Articles | Volume 12, issue 9
Clim. Past, 12, 1829–1846, 2016
Clim. Past, 12, 1829–1846, 2016

Research article 08 Sep 2016

Research article | 08 Sep 2016

The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model

Marlene Klockmann et al.

Related authors

Heinrich events show two-stage climate response in transient glacial simulations
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168,,, 2019
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Pleistocene
Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 1721–1737,,, 2016
Short summary
The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum
J. M. Marson, I. Wainer, M. M. Mata, and Z. Liu
Clim. Past, 10, 1723–1734,,, 2014

Cited articles

Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 8, 3621–3637,, 2015.
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, 2013.
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The Salinity, Temperature, and δ18O of the Glacial Deep Ocean, Science, 298, 1769–1773, 2002.
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376,, 2013.
Argus, D. F., Peltier, W., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, 2014.
Short summary
We study the response of the glacial AMOC to different forcings in a coupled AOGCM. The depth of the upper overturning cell remains almost unchanged in response to the full glacial forcing. This is the result of two opposing effects: a deepening due to the ice sheets and a shoaling due to the low GHG concentrations. Increased brine release in the Southern Ocean is key to the shoaling. With glacial ice sheets, a shallower cell can be simulated with GHG concentrations below the glacial level.