285, https://doi.org/10.1029/RG010i001p00251, 1972.
Winguth, A., Archer, D., Duplessy, J., Maier-Reimer, E., and Mikolajewicz, U.: Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions, Paleoceanography, 14, 304–323, https://doi.org/10.1029/1999PA900002, 1999.
Wunsch, C.: Tracer inverse problems, Kluwer Academic Publishers, Dordrecht, Anderson, D. L. T. and Willebrand, J., 1–77, 1989.
Yu, J., Anderson, R., and Rohling, E.: Deep Ocean Carbonate Chemistry and Glacial-Interglacial Atmospheric CO2 Changes, Oceanography, 27, 16–25, https://doi.org/10.5670/oceanog.2014.04, 2014.
Zabel, M., Bickert, T., and Dittert, L.: Significance of the sedimentary Al : Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic, Paleoceanography, 14, 789–799, https://doi.org/10.1029/1999PA900027, 1999.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zahn, R., Wynn, K., and Sarnthein, M.: Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina Peregrina group and Cibicidoides Wuellerstorfi, Paleoceanography, 1, 27–42, https://doi.org/10.1029/PA001i001p00027, 1986.
Zahn, R., Schönfeld, J., Kudrass, H., Park, M., H Erlenkeuser, H., and Grootes, P.: Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafted detritus records from core SO75-26KL, Portuguese margin, Paleoceanography, 12, 696–710, https://doi.org/10.1029/97PA00581, 1997.
Zeng, N.: Glacial-interglacial atmospheric CO2 change – The glacial burial hypothesis, Adv. Atmos. Sci., 20, 677–693, https://doi.org/10.1007/BF02915395, 2003.
Zondervan, I., Zeebe, R., Rost, B., and Riebesell, U.: Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2, Global Biogeochem. Cy., 15, 507–516, https://doi.org/10.1029/2000GB001321, 2001.
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a...