Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Download
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Articles | Volume 12, issue 6
Clim. Past, 12, 1401–1420, 2016
https://doi.org/10.5194/cp-12-1401-2016
Clim. Past, 12, 1401–1420, 2016
https://doi.org/10.5194/cp-12-1401-2016

Research article 28 Jun 2016

Research article | 28 Jun 2016

Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O

Svetlana Botsyun et al.

Related authors

Role of the stratospheric chemistry–climate interactions in the hot climate conditions of the Eocene
Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre
Clim. Past, 15, 1187–1203, https://doi.org/10.5194/cp-15-1187-2019,https://doi.org/10.5194/cp-15-1187-2019, 2019
Short summary

Related subject area

Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016,https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
A model–model and data–model comparison for the early Eocene hydrological cycle
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016,https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015,https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen
Clim. Past, 8, 1257–1285, https://doi.org/10.5194/cp-8-1257-2012,https://doi.org/10.5194/cp-8-1257-2012, 2012
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
H. Tang, A. Micheels, J. Eronen, and M. Fortelius
Clim. Past, 7, 847–868, https://doi.org/10.5194/cp-7-847-2011,https://doi.org/10.5194/cp-7-847-2011, 2011

Cited articles

An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411, 62–66, 2001.
An, Z., Huang, Y., Liu, W., Guo, Z., Stevens, C., Li, L., Prell, W., Ning, Y., Cai, Y., Zhou, W., Lin, B., Zhang, Q., Cao, Y., Qiang, X., Chang, H., and Wu, Z.: Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation, Geology, 33, 705–708, https://doi.org/10.1130/G21423.1, 2005.
Antal, J. S. and Awasthi, N: Fossil flora from the Himalayan foot hills of Darjeeling foothills of Darjeeling District, West Bengal and its palaeoecological and phytogeographical significance, Palaeobotanist, 42, 14–60, 1993
Battisti, D. S., Ding, Q., and Roe, G. H.: Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation, J. Geophys. Res. Atmos., 119, 11997–12020, 2014.
Publications Copernicus
Download
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Citation