Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatial and temporal oxygen isotope variability in northern Greenland – implications for a new climate record over the past millennium
S. Weißbach
CORRESPONDING AUTHOR
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-
und Meeresforschung, Bremerhaven, Germany
A. Wegner
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-
und Meeresforschung, Bremerhaven, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-
und Meeresforschung, Potsdam, Germany
H. Oerter
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-
und Meeresforschung, Bremerhaven, Germany
B. M. Vinther
Centre for Ice and Climate, Niels Bohr Institute,
University of Copenhagen, Copenhagen, Denmark
S. Kipfstuhl
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-
und Meeresforschung, Bremerhaven, Germany
Related authors
No articles found.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1691, https://doi.org/10.5194/egusphere-2024-1691, 2024
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate 8.68 ± 0.09 million years ago. We show that when global average temperature was about 4.5 °C warmer than today (similar to what’s expected in the coming decades should carbon emissions continue unabated), Arctic temperature increased by more than 18 °C. Similar levels of Arctic warming in the future would see huge areas of permafrost (permanently frozen ground) thaw and release greenhouse gases to the atmosphere.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Romilly Harris Stuart, Anne-Katrine Faber, Sonja Wahl, Maria Hörhold, Sepp Kipfstuhl, Kristian Vasskog, Melanie Behrens, Alexandra M. Zuhr, and Hans Christian Steen-Larsen
The Cryosphere, 17, 1185–1204, https://doi.org/10.5194/tc-17-1185-2023, https://doi.org/10.5194/tc-17-1185-2023, 2023
Short summary
Short summary
This empirical study uses continuous daily measurements from the Greenland Ice Sheet to document changes in surface snow properties. Consistent changes in snow isotopic composition are observed in the absence of deposition due to surface processes, indicating the isotopic signal of deposited precipitation is not always preserved. Our observations have potential implications for the interpretation of water isotopes in ice cores – historically assumed to reflect isotopic composition at deposition.
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Helle Astrid Kjær, Patrick Zens, Ross Edwards, Martin Olesen, Ruth Mottram, Gabriel Lewis, Christian Terkelsen Holme, Samuel Black, Kasper Holst Lund, Mikkel Schmidt, Dorthe Dahl-Jensen, Bo Vinther, Anders Svensson, Nanna Karlsson, Jason E. Box, Sepp Kipfstuhl, and Paul Vallelonga
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-337, https://doi.org/10.5194/tc-2020-337, 2021
Manuscript not accepted for further review
Short summary
Short summary
We have reconstructed accumulation in 6 firn cores and 8 snow cores in Northern Greenland and compared with a regional Climate model over Greenland. We find the model underestimate precipitation especially in north-eastern part of the ice cap- an important finding if aiming to reconstruct surface mass balance.
Temperatures at 10 meters depth at 6 sites in Greenland were also determined and show a significant warming since the 1990's of 0.9 to 2.5 °C.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, and Erik Jeppesen
Biogeosciences, 16, 4261–4275, https://doi.org/10.5194/bg-16-4261-2019, https://doi.org/10.5194/bg-16-4261-2019, 2019
Short summary
Short summary
The effects of seabird presence on permafrost peat evolution in NW Greenland were studied by tracing changes in stable C and N isotope composition along the path from bird sources into permafrost peat. The permafrost growth was triggered by organic matter and nutrient input since the neoglacial cooling and concurrent polynya establishment. The study deals with the complex response of biologic and permafrost dynamics to High Arctic climatic and oceanographic conditions of the Late Holocene.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Tetsuro Taranczewski, Johannes Freitag, Olaf Eisen, Bo Vinther, Sonja Wahl, and Sepp Kipfstuhl
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-280, https://doi.org/10.5194/tc-2018-280, 2019
Preprint withdrawn
Short summary
Short summary
We used melt layers detected in ice cores from the Renland ice cap in East Greenland to find evidence of past climate trends in this region. Our record provides such information for the past 10,000 years. We developed an attempt to increase the reliability of such a record by correcting deformation-induced biases. It proves that such simple to obtain melt records can be used to gather information about paleoclimate especially for regions where climate records are sparse.
Josefine Walz, Christian Knoblauch, Ronja Tigges, Thomas Opel, Lutz Schirrmeister, and Eva-Maria Pfeiffer
Biogeosciences, 15, 5423–5436, https://doi.org/10.5194/bg-15-5423-2018, https://doi.org/10.5194/bg-15-5423-2018, 2018
Short summary
Short summary
We investigate potential CO2 and CH4 production in degrading ice-rich permafrost in northeastern Siberia, deposited under different climatic conditions. With laboratory incubations, it could be shown that Late Pleistocene yedoma deposits generally produced more CO2 than Holocene deposits. Thus, OM decomposability needs to be interpreted against the paleoenvironmental background. However, OM decomposability cannot be generalized solely based on the stratigraphic position.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727–2741, https://doi.org/10.5194/tc-11-2727-2017, https://doi.org/10.5194/tc-11-2727-2017, 2017
Short summary
Short summary
The optical size of snow grains (ropt) affects the reflectivity of snow surfaces and thus the local surface energy budget in particular in polar regions. The temporal evolution of ropt retrieved from ground-based, airborne, and spaceborne remote sensing could reproduce optical in situ measurements for a 2-month period in central Antarctica (2013/14). The presented validation study provided a unique testbed for retrievals of ropt under Antarctic conditions where in situ data are scarce.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
The Cryosphere, 11, 2175–2188, https://doi.org/10.5194/tc-11-2175-2017, https://doi.org/10.5194/tc-11-2175-2017, 2017
Short summary
Short summary
The importance of post-depositional changes for the temperature interpretation of water isotopes is poorly constrained by observations. Here, for the first time, temporal isotope changes in the open-porous firn are directly analysed using a large array of shallow isotope profiles. By this, we can reject the possibility of post-depositional change beyond diffusion and densification as the cause of the discrepancy between isotope and local temperature variations at Kohnen Station, East Antarctica.
Ilka Weikusat, Ernst-Jan N. Kuiper, Gill M. Pennock, Sepp Kipfstuhl, and Martyn R. Drury
Solid Earth, 8, 883–898, https://doi.org/10.5194/se-8-883-2017, https://doi.org/10.5194/se-8-883-2017, 2017
Short summary
Short summary
Understanding the flow of large ice masses on Earth is a major challenge in our changing climate. Deformation mechanisms are governed by the strong anisotropy of ice. As anisotropy is currently moving into the focus of ice sheet flow studies, we provide a detailed analysis of microstructure data from natural ice core samples which directly relate to anisotropic plasticity. Our findings reveal surprising dislocation activity which seems to contradict the concept of macroscopic ice anisotropy.
Thomas Opel, Sebastian Wetterich, Hanno Meyer, Alexander Y. Dereviagin, Margret C. Fuchs, and Lutz Schirrmeister
Clim. Past, 13, 587–611, https://doi.org/10.5194/cp-13-587-2017, https://doi.org/10.5194/cp-13-587-2017, 2017
Short summary
Short summary
We studied late Quaternary permafrost at the Oyogos Yar coast (Dmitry Laptev Strait) to reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic. Our ice-wedge stable isotope record, combined with data from Bol'shoy Lyakhovsky Island, indicates coldest winter temperatures during MIS5 and MIS2, warmest conditions during the Holocene, i.e. today, and non-stable winter climate during MIS3. New IRSL ages reveal high climate variability during MIS5.
Anne-Katrine Faber, Bo Møllesøe Vinther, Jesper Sjolte, and Rasmus Anker Pedersen
Atmos. Chem. Phys., 17, 5865–5876, https://doi.org/10.5194/acp-17-5865-2017, https://doi.org/10.5194/acp-17-5865-2017, 2017
Short summary
Short summary
The recent decades loss of Arctic sea ice provide an interesting opportunity to study the impact of sea ice changes on the isotopic composition of Arctic precipitation. Using a climate model that can simulate water isotopes, we find that reduced sea ice extent yields more enriched isotope values while increased sea ice extent yields more
depleted isotope values. Results also show that the spatial distribution of the sea ice extent are important.
Jan Eichler, Ina Kleitz, Maddalena Bayer-Giraldi, Daniela Jansen, Sepp Kipfstuhl, Wataru Shigeyama, Christian Weikusat, and Ilka Weikusat
The Cryosphere, 11, 1075–1090, https://doi.org/10.5194/tc-11-1075-2017, https://doi.org/10.5194/tc-11-1075-2017, 2017
Short summary
Short summary
This study contributes to investigations of the effect of impurities on ice microstructure and flow properties. For the first time we mapped over 5000 micro-inclusions in four samples from the EDML and NEEM polar ice cores. The particle distributions show no correlation with grain boundaries and thus we conclude that particle pinning plays only a secondary role for the microstructure evolution. Alternative mechanisms are discussed.
Mackenzie M. Grieman, Murat Aydin, Diedrich Fritzsche, Joseph R. McConnell, Thomas Opel, Michael Sigl, and Eric S. Saltzman
Clim. Past, 13, 395–410, https://doi.org/10.5194/cp-13-395-2017, https://doi.org/10.5194/cp-13-395-2017, 2017
Short summary
Short summary
Wildfires impact ecosystems, climate, and atmospheric chemistry. Records that predate instrumental records and industrialization are needed to study the climatic controls on biomass burning. In this study, we analyzed organic chemicals produced from burning of plant matter that were preserved in an ice core from the Eurasian Arctic. These chemicals are elevated during three periods that have similar timing to climate variability. This is the first millennial-scale record of these chemicals.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Rasmus A. Pedersen, Peter L. Langen, and Bo M. Vinther
Clim. Past, 12, 1907–1918, https://doi.org/10.5194/cp-12-1907-2016, https://doi.org/10.5194/cp-12-1907-2016, 2016
Short summary
Short summary
Using climate model experiments, we investigate the causes of the Eemian (125 000 years ago) warming in Greenland. Sea ice loss and sea surface warming prolong the impact of the summer insolation increase, causing warming throughout the year. We find potential for ice sheet mass loss in the north and southwestern parts of Greenland. Our simulations indicate that the direct impact of the insolation, rather than the indirect effect of the warmer ocean, is the dominant cause of ice sheet melt.
Christoph Florian Schaller, Johannes Freitag, Sepp Kipfstuhl, Thomas Laepple, Hans Christian Steen-Larsen, and Olaf Eisen
The Cryosphere, 10, 1991–2002, https://doi.org/10.5194/tc-10-1991-2016, https://doi.org/10.5194/tc-10-1991-2016, 2016
Short summary
Short summary
Along a traverse through North Greenland in May 2015 we collected snow cores up to 2 m in depth and analyzed their properties (e.g., density). A new technique for this sampling and an adapted algorithm for comparing data sets from different positions and aligning stratigraphic features are presented. We find good agreement of the density layering in the snowpack over hundreds of kilometers. This allows the construction of a representative density profile that is statistically validated.
François Ritter, Hans Christian Steen-Larsen, Martin Werner, Valérie Masson-Delmotte, Anais Orsi, Melanie Behrens, Gerit Birnbaum, Johannes Freitag, Camille Risi, and Sepp Kipfstuhl
The Cryosphere, 10, 1647–1663, https://doi.org/10.5194/tc-10-1647-2016, https://doi.org/10.5194/tc-10-1647-2016, 2016
Short summary
Short summary
We present successful continuous measurements of water vapor isotopes performed in Antarctica in January 2013. The interest is to understand the impact of the water vapor isotopic composition on the near-surface snow isotopes. Our study reveals a diurnal cycle in the snow isotopic composition in phase with the vapor. This finding suggests fractionation during the sublimation of the ice, which has an important consequence on the interpretation of water isotope variations in ice cores.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
Clim. Past, 12, 1565–1581, https://doi.org/10.5194/cp-12-1565-2016, https://doi.org/10.5194/cp-12-1565-2016, 2016
Short summary
Short summary
Ice-core oxygen isotope ratios are a key climate archive to infer past temperatures, an interpretation however complicated by non-climatic noise. Based on 50 m firn trenches, we present for the first time a two-dimensional view (vertical × horizontal) of how oxygen isotopes are stored in Antarctic firn. A statistical noise model allows inferences for the validity of ice coring efforts to reconstruct past temperatures, highlighting the need of replicate cores for Holocene climate reconstructions.
Jacob C. Yde, Niels T. Knudsen, Jørgen P. Steffensen, Jonathan L. Carrivick, Bent Hasholt, Thomas Ingeman-Nielsen, Christian Kronborg, Nicolaj K. Larsen, Sebastian H. Mernild, Hans Oerter, David H. Roberts, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 20, 1197–1210, https://doi.org/10.5194/hess-20-1197-2016, https://doi.org/10.5194/hess-20-1197-2016, 2016
D. Jansen, M.-G. Llorens, J. Westhoff, F. Steinbach, S. Kipfstuhl, P. D. Bons, A. Griera, and I. Weikusat
The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-2016, https://doi.org/10.5194/tc-10-359-2016, 2016
Short summary
Short summary
In this study we present examples of typical small-scale folds observed in the NEEM ice core, North Greenland, and discuss their characteristics. Numerical modelling of viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures under simple shear boundary conditions. We conclude that the folds originate from bands of grains with a tilted lattice relative to the strong lattice preferred orientation below 1500 m depth.
A. Spolaor, T. Opel, J. R. McConnell, O. J. Maselli, G. Spreen, C. Varin, T. Kirchgeorg, D. Fritzsche, A. Saiz-Lopez, and P. Vallelonga
The Cryosphere, 10, 245–256, https://doi.org/10.5194/tc-10-245-2016, https://doi.org/10.5194/tc-10-245-2016, 2016
Short summary
Short summary
The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic) and halogen measurements. The results suggest a connection between bromine and sea ice, as well as a connection between iodine concentration in snow and summer sea ice.
A. Svensson, S. Fujita, M. Bigler, M. Braun, R. Dallmayr, V. Gkinis, K. Goto-Azuma, M. Hirabayashi, K. Kawamura, S. Kipfstuhl, H. A. Kjær, T. Popp, M. Simonsen, J. P. Steffensen, P. Vallelonga, and B. M. Vinther
Clim. Past, 11, 1127–1137, https://doi.org/10.5194/cp-11-1127-2015, https://doi.org/10.5194/cp-11-1127-2015, 2015
G. van der Wel, H. Fischer, H. Oerter, H. Meyer, and H. A. J. Meijer
The Cryosphere, 9, 1601–1616, https://doi.org/10.5194/tc-9-1601-2015, https://doi.org/10.5194/tc-9-1601-2015, 2015
Short summary
Short summary
The diffusion of the stable water isotope signal during firnification of snow is a temperature-dependent process. Therefore, past local temperatures can be derived from the differential diffusion length. In this paper we develop a new method for determining this quantity and compare it with the existing method. Both methods are applied to a large number of synthetic data sets to assess the precision and accuracy of the reconstruction and to a section of the Antarctic EDML ice core record.
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
J. Christmann, R. Müller, K. G. Webber, D. Isaia, F. H. Schader, S. Kipfstuhl, J. Freitag, and A. Humbert
Earth Syst. Sci. Data, 7, 87–92, https://doi.org/10.5194/essd-7-87-2015, https://doi.org/10.5194/essd-7-87-2015, 2015
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
C. Elsässer, D. Wagenbach, I. Levin, A. Stanzick, M. Christl, A. Wallner, S. Kipfstuhl, I. K. Seierstad, H. Wershofen, and J. Dibb
Clim. Past, 11, 115–133, https://doi.org/10.5194/cp-11-115-2015, https://doi.org/10.5194/cp-11-115-2015, 2015
F. Günther, P. P. Overduin, I. A. Yakshina, T. Opel, A. V. Baranskaya, and M. N. Grigoriev
The Cryosphere, 9, 151–178, https://doi.org/10.5194/tc-9-151-2015, https://doi.org/10.5194/tc-9-151-2015, 2015
Short summary
Short summary
Coastal erosion rates at Muostakh Island (eastern Siberian Arctic) have doubled, based on remotely sensed observations of land loss, and therefore the island will disappear prematurely. Based on analyses of seasonal variability of permafrost thaw, thermo-erosion increases by 1.2m per year when summer temperatures rise by 1°C. Due to rapid permafrost thaw, the land surface is subsiding up to 11cm per year, based on comparison of elevation changes and active layer thaw depth.
P. Vallelonga, K. Christianson, R. B. Alley, S. Anandakrishnan, J. E. M. Christian, D. Dahl-Jensen, V. Gkinis, C. Holme, R. W. Jacobel, N. B. Karlsson, B. A. Keisling, S. Kipfstuhl, H. A. Kjær, M. E. L. Kristensen, A. Muto, L. E. Peters, T. Popp, K. L. Riverman, A. M. Svensson, C. Tibuleac, B. M. Vinther, Y. Weng, and M. Winstrup
The Cryosphere, 8, 1275–1287, https://doi.org/10.5194/tc-8-1275-2014, https://doi.org/10.5194/tc-8-1275-2014, 2014
H. C. Steen-Larsen, V. Masson-Delmotte, M. Hirabayashi, R. Winkler, K. Satow, F. Prié, N. Bayou, E. Brun, K. M. Cuffey, D. Dahl-Jensen, M. Dumont, M. Guillevic, S. Kipfstuhl, A. Landais, T. Popp, C. Risi, K. Steffen, B. Stenni, and A. E. Sveinbjörnsdottír
Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, https://doi.org/10.5194/cp-10-377-2014, 2014
S. O. Rasmussen, P. M. Abbott, T. Blunier, A. J. Bourne, E. Brook, S. L. Buchardt, C. Buizert, J. Chappellaz, H. B. Clausen, E. Cook, D. Dahl-Jensen, S. M. Davies, M. Guillevic, S. Kipfstuhl, T. Laepple, I. K. Seierstad, J. P. Severinghaus, J. P. Steffensen, C. Stowasser, A. Svensson, P. Vallelonga, B. M. Vinther, F. Wilhelms, and M. Winstrup
Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, https://doi.org/10.5194/cp-9-2713-2013, 2013
T. Opel, D. Fritzsche, and H. Meyer
Clim. Past, 9, 2379–2389, https://doi.org/10.5194/cp-9-2379-2013, https://doi.org/10.5194/cp-9-2379-2013, 2013
A. Svensson, M. Bigler, T. Blunier, H. B. Clausen, D. Dahl-Jensen, H. Fischer, S. Fujita, K. Goto-Azuma, S. J. Johnsen, K. Kawamura, S. Kipfstuhl, M. Kohno, F. Parrenin, T. Popp, S. O. Rasmussen, J. Schwander, I. Seierstad, M. Severi, J. P. Steffensen, R. Udisti, R. Uemura, P. Vallelonga, B. M. Vinther, A. Wegner, F. Wilhelms, and M. Winstrup
Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013, https://doi.org/10.5194/cp-9-749-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Ice Cores | Timescale: Holocene
The ST22 chronology for the Skytrain Ice Rise ice core – Part 1: A stratigraphic chronology of the last 2000 years
No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology
Dating of the GV7 East Antarctic ice core by high-resolution chemical records and focus on the accumulation rate variability in the last millennium
On the occurrence of annual layers in Dome Fuji ice core early Holocene ice
Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya)
Helene M. Hoffmann, Mackenzie M. Grieman, Amy C. F. King, Jenna A. Epifanio, Kaden Martin, Diana Vladimirova, Helena V. Pryer, Emily Doyle, Axel Schmidt, Jack D. Humby, Isobel F. Rowell, Christoph Nehrbass-Ahles, Elizabeth R. Thomas, Robert Mulvaney, and Eric W. Wolff
Clim. Past, 18, 1831–1847, https://doi.org/10.5194/cp-18-1831-2022, https://doi.org/10.5194/cp-18-1831-2022, 2022
Short summary
Short summary
The WACSWAIN project (WArm Climate Stability of the West Antarctic ice sheet in the last INterglacial) investigates the fate of the West Antarctic Ice Sheet during the last warm period on Earth (115 000–130 000 years before present). Within this framework an ice core was recently drilled at Skytrain Ice Rise. In this study we present a stratigraphic chronology of that ice core based on absolute age markers and annual layer counting for the last 2000 years.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
A. Svensson, S. Fujita, M. Bigler, M. Braun, R. Dallmayr, V. Gkinis, K. Goto-Azuma, M. Hirabayashi, K. Kawamura, S. Kipfstuhl, H. A. Kjær, T. Popp, M. Simonsen, J. P. Steffensen, P. Vallelonga, and B. M. Vinther
Clim. Past, 11, 1127–1137, https://doi.org/10.5194/cp-11-1127-2015, https://doi.org/10.5194/cp-11-1127-2015, 2015
T. Opel, D. Fritzsche, and H. Meyer
Clim. Past, 9, 2379–2389, https://doi.org/10.5194/cp-9-2379-2013, https://doi.org/10.5194/cp-9-2379-2013, 2013
Cited articles
Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R.
A.: Solar influence on climate during the past millennium: results from
transient simulations with the NCAR Climate System Model, P. Natl. Acad.
Sci. USA, 104, 3713–3718, 2007.
Appenzeller, C., Schwander, J., Sommer, S., and Stocker, T. F.: The North
Atlantic Oscillation and its imprint on precipitation and ice accumulation
in Greenland, Geophys. Res. Lett., 25, 11, 1939–1942, 1998.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A.,
Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E.,
and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere,
7, 499-510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Benson, C. S.: Greenland snow pit and core stratigraphic data 1952, 1953,
1954, 1955, U.S. Army Corps of Engineers Snow Ice and Permafrost Res, 70,
39–47, 1962.
Bigler, M., Wagenbach, D., Fischer, H., Kipfstuhl, J., Miller, H., Sommer,
S., and Stauffer, B.: Sulphate record from a northeast Greenland ice core
over the last 1200 years based on continuous flow analysis, in: Annals of
Glaciology, vol. 35, edited by: Wolff, E. W., Int. Glaciological Soc.,
Cambridge, 250–256, 2002.
Box, J. E.: Survey of Greenland instrumental temperature records: 1873–2001,
Int. J. Climatol., 22, 1829–1847, 2002.
Box, J. E., Yang, L., Bromwich, D. H., and Bai, L.-S.: Greenland
Ice Sheet Surface Air Temperature Variability: 1840–2007*, J. Climate, 22, 4029–4049, 2009.
Buchardt, S. L., Clausen, H. B., Vinther, B. M., and Dahl-Jensen, D.:
Investigating the past and recent δ18O-accumulation relationship
seen in Greenland ice cores, Clim. Past, 8, 2053–2059,
https://doi.org/10.5194/cp-8-2053-2012, 2012.
Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S.,
Kindler, P., Leuenberger, M., Carlson, A. E., Vinther, B., Masson-Delmotte,
V., White, J. W. C., Liu, Z., Otto-Bliesner, B., and Brook, E. J.: Greenland
temperature response to climate forcing during the last deglaciation,
Science, 345, 1177–1180, 2014.
Bull, C.: Snow accumulation in north Greenland, J. Glaciol., 3,
237–248, 1958.
Chen, Q. S., Bromwich, D. H., and Bai, L. S.: Precipitation over Greenland
retrieved by a dynamic method and its relation to cyclonic activity, J.
Climate, 10, 839–870, 1997.
Chylek, P., Dubey, M. K., and Lesins, G.: Greenland warming of 1920–1930 and
1995–2005, Geophys. Res. Lett., 33, L11707, https://doi.org/10.1029/2006GL026510, 2006.
Chylek, P., Folland, C., Frankcombe, L., Dijkstra, H., Lesins, G., and Dubey,
M.: Greenland ice core evidence for spatial and temporal variability of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 39, L09705,
https://doi.org/10.1029/2012GL051241, 2012.
Crowley, T. J.: Causes of Climate Change Over the Past 1000 Years, Science,
289, 270–277, 2000.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J.,
Hansen, A. W., and Balling, N.: Past temperatures directly from the Greenland
Ice Sheet, Science, 282, 268–271, 1998.
Dansgaard, W.: The O18-abundance in fresh water, Geochim. Cosmochim.
Ac., 6, 241–260, 1954.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dansgaard, W., Johnsen, S. J., and Moeller, J.: One Thousand Centuries of
Climatic Record from Camp Century on the Greenland Ice Sheet, Science, 166,
377–380, 1969.
Divine, D., Isaksson, E., Martma, T., Meijer, H. A. J., Moore, J., Pohjola,
V., van de Wal, R. S. W., and Godtliebsen, F.: Thousand years of winter
surface air temperature variations in Svalbard and northern Norway
reconstructed from ice core data, Polar Res., 30, 7379,
https://doi.org/10.3402/polar.v30i0.7379, 2011.
Fischer, H. and Mieding, B.: A 1,000-year ice core record of interannual to
multidecadal variations in atmospheric circulation over the North Atlantic,
Clim. Dynam., 25, 65–74, 2005.
Fischer, H., Wagenbach, D., and Kipfstuhl, J.: Sulfate and nitrate firn
concentrations on the Greenland ice sheet: 1. Large-scale geographical
deposition changes, J. Geophys. Res., 103, 21927–21930, 1998a.
Fischer, H., Wagenbach, D., and Kipfstuhl, J.: Sulfate and nitrate firn
concentrations on the Greenland ice sheet: 2. Temporal anthropogenic
deposition changes, J. Geophys. Res.-Atmos., 103, 21935–21942, 1998b.
Fischer, H., Werner, M., Wagenbach, D., Schwager, M., Thorsteinnson, T.,
Wilhelms, F., Kipfstuhl, J., and Sommer, S.: Little Ice Age clearly recorded
in northern Greenland ice cores, Geophys. Res. Lett., 25, 1749–1752, 1998c.
Fisher, D. A., Reeh, N., and Clausen, H. B.: Stratigraphic noise in time series derived from ice cores,
Ann. Glaciol, 7, 76–83, 1985.
Freitag, J., Kipfstuhl, S., and Laepple, T.: Core-scale radioscopic imaging:
a new method reveals density & calcium link in Antarctic firn, J. Glaciol.,
59, 1009–1014, 2013.
Friedmann, A., Moore, J. C., Thorsteinnson, T., Kipfstuhl, J., and Fischer,
H.: A 1200 year record of accumulation from northern Greenland, Ann. Glaciol,
21, 19–25, 1995.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: An improved ice core-based index for climate models, J.
Geophys. Res.-Atmos., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Gray, S. T., Graumlich, L. J., Betancourt, J. L., and Pederson, G. T.: A
tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since
1567 A.D, Geophys. Res. Lett., 31, L12205, https://doi.org/10.1029/2004GL019932, 2004.
Grootes, P. M. and Stuiver, M.: Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution,
J. Geophys. Res.-Oceans, 102, 26455–26470, 1997.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.:
Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice
cores, Nature, 366, 552–554, 1993.
Hanna, E., Jónsson, T., and Box, J. E.: An analysis of Icelandic climate
since the nineteenth century, Int. J. Climatol., 24, 1193–1210, 2004.
Isaksson, E., Kohler, J., Pohjola, V., Moore, J. C., Igarashi, M.,
Karlöf, L., Martma, T., Meijer, H. A. J., Motoyama, H., Vaikmäe, R.,
and Van de Wal, R. S. W.: Two ice-core δ18O records from Svalbard
illustrating climate and sea-ice variability over the last 400 years,
Holocene, 15, 501–509, 2005.
Johnsen, S. J., Dansgaard, W., and White, J. W. C.: The origin of Arctic
precipitation under present and glacial conditions, Tellus Ser. B, 41,
452–468, 1989.
Johnsen, S. J., Hammer, C. U., Dansgaard, W., Gundestrup, N. S., and Clausen,
H. B.: The Eem stable isotope record along the GRIP ice core and its
interpretation, Quaternary Res., 42, 117–124, 1995.
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J.,
and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the
isotope effect in firn diffusion, in: Physics of Ice Core Records, Hokkaido
University, Place Hokkaido, 121–140, 2000.
Jónsson, T.: the observations of Jon Thorsteinsson in Nes and Reykjavik
1820–1854, Icel. Met. Office Report, Reykjavik, 1989.
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P.,
Hoffmann, G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A.,
Stievenard, M., Stuiver, M., and White, J.: Validity of the temperature
reconstruction from water isotopes in ice cores, J. Geophys. Res.-Oceans,
102, 26471–26487, 1997a.
Jouzel, J., Froehlich, K., and Schotterer, U.: Deuterium and oxygen-18 in
present-day precipitation: data and modelling, Hydrogeological Science, 42,
747–763, 1997b.
Jouzel, J. and Merlivat, L.: Deuterium and O-18 in precipitation- Modelling
of the isotopic effects during snow formation, J. Geophys. Res.-Atmos., 89,
1749–1757, 1984.
Kaufmann, P., Federer, U., Hutterli, M. A., Bigler, M., Schüpbach, S.,
Ruth, U., Schmitt, J., and Stocker, T. F.: An Improved Continuous Flow
Analysis System for High-Resolution Field Measurements on Ice Cores, Environ.
Sci. Technol., 42, 8044–8050, https://doi.org/10.1021/es8007722, 2008.
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., de Vernal, A.,
and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the past
1,450 years, Nature, 479, 509–512, 2011.
Koch, J. P. and Wegener, A.: Wissenschaftliche Ergebnisse der dänischen
Expedition nach Dronning Louises-Land und quer über das Inlandeis von
Nordgrönland 1912–13, Reitzel, 1930.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V.,
Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., Surono, Pratomo, I.,
Wassmer, P., Hajdas, I., Hadmoko, D. S., and de Belizal, E.: Source of the
great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic
Complex, Indonesia, P. Natl. Acad. Sci., 110, 16742–16747, 2013.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature
patterns and climate forcing over the past six centuries, Nature, 392,
779–787, 1998.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and
Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, 2009.
Masson-Delmotte, V., Steen-Larsen, H. C., Ortega, P., Swingedouw, D., Popp,
T., Vinther, B. M., Oerter, H., Sveinbjornsdottir, A. E., Gudlaugsdottir, H.,
Box, J. E., Falourd, S., Fettweis, X., Gallée, H., Garnier, E., Gkinis,
V., Jouzel, J., Landais, A., Minster, B., Paradis, N., Orsi, A., Risi, C.,
Werner, M., and White, J. W. C.: Recent changes in north-west Greenland
climate documented by NEEM shallow ice core data and simulations, and
implications for past-temperature reconstructions, The Cryosphere, 9,
1481–1504, https://doi.org/10.5194/tc-9-1481-2015, 2015.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the
deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res.-Oc.
Atmos., 84, 5029–5033, 1979.
Mieding, B.: Reconstruction of millennial aerosol-chemical ice core records
from the northeast Greenland: Quantification of temporal changes in
atmospheric circulation, emission and deposition, Reports on Polar and
Marine Reports, 513, Alfred Wegener Institute for Polar and Marine Research,
Bremerhaven, 2005.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A.,
Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and
Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism
and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708,
https://doi.org/10.1029/2011GL050168, 2012.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate
of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87,
1231–1238, 1982.
North Greenland Ice Core Project Members: Andersen, K. K., Azuma, N.,
Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J.,
Clausen, H. B., Dahl-Jensen, D., Fischer, H., Flückiger, J., Fritzsche,
D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson,
M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J.,
Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte,
V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O.,
Raynaud, D., Röthlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji,
H., Siggard-Andersen, M.-L., Steffensen, J. P., Stocker, T. F.,
Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.-L.,
Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J. W. C.:
High-resolution record of Northern Hemisphere climate extending into the last
interglacial period, Nature, 431, 147–151, 2004.
Ohmura, A.: New temperature distribution maps for Greenland, Zeitschrift
für Gletscherkunde und Glaziologie, 35, 1–20, 1987.
Opel, T., Fritzsche, D., and Meyer, H.: Eurasian Arctic climate over the past
millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya),
Clim. Past, 9, 2379–2389, https://doi.org/10.5194/cp-9-2379-2013, 2013.
Ortega, P., Swingedouw, D., Masson-Delmotte, V., Risi, C., Vinther, B., Yiou,
P., Vautard, R., and Yoshimura, K.: Characterizing atmospheric circulation
signals in Greenland ice cores: insights from a weather regime approach,
Clim. Dynam., 43, 2585–2605, 2014.
Pages 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, 2013.
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and
recrystallization during dry snow metamorphism under a steady temperature
gradient as observed by time-lapse micro-tomography, The Cryosphere, 6,
1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
2000.
Schwager, M.: Ice core analysis on the spatial and temporal variability of
temperature and precipitation during the late Holocene in North Greenland,
Reports on Polar and Marine Research, 362, Alfred Wegener Institute for
Polar and Marine Research, Bremen, 2000.
Semenov, V. A. and Latif, M.: The early twentieth century warming and winter
Arctic sea ice, The Cryosphere, 6, 1231–1237, https://doi.org/10.5194/tc-6-1231-2012,
2012.
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M.
L.: Timing of abrupt climate change at the end of the Younger Dryas interval
from thermally fractionated gases in polar ice, Nature, 391, 141–146, 1998.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris,
D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney,
R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS
Divide and NEEM and implications for climate forcing of the last 2000 years,
J. Geophys. Res.-Atmos., 118, 1151–1169, 2013.
Sime, L. C., Risi, C., Tindall, J. C., Sjolte, J., Wolff, E. W.,
Masson-Delmotte, V., and Capron, E.: Warm climate isotopic simulations: what
do we learn about interglacial signals in Greenland ice cores?, Quaternary
Sci. Rev., 67, 59–80, 2013.
Steen-Larsen, H. C., Masson-Delmotte, V., Sjolte, J., Johnsen, S. J.,
Vinther, B. M., Bréon, F. M., Clausen, H. B., Dahl-Jensen, D., Falourd,
S., Fettweis, X., Gallée, H., Jouzel, J., Kageyama, M., Lerche, H.,
Minster, B., Picard, G., Punge, H. J., Risi, C., Salas, D., Schwander, J.,
Steffen, K., Sveinbjörnsdóttir, A. E., Svensson, A., and White, J.:
Understanding the climatic signal in the water stable isotope records from
the NEEM shallow firn/ice cores in northwest Greenland, J. Geophys.
Res.-Atmos., 116, D06108, https://doi.org/10.1029/2010JD014311, 2011.
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R.,
Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D.,
Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C.,
Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What controls
the isotopic composition of Greenland surface snow?, Clim. Past, 10,
377–392, https://doi.org/10.5194/cp-10-377-2014, 2014.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen,
D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J.,
Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Röthlisberger, R., Ruth, U.,
Stauffer, B., Siggaard-Andersen, M. L., Sveinbjornsdottir, A. E., Svensson,
A., and White, J. W.: High-resolution Greenland ice core data show abrupt
climate change happens in few years, Science, 321, 680–684, 2008.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/1029/2009GL040142,
2009.
Vinther, B. M., Andersen, K. K., Hansen, A. W., Schmith, T., and Jones, P.
D.: Improving the Gibraltar/Reykjavik NAO index, Geophys. Res. Lett., 30,
2222, https://doi.org/10.1029/2003GL018220, 2003.
Vinther, B. M., Andersen, K. K., Jones, P. D., Briffa, K. R., and Cappelen,
J.: Extending Greenland temperature records into the late eighteenth century,
J. Geophys. Res.-Atmos., 111, D11105, https://doi.org/10.1029/2005JD006810, 2006a.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M. L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene, J.
Geophys. Res.-Atmos., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006b.
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S.
J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P.,
and Svensson, A. M.: Synchronizing ice cores from the Renland and Agassiz ice
caps to the Greenland Ice Core Chronology, J. Geophys. Res.-Atmos., 113,
D08115, https://doi.org/10.1029/2007JD009143, 2008.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S.
J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K.
K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.:
Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, 2009.
Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K.,
Dahl-Jensen, D., and Johnsen, S. J.: Climatic signals in multiple highly
resolved stable isotope records from Greenland, Quaternary Sci. Rev., 29,
522–538, 2010.
Weißbach, S., Wegener, A., and Kipfstuhl, J.: Snow accumulation in North
Greenland over the last millennium, in: Towards an interdisciplinary approach
in earth system science, edited by: Lohmann, G., Meggers, H., Unnithan, V.,
Wolf-Gladrow, D., Notholt, J., and Bracher, A., Springer Earth System
Science, London, 197–205, 2015.
Werner, M.: Vergleichende Studie ueber die Verteilung vulkanogener
Spurenstoffdepositionen in Nord-Ost-Groenland, Diplom, Institut fuer
Umweltphysik, Heidelberg, 85 pp., 1995.
White, J. W. C., Barlow, L. K., Fisher, D., Grootes, P., Jouzel, J., Johnsen,
S. J., Stuiver, M., and Clausen, H.: The climate signal in the stable
isotopes of snow from Summit, Greenland: Results of comparisons with modern
climate observations, J. Geophys. Res.-Oceans, 102, 26425–26439, 1997.
Wilhelms, F.: Leitfähigkeits- und Dichtemessung an Eisbohrkernen,
Reports on Polar and Marine Research, 191, Alfred Wegener Institute for
Polar and Marine Research, Bremerhaven, 1996.
Wood, K. R. and Overland, J. E.: Early 20th century Arctic warming in
retrospect, Int. J. Climatol., 30, 1269–1279, 2010.
Wood, K. R., Overland, J. E., Jónsson, T., and Smoliak, B. V.: Air
temperature variations on the Atlantic-Arctic boundary since 1802, Geophys.
Res. Lett., 37, L17708, https://doi.org/10.1029/2010GL044176, 2010.
Zielinski, G. A.: Use of paleo-records in determining variability within the
volcanism–climate system, Quaternary Sci. Rev., 19, 417-438, 2000.
Short summary
Based on a set of 12 intermediate deep ice cores, covering an area of about 200 000 km2, we studied the spatial and temporal d18O patterns of northern Greenland over the past millennium and found a strong east-west gradient related to the main ice divide. A stacked record with significantly reduced noise revealed distinct climate variations with a pronounced Little Ice Age and distinct warm events such as the Medieval Climate Anomaly, around AD 1420 and in the 20th century.
Based on a set of 12 intermediate deep ice cores, covering an area of about 200 000 km2, we...