Articles | Volume 12, issue 6
https://doi.org/10.5194/cp-12-1339-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-12-1339-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Environmental changes, climate and anthropogenic impact in south-east Tunisia during the last 8 kyr
Sahbi Jaouadi
CORRESPONDING AUTHOR
UMR 7194 CNRS, Histoire naturelle de l'Homme Préhistorique,
Département de Préhistoire, Muséum national d'Histoire
naturelle, Paris, France
Vincent Lebreton
UMR 7194 CNRS, Histoire naturelle de l'Homme Préhistorique,
Département de Préhistoire, Muséum national d'Histoire
naturelle, Paris, France
Viviane Bout-Roumazeilles
Laboratoire d'Océanologie et de Géosciences LOG, UMR8187,
CNRS-Université Lille-Université Côte d'Opale, 59655 Villeneuve
d'Ascq, France
Giuseppe Siani
Laboratoire des Interactions et Dynamique des Environnements de
Surface (IDES), UMR8148, CNRS-Université de Paris-Sud, Bat 504, 91405
Orsay CEDEX, France
Rached Lakhdar
Faculté des Sciences de Bizerte, Université de Carthage, 7021
Zarzouna, Bizerte, Tunisia
Ridha Boussoffara
Institut National du Patrimoine, 4 Place du Château, 1008 Tunis,
Tunisia
Laurent Dezileau
UMR 5243 CNRS, Géosciences Montpellier, Université de
Montpellier, Montpellier, France
Nejib Kallel
Université de Sfax, Faculté des Sciences, Laboratoire GEOGLOB,
BP 802, 3038 Sfax, Tunisia
Beya Mannai-Tayech
Université de Tunis El Manar, Faculté des Sciences de Tunis,
2092 Tunis, Tunisia
Nathalie Combourieu-Nebout
UMR 7194 CNRS, Histoire naturelle de l'Homme Préhistorique,
Département de Préhistoire, Muséum national d'Histoire
naturelle, Paris, France
Related authors
No articles found.
Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, and Marie-Hélène Moncel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1771, https://doi.org/10.5194/egusphere-2024-1771, 2024
Short summary
Short summary
Comparisons of climatic reconstructions of past interglacials MIS 19, 11, 5 with the current interglacial (MIS 1) based on pollen data from a marine core (Alboran Sea) show that, compared with MIS 1, MIS 19 was colder and highly variable, MIS 11 was longer and more stable, and MIS 5 was warmer. While there is no real equivalent to the current interglacial, past interglacials give insights into the sensitivity of the SW Mediterranean to global climatic changes during conditions similar to MIS 1.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Thouraya Benmoussa, Oula Amrouni, Laurent Dezileau, Gil Mahé, and Saâdi Abdeljaouad
Proc. IAHS, 377, 77–81, https://doi.org/10.5194/piahs-377-77-2018, https://doi.org/10.5194/piahs-377-77-2018, 2018
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Aida Affouri, Laurent Dezileau, and Nejib Kallel
Clim. Past, 13, 711–727, https://doi.org/10.5194/cp-13-711-2017, https://doi.org/10.5194/cp-13-711-2017, 2017
Short summary
Short summary
The past flood activity was investigated using a sedimentological and geochemical analysis of surfaces sediments from a southeastern Tunisian catchment in order to trace the origin of sediments deposit in the El Bibane Lagoon. Aeolian, fluvial and marine source. This multi-proxy analysis on the BL12-10 core shows that finer material, a high content of clay and silt, and a high content of the elemental ratios Fe / Ca and Ti / Ca characterise the sedimentological signature of palaeo-flood levels.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Odile Peyron, Nathalie Combourieu-Nebout, David Brayshaw, Simon Goring, Valérie Andrieu-Ponel, Stéphanie Desprat, Will Fletcher, Belinda Gambin, Chryssanthi Ioakim, Sébastien Joannin, Ulrich Kotthoff, Katerina Kouli, Vincent Montade, Jörg Pross, Laura Sadori, and Michel Magny
Clim. Past, 13, 249–265, https://doi.org/10.5194/cp-13-249-2017, https://doi.org/10.5194/cp-13-249-2017, 2017
Short summary
Short summary
This study aims to reconstruct the climate evolution of the Mediterranean region during the Holocene from pollen data and model outputs. The model- and pollen-inferred precipitation estimates show overall agreement: the eastern Medit. experienced wetter-than-present summer conditions during the early–late Holocene. This regional climate model highlights how the patchy nature of climate signals and data in the Medit. may lead to stronger local signals than the large-scale pattern suggests.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Laurent Dezileau, Angel Pérez-Ruzafa, Philippe Blanchemanche, Jean-Philippe Degeai, Otmane Raji, Philippe Martinez, Concepcion Marcos, and Ulrich Von Grafenstein
Clim. Past, 12, 1389–1400, https://doi.org/10.5194/cp-12-1389-2016, https://doi.org/10.5194/cp-12-1389-2016, 2016
Short summary
Short summary
Amongst the most devastating marine catastrophes that can occur in coastal areas are storms and tsunamis, which may seriously endanger human society. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
J. Azuara, N. Combourieu-Nebout, V. Lebreton, F. Mazier, S. D. Müller, and L. Dezileau
Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, https://doi.org/10.5194/cp-11-1769-2015, 2015
Short summary
Short summary
High-resolution pollen analyses undertaken on two cores from southern France allow us to separate anthropogenic effects from climatic impacts on environments over the last 4500 years. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded around 4400, 2600 and 1200cal BP coinciding in time with Bond events. Human influence on vegetation is attested since the Bronze Age and became dominant at the beginning of the High Middle Ages.
O. Raji, L. Dezileau, U. Von Grafenstein, S. Niazi, M. Snoussi, and P. Martinez
Nat. Hazards Earth Syst. Sci., 15, 203–211, https://doi.org/10.5194/nhess-15-203-2015, https://doi.org/10.5194/nhess-15-203-2015, 2015
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
N. Combourieu-Nebout, O. Peyron, V. Bout-Roumazeilles, S. Goring, I. Dormoy, S. Joannin, L. Sadori, G. Siani, and M. Magny
Clim. Past, 9, 2023–2042, https://doi.org/10.5194/cp-9-2023-2013, https://doi.org/10.5194/cp-9-2023-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
O. Peyron, M. Magny, S. Goring, S. Joannin, J.-L. de Beaulieu, E. Brugiapaglia, L. Sadori, G. Garfi, K. Kouli, C. Ioakim, and N. Combourieu-Nebout
Clim. Past, 9, 1233–1252, https://doi.org/10.5194/cp-9-1233-2013, https://doi.org/10.5194/cp-9-1233-2013, 2013
V. Bout-Roumazeilles, N. Combourieu-Nebout, S. Desprat, G. Siani, J.-L. Turon, and L. Essallami
Clim. Past, 9, 1065–1087, https://doi.org/10.5194/cp-9-1065-2013, https://doi.org/10.5194/cp-9-1065-2013, 2013
S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon
Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, https://doi.org/10.5194/cp-9-767-2013, 2013
R. Orain, V. Lebreton, E. Russo Ermolli, A.-M. Sémah, S. Nomade, Q. Shao, J.-J. Bahain, U. Thun Hohenstein, and C. Peretto
Clim. Past, 9, 687–697, https://doi.org/10.5194/cp-9-687-2013, https://doi.org/10.5194/cp-9-687-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
Refining data–data and data–model vegetation comparisons using the Earth mover's distance (EMD)
Palynological evidence reveals an arid early Holocene for the northeast Tibetan Plateau
Holocene wildfire regimes in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types
2400 years of climate and human-induced environmental change recorded in sediments of Lake Młynek in northern Poland
Climate impacts on vegetation and fire dynamics since the last deglaciation at Moossee (Switzerland)
The 4.2 ka event in the vegetation record of the central Mediterranean
Vegetation and geochemical responses to Holocene rapid climate change in the Sierra Nevada (southeastern Iberia): the Laguna Hondera record
Response of Pinus sylvestris var. mongolica to water change and drought history reconstruction in the past 260 years, northeast China
Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece) during the Late Glacial and Holocene
Holocene climate aridification trend and human impact interrupted by millennial- and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula)
Dendrochronologically dated pine stumps document phase-wise bog expansion at a northwest German site between ca. 6700 and ca. 3400 BC
Autumn–winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeastern Asia since 1529 AD
Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China
Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records
Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai–Tibetan Plateau, China
7300 years of vegetation history and climate for NW Malta: a Holocene perspective
Climate-driven expansion of blanket bogs in Britain during the Holocene
Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France)
Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia
Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44° S)
Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes
The last 7 millennia of vegetation and climate changes at Lago di Pergusa (central Sicily, Italy)
Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data
Climate and vegetation changes during the Lateglacial and early–middle Holocene at Lake Ledro (southern Alps, Italy)
The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes
Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13°N from a Mega-Lake Chad sedimentary sequence
Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD
Pollen-based reconstruction of Holocene vegetation and climate in southern Italy: the case of Lago Trifoglietti
Vegetation history of central Chukotka deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact Crater
A seesaw in Mediterranean precipitation during the Roman Period linked to millennial-scale changes in the North Atlantic
Hydroclimate variability in the low-elevation Atacama Desert over the last 2500 yr
Pollen, vegetation change and climate at Lake Barombi Mbo (Cameroon) during the last ca. 33 000 cal yr BP: a numerical approach
Late Holocene plant and climate evolution at Lake Yoa, northern Chad: pollen data and climate simulations
Holocene vegetation and biomass changes on the Tibetan Plateau – a model-pollen data comparison
Vegetation response to the "African Humid Period" termination in Central Cameroon (7° N) – new pollen insight from Lake Mbalang
Putting the rise of the Inca Empire within a climatic and land management context
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Nannan Wang, Lina Liu, Xiaohuan Hou, Yanrong Zhang, Haicheng Wei, and Xianyong Cao
Clim. Past, 18, 2381–2399, https://doi.org/10.5194/cp-18-2381-2022, https://doi.org/10.5194/cp-18-2381-2022, 2022
Short summary
Short summary
We reconstructed the vegetation and climate change since the last 14.2 ka BP from a fossil pollen record together with multiple proxies (grain size, contents of total organic carbon and total nitrogen) on the northeast Tibetan Plateau. The results reveal that an arid climate occurs in the early Holocene and the vegetation could be disturbed by human activities to some extent after ca. 0.24 ka BP (1710 CE).
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Fabian Welc, Jerzy Nitychoruk, Leszek Marks, Krzysztof Bińka, Anna Rogóż-Matyszczak, Milena Obremska, and Abdelfattah Zalat
Clim. Past, 17, 1181–1198, https://doi.org/10.5194/cp-17-1181-2021, https://doi.org/10.5194/cp-17-1181-2021, 2021
Short summary
Short summary
Młynek Lake, located near the village of Janiki Wielkie (in the Warmia and Masuria region of north-east Poland) has been selected for multi-faceted palaeoenvironmental research based on a precise radiocarbon scale. Bottom sediments of this reservoir also contain unique information about anthropogenic activity and climate changes during last 2400 years.
Fabian Rey, Erika Gobet, Christoph Schwörer, Albert Hafner, Sönke Szidat, and Willy Tinner
Clim. Past, 16, 1347–1367, https://doi.org/10.5194/cp-16-1347-2020, https://doi.org/10.5194/cp-16-1347-2020, 2020
Short summary
Short summary
We present a novel post Last Glacial Maximum sediment record from Moossee (Swiss Plateau, southern central Europe). For the first time, five major reorganizations of vegetation could be definitely linked to paramount postglacial temperature and/or moisture changes. Present-day beech-dominated forests have been resilient to long-term climate change and human land use. They may prevail in future if climate warming does not exceed the amplitude of Mid Holocene temperature and moisture variability.
Federico Di Rita and Donatella Magri
Clim. Past, 15, 237–251, https://doi.org/10.5194/cp-15-237-2019, https://doi.org/10.5194/cp-15-237-2019, 2019
Jose M. Mesa-Fernández, Gonzalo Jiménez-Moreno, Marta Rodrigo-Gámiz, Antonio García-Alix, Francisco J. Jiménez-Espejo, Francisca Martínez-Ruiz, R. Scott Anderson, Jon Camuera, and María J. Ramos-Román
Clim. Past, 14, 1687–1706, https://doi.org/10.5194/cp-14-1687-2018, https://doi.org/10.5194/cp-14-1687-2018, 2018
Liangjun Zhu, Qichao Yao, David J. Cooper, Shijie Han, and Xiaochun Wang
Clim. Past, 14, 1213–1228, https://doi.org/10.5194/cp-14-1213-2018, https://doi.org/10.5194/cp-14-1213-2018, 2018
Short summary
Short summary
This paper presents a 260-year tree-ring-based PDSI reconstruction for the central Daxing'an Mountains, northeast China. A warm–wet pattern was identified for the Daxing'an Mountains in recent decades, while a warm–dry pattern was found for the Mongolian Plateau. Overall, the dry/wet variability of the Daxing'an Mountains and its relationship with the surrounding areas might be driven by Pacific and Atlantic Ocean oscillations.
Alessia Masi, Alexander Francke, Caterina Pepe, Matthias Thienemann, Bernd Wagner, and Laura Sadori
Clim. Past, 14, 351–367, https://doi.org/10.5194/cp-14-351-2018, https://doi.org/10.5194/cp-14-351-2018, 2018
Short summary
Short summary
The first high-resolution Lake Dojran pollen record for the last 12 500 years is presented. The ecological succession shows Late Glacial steppe vegetation gradually replaced, since 11 500 yr BP, by Holocene mesophilous forests. The first human traces are recorded around 5000 yr BP and increased considerably since the Bronze Age. Pollen data and sedimentological, biomarker and diatom data available from the same core contribute to an understanding of the environmental history of the Balkans.
María J. Ramos-Román, Gonzalo Jiménez-Moreno, Jon Camuera, Antonio García-Alix, R. Scott Anderson, Francisco J. Jiménez-Espejo, and José S. Carrión
Clim. Past, 14, 117–137, https://doi.org/10.5194/cp-14-117-2018, https://doi.org/10.5194/cp-14-117-2018, 2018
Short summary
Short summary
In this study we carried out a multiproxy high-resolution analysis on a sediment record from the Padul Basin in the Sierra Nevada (southern Iberian Peninsula). Padul is a classical and very unique site from the Mediterranean area as it contains a very long and continuous Quaternary sedimentary record. However, the uppermost part of the record was never recovered. In this study we focus on the last 4700 cal yr BP of Holocene climate variability and human activity in the Mediterranean area.
Inke Elisabeth Maike Achterberg, Jan Eckstein, Bernhard Birkholz, Andreas Bauerochse, and Hanns Hubert Leuschner
Clim. Past, 14, 85–100, https://doi.org/10.5194/cp-14-85-2018, https://doi.org/10.5194/cp-14-85-2018, 2018
Short summary
Short summary
At a bog site at Totes Moor in northwest Germany a layer of pine tree stumps at the fen–bog transition was exposed by peat mining. The lateral expansion of ombrotrophic bog between 6703 BC and 3403 BC was reconstructed using the locations and dendrochronological dates of the tree stumps. The spatial pattern relates to the elevation a.s.l. of the mineral base beneath the peat. The temporal distribution of bog expansion pulses relates to climatic variation.
Olga N. Ukhvatkina, Alexander M. Omelko, Alexander A. Zhmerenetsky, and Tatyana Y. Petrenko
Clim. Past, 14, 57–71, https://doi.org/10.5194/cp-14-57-2018, https://doi.org/10.5194/cp-14-57-2018, 2018
Short summary
Short summary
We reconstructed the minimum temperature for 505 years and found cold and warm periods, which correlate with reconstructed data for the Northern Hemisphere and neighboring territories. Our reconstructions are reflected in the fluctuations in ENSO, the short-term solar cycle, PDO, and the de Vries 200-year solar activity cycle. This is the first temperature reconstruction for this region and it is important for studying the climatic processes in the study region and in all of northeastern Asia.
Xiayun Xiao, Simon G. Haberle, Ji Shen, Bin Xue, Mark Burrows, and Sumin Wang
Clim. Past, 13, 613–627, https://doi.org/10.5194/cp-13-613-2017, https://doi.org/10.5194/cp-13-613-2017, 2017
Short summary
Short summary
Knowledge of the past fire activity is a key for making sustainable management policies for forest ecosystems. A high-resolution macroscopic charcoal record from southwestern China reveals the postglacial fire history. Combined with the regional climate records and vegetation histories, it is concluded that fire was mainly controlled by climate before 4.3 ka and by combined action of climate and humans after 4.3 ka, and the relationship between fire activity and vegetation were also examined.
Odile Peyron, Nathalie Combourieu-Nebout, David Brayshaw, Simon Goring, Valérie Andrieu-Ponel, Stéphanie Desprat, Will Fletcher, Belinda Gambin, Chryssanthi Ioakim, Sébastien Joannin, Ulrich Kotthoff, Katerina Kouli, Vincent Montade, Jörg Pross, Laura Sadori, and Michel Magny
Clim. Past, 13, 249–265, https://doi.org/10.5194/cp-13-249-2017, https://doi.org/10.5194/cp-13-249-2017, 2017
Short summary
Short summary
This study aims to reconstruct the climate evolution of the Mediterranean region during the Holocene from pollen data and model outputs. The model- and pollen-inferred precipitation estimates show overall agreement: the eastern Medit. experienced wetter-than-present summer conditions during the early–late Holocene. This regional climate model highlights how the patchy nature of climate signals and data in the Medit. may lead to stronger local signals than the large-scale pattern suggests.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
Enlou Zhang, Yongbo Wang, Weiwei Sun, and Ji Shen
Clim. Past, 12, 415–427, https://doi.org/10.5194/cp-12-415-2016, https://doi.org/10.5194/cp-12-415-2016, 2016
B. Gambin, V. Andrieu-Ponel, F. Médail, N. Marriner, O. Peyron, V. Montade, T. Gambin, C. Morhange, D. Belkacem, and M. Djamali
Clim. Past, 12, 273–297, https://doi.org/10.5194/cp-12-273-2016, https://doi.org/10.5194/cp-12-273-2016, 2016
Short summary
Short summary
Based on the study of ancient microfossils, such as pollen and spores, this paper explores climate change in a Mediterranean island context. Using a multi-disciplinary approach this original research corroborates existing archaeological and historical data. It also uses comparative data from elsewhere in the central Mediterranean to ensure that the current research is placed within the appropriate geographic context.
A. V. Gallego-Sala, D. J. Charman, S. P. Harrison, G. Li, and I. C. Prentice
Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, https://doi.org/10.5194/cp-12-129-2016, 2016
Short summary
Short summary
It has become a well-established paradigm that blanket bog landscapes in the British Isles are a result of forest clearance by early human populations. We provide a novel test of this hypothesis using results from bioclimatic modelling driven by cimate reconstructions compared with a database of peat initiation dates. Both results show similar patterns of peat initiation over time and space. This suggests that climate was the main driver of blanket bog inception and not human disturbance.
J. Azuara, N. Combourieu-Nebout, V. Lebreton, F. Mazier, S. D. Müller, and L. Dezileau
Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, https://doi.org/10.5194/cp-11-1769-2015, 2015
Short summary
Short summary
High-resolution pollen analyses undertaken on two cores from southern France allow us to separate anthropogenic effects from climatic impacts on environments over the last 4500 years. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded around 4400, 2600 and 1200cal BP coinciding in time with Bond events. Human influence on vegetation is attested since the Bronze Age and became dominant at the beginning of the High Middle Ages.
S. Y. Maezumi, M. J. Power, F. E. Mayle, K. K. McLauchlan, and J. Iriarte
Clim. Past, 11, 835–853, https://doi.org/10.5194/cp-11-835-2015, https://doi.org/10.5194/cp-11-835-2015, 2015
Short summary
Short summary
A 14,500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed for phytoliths, stable isotopes and charcoal. A non-analogue, cold-adapted vegetation community dominated the Late Glacial-Early Holocene period (14.5-9ka), which included trees and C3 Pooideae and C4 Panicoideae grasses. The Late Glacial vegetation was fire sensitive and fire activity during this period was low, likely responding to fuel av
M. E. de Porras, A. Maldonado, F. A. Quintana, A. Martel-Cea, O. Reyes, and C. Méndez
Clim. Past, 10, 1063–1078, https://doi.org/10.5194/cp-10-1063-2014, https://doi.org/10.5194/cp-10-1063-2014, 2014
Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang
Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, https://doi.org/10.5194/cp-10-21-2014, 2014
L. Sadori, E. Ortu, O. Peyron, G. Zanchetta, B. Vannière, M. Desmet, and M. Magny
Clim. Past, 9, 1969–1984, https://doi.org/10.5194/cp-9-1969-2013, https://doi.org/10.5194/cp-9-1969-2013, 2013
O. Peyron, M. Magny, S. Goring, S. Joannin, J.-L. de Beaulieu, E. Brugiapaglia, L. Sadori, G. Garfi, K. Kouli, C. Ioakim, and N. Combourieu-Nebout
Clim. Past, 9, 1233–1252, https://doi.org/10.5194/cp-9-1233-2013, https://doi.org/10.5194/cp-9-1233-2013, 2013
S. Joannin, B. Vannière, D. Galop, O. Peyron, J. N. Haas, A. Gilli, E. Chapron, S. B. Wirth, F. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 913–933, https://doi.org/10.5194/cp-9-913-2013, https://doi.org/10.5194/cp-9-913-2013, 2013
M.-P. Ledru, V. Jomelli, P. Samaniego, M. Vuille, S. Hidalgo, M. Herrera, and C. Ceron
Clim. Past, 9, 307–321, https://doi.org/10.5194/cp-9-307-2013, https://doi.org/10.5194/cp-9-307-2013, 2013
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
J. Bakker, E. Paulissen, D. Kaniewski, J. Poblome, V. De Laet, G. Verstraeten, and M. Waelkens
Clim. Past, 9, 57–87, https://doi.org/10.5194/cp-9-57-2013, https://doi.org/10.5194/cp-9-57-2013, 2013
S. Joannin, E. Brugiapaglia, J.-L. de Beaulieu, L. Bernardo, M. Magny, O. Peyron, S. Goring, and B. Vannière
Clim. Past, 8, 1973–1996, https://doi.org/10.5194/cp-8-1973-2012, https://doi.org/10.5194/cp-8-1973-2012, 2012
A. A. Andreev, E. Morozova, G. Fedorov, L. Schirrmeister, A. A. Bobrov, F. Kienast, and G. Schwamborn
Clim. Past, 8, 1287–1300, https://doi.org/10.5194/cp-8-1287-2012, https://doi.org/10.5194/cp-8-1287-2012, 2012
B. J. Dermody, H. J. de Boer, M. F. P. Bierkens, S. L. Weber, M. J. Wassen, and S. C. Dekker
Clim. Past, 8, 637–651, https://doi.org/10.5194/cp-8-637-2012, https://doi.org/10.5194/cp-8-637-2012, 2012
E. M. Gayo, C. Latorre, C. M. Santoro, A. Maldonado, and R. De Pol-Holz
Clim. Past, 8, 287–306, https://doi.org/10.5194/cp-8-287-2012, https://doi.org/10.5194/cp-8-287-2012, 2012
J. Lebamba, A. Vincens, and J. Maley
Clim. Past, 8, 59–78, https://doi.org/10.5194/cp-8-59-2012, https://doi.org/10.5194/cp-8-59-2012, 2012
A.-M. Lézine, W. Zheng, P. Braconnot, and G. Krinner
Clim. Past, 7, 1351–1362, https://doi.org/10.5194/cp-7-1351-2011, https://doi.org/10.5194/cp-7-1351-2011, 2011
A. Dallmeyer, M. Claussen, U. Herzschuh, and N. Fischer
Clim. Past, 7, 881–901, https://doi.org/10.5194/cp-7-881-2011, https://doi.org/10.5194/cp-7-881-2011, 2011
A. Vincens, G. Buchet, M. Servant, and ECOFIT Mbalang collaborators
Clim. Past, 6, 281–294, https://doi.org/10.5194/cp-6-281-2010, https://doi.org/10.5194/cp-6-281-2010, 2010
A. J. Chepstow-Lusty, M. R. Frogley, B. S. Bauer, M. J. Leng, K. P. Boessenkool, C. Carcaillet, A. A. Ali, and A. Gioda
Clim. Past, 5, 375–388, https://doi.org/10.5194/cp-5-375-2009, https://doi.org/10.5194/cp-5-375-2009, 2009
Cited articles
Abaab, A.: Mutations socio-économiques de la Jeffara orientale (Sud tunisien), Revue de l'Occident musulman et de la Méditerranée, 43, 327–338, 1986.
Allaoua, A.: Retour à la problématique du déclin économique du monde musulman médiéval: le cas du Maghreb Hammadide (X-XIIe siècle), The Maghreb Review, 28, 2–26, 2003.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and Clark, P. U.: Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology, 25, 483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:hciapw> 2.3.co;2, 1997.
Arz, H. W., Lamy, F., Pätzold, J., Müller, P. J., and Prins, M.: Mediterranean Moisture Source for an Early-Holocene Humid Period in the Northern Red Sea, Science, 300, 118–121, 2003.
Ayyad, S. M. and Moore, P. D.: Morphological studies of the pollen grains of the semi-arid region of Egypt, Flora, 190, 115–133, 1995.
Azuara, J., Combourieu-Nebout, N., Lebreton, V., Mazier, F., Müller, S. D., and Dezileau, L.: Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France), Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, 2015.
Ballais, J.-L.: Évolution holocène de la Tunisie saharienne et présaharienne, Méditerranée, 31–38, 1991.
Ballais, J. L. and Ouezdou, H. B.: Forms and deposits of the continental quaternary of the Saharan margin of Eastern Maghreb (tentative synthesis), J. Afr. Earth Sci., 12, 209–216, https://doi.org/10.1016/0899-5362(91)90070-F, 1991.
Barich, B. E.: Northwest Libya from the early to late Holocene: New data on environment and subsistence from the Jebel Gharbi, Quatern. Int., 320, 15–27, https://doi.org/10.1016/j.quaint.2013.09.007, 2014.
Barich, B. E., Garcea, E. A. A., and Giraudi, C.: Between the Mediterranean and the Sahara: geoarchaeological reconnaissance in the Jebel Gharbi, Libya, Antiquity, 80, 567–582, https://doi.org/10.1017/S0003598X00094047, 2006.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen diagrams, in: Handbook of Holocene Palaeaecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley & Sons, 455–484, 1986.
Berndtsson, R.: Topographical and coastal influence on spatial precipitation patterns in Tunisia, Int. J. Climatol., 9, 357–369, https://doi.org/10.1002/joc.3370090403, 1989.
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Verlag Dr. Friedrich Pfeil, München, 2004.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blaauw, M. and Heegaard, E.: Estimation of Age-Depth Relationships, in: Tracking Environmental Change Using Lake Sediments, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Developments in Paleoenvironmental Research, Springer, the Netherlands, 379–413, 2012.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates, Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar Influence on North Atlantic Climate During the Holocene, Science, 294, 2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., Lourens, L. J., and Rohling, E. J.: Precession and obliquity forcing of the freshwater budget over the Mediterranean, Quaternary Sci. Rev., 123, 16–30, https://doi.org/10.1016/j.quascirev.2015.06.008, 2015.
Boujelben, A.: L'hydrosystème des sebkhas al Kalbiyya et Halq al Minjil: Dynamiques hydro-morphosédimentaires, paléoenvironnements et évolution des paysages pendant l'Holocène, PhD, Université de Tunis I, Faculté des Sciences Humaines et Sociales and Université de Caen, UFR Géographie, 347 pp., 2015.
Bout-Roumazeilles, V., Cortijo, E., Labeyrie, L., and Debrabant, P.: Clay mineral evidence of nepheloid layer contributions to the Heinrich layers in the northwest Atlantic, Palaeogeogr. Palaeocl., 146, 211–228, https://doi.org/10.1016/S0031-0182(98)00137-0, 1999.
Bout-Roumazeilles, V., Combourieu Nebout, N., Peyron, O., Cortijo, E., Landais, A., and Masson-Delmotte, V.: Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events, Quaternary Sci. Rev., 26, 3197–3215, https://doi.org/10.1016/j.quascirev.2007.07.015, 2007.
Brayshaw, D. J., Hoskins, B., and Black, E.: Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene, Philos. T. R. Soc. S.-A, 368, 5185–5223, https://doi.org/10.1098/rsta.2010.0180, 2010.
Brayshaw, D. J., Rambeau, C. M. C., and Smith, S. J.: Changes in Mediterranean climate during the Holocene: Insights from global and regional climate modelling, The Holocene, 21, 15–31, https://doi.org/10.1177/0959683610377528, 2011.
Brindley, G. W. and Brown, G.: Crystal Structures of Clay Minerals and Their X-ray Identification, Mineralogical Society, London, 1980.
Brun, A.: Etude palynologique des sédiments marins holocènes de 5000 B.P. à l'actuel dans le golfe de Gabès (Mer Pélagienne), Pollen et Spores, 25, 437–460, 1983.
Brun, A.: Pollens dans les séries marines du Golfe de Gabès et du plateau des Kerkennah (Tunisie): signaux climatiques et anthropiques, Quaternaire, 3, 31–39, 1992.
Brun, A. and Rouvillois-Brigol, M.: Apport de la palynologie à l'histoire du peuplement en Tunisie, in: Palynologie archéologique, CNRS, Paris, 213–226, 1985.
Callot, Y. and Fontugne, M.: Les sites lacustres d'âge holocène dans l'est du Grand Erg occidental (nord-ouest du Sahara algérien): interprétation géomorphologique et paléoclimatique, Géomorphologie, 3, 187–200, https://doi.org/10.4000/geomorphologie.7173, 2008.
Calò, C., Henne, P. D., Eugster, P., van Leeuwen, J., Gilli, A., Hamann, Y., La Mantia, T., Pasta, S., Vescovi, E., and Tinner, W.: 1200 years of decadal-scale variability of Mediterranean vegetation and climate at Pantelleria Island, Italy, The Holocene, 23, 1477–1486, https://doi.org/10.1177/0959683613493935, 2013.
Caquineau, S., Gaudichet, A., Gomes, L., Magonthier, M.-C., and Chatenet, B.: Saharan dust: Clay ratio as a relevant tracer to assess the origin of soil-derived aerosols, Geophys. Res. Lett., 25, 983–986, https://doi.org/10.1029/98GL00569, 1998.
Carrión, J. S.: Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe, Quaternary Sci. Rev., 21, 2047–2066, https://doi.org/10.1016/S0277-3791(02)00010-0, 2002a.
Carrión, J. S.: A taphonomic study of modern pollen assemblages from dung and surface sediments in arid environments of Spain, Rev. Palaeobot. Palyno., 120, 217–232, https://doi.org/10.1016/S0034-6667(02)00073-8, 2002b.
Chaieb, M. and Boukhris, M.: Flore succinte et illustrée des zones arides et sahariennes de Tunisie, Association pour la protection de la nature et de l'environnement, 290 pp., 1998.
Chaieb, M. and Zaâfouri, M. S.: L'élevage extensif, facteur écologique primordial de la transformation physionomique du cortège floristique en milieu steppique tunisien, in: Rupture : nouveaux enjeux, nouvelles fonctions, nouvelle image de l'élevage sur parcours, edited by: Bourbouze, A. and Qarro, M., CIHEAM, Montpellier, 217–222, 2000.
Chenorkian, R., Harbi-Riahi, M., and Zoughlami, J.: Atlas Préhistorique de la Tunisie, 19, Maharès, École Française de Rome, 2002.
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F.: Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data, Clim. Past, 5, 503–521, https://doi.org/10.5194/cp-5-503-2009, 2009.
Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Goring, S., Dormoy, I., Joannin, S., Sadori, L., Siani, G., and Magny, M.: Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea), Clim. Past, 9, 2023–2042, https://doi.org/10.5194/cp-9-2023-2013, 2013.
Coudé-Gaussen, G. and Rognon, P.: The upper pleistocene loess of southern Tunisia: A statement, Earth Surf. Proc. Land., 13, 137–151, https://doi.org/10.1002/esp.3290130205, 1988.
Cour, P. and Duzer, D.: Action actuelle des courants atmosphériques sur la dissémination des pollens au Sahara et dans les régions climatiques avoisinantes le long d'un transect Oran-Abidjan, in: Palynologie et climats, Mém. Mus. Nat. Hist. Nat., Paris, 66–81, 1980.
Cremaschi, M., Pelfini, M., and Santilli, M.: Cupressus dupreziana: a dendroclimatic record for the middle-late Holocene in the central Sahara, The Holocene, 16, 293–303, https://doi.org/10.1191/0959683606hl926rr, 2006.
Cremaschi, M., Zerboni, A., Mercuri, A. M., Olmi, L., Biagetti, S., and di Lernia, S.: Takarkori rock shelter (SW Libya): an archive of Holocene climate and environmental changes in the central Sahara, Quaternary Sci. Rev., 101, 36–60, https://doi.org/10.1016/j.quascirev.2014.07.004, 2014.
Damblon, F. and Vanden Berghen, C.: Etude paléo-écologique (pollen et macrorestes) d'un dépôt tourbeux dans l'île de Djerba, Tunisie méridionale, Palynosciences, 2, 157–172, 1993.
Davis, B. S. and Brewer, S.: Orbital forcing and role of the latitudinal insolation/temperature gradient, Clim. Dynam., 32, 143–165, https://doi.org/10.1007/s00382-008-0480-9, 2009.
Debret, M., Sebag, D., Crosta, X., Massei, N., Petit, J. R., Chapron, E., and Bout-Roumazeilles, V.: Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing, Quaternary Sci. Rev., 28, 2675–2688, https://doi.org/10.1016/j.quascirev.2009.06.005, 2009.
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing, Quaternary Sci. Rev., 19, 347–361, https://doi.org/10.1016/S0277-3791(99)00081-5, 2000.
Desprat, S., Combourieu-Nebout, N., Essallami, L., Sicre, M. A., Dormoy, I., Peyron, O., Siani, G., Bout Roumazeilles, V., and Turon, J. L.: Deglacial and Holocene vegetation and climatic changes in the southern Central Mediterranean from a direct land-sea correlation, Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, 2013.
Drine A.: Le site d'El-Mdeina au sud d'El-Biban, la Zouchis de Strabon, Reppal, Centre d'Etudes de la Civilisation Phénicienne – Punique et des Antiquités Libyques, 7–8, 103–115, 1993.
Dünkeloh, A. and Jacobeit, J.: Circulation dynamics of Mediterranean precipitation variability 1948–98, Int. J. Climatol., 23, 1843–1866, https://doi.org/10.1002/joc.973, 2003.
Edmunds, W. M., Dodo, A., Djoret, D., Gaye, C., Goni, I., Travi, Y., Zouari, K., Zuppi, G.-M., and Gasse, F.: Groundwater as an archive of climatic and environmental change: Europe to Africa, in: Past Climate Variability through Europe and Africa, edited by: Battarbee, R., Gasse, F., and Stickley, C., Developments in Paleoenvironmental Research, Springer, the Netherlands, 279–306, 2004.
El-Rishi, H., Hunt, C., Gilbertson, D. D., Grattan, J., McLaren, S., Pyatt, B., Duller, G., Gillmore, G., and Phillips, P.: The past and present landscapes of the Wadi Faynan: geoarchaeological approaches and frameworks, in: Archaeology and desertification: The Wadi Faynan landscape survey, Southern Jordan, edited by: Barker, G., Gilbertson, D., and Mattingly, D., CBRL Levant Series 6, Oxbow Books, Oxford, 59–95, 2007.
Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., and Xoplaki, E.: Long-term drought severity variations in Morocco, Geophys. Res. Lett., 34, L17702, https://doi.org/10.1029/2007GL030844, 2007.
Faust, D., Zielhofer, C., Baena Escudero, R., and Diaz del Olmo, F.: High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact?, Quaternary Sci. Rev., 23, 1757–1775, https://doi.org/10.1016/j.quascirev.2004.02.007, 2004.
Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E., and Lindblom, M.: Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years – A review, J. Archaeol. Sci., 38, 3153–3173, https://doi.org/10.1016/j.jas.2011.05.007, 2011.
Fletcher, W. J. and Zielhofer, C.: Fragility of Western Mediterranean landscapes during Holocene Rapid Climate Changes, CATENA, 103, 16–29, https://doi.org/10.1016/j.catena.2011.05.001, 2013.
Fletcher, W. J., Sanchez Goñi, M. F., Peyron, O., and Dormoy, I.: Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record, Clim. Past, 6, 245–264, https://doi.org/10.5194/cp-6-245-2010, 2010.
Fletcher, W. J., Debret, M., and Sanchez Goñi, M. F.: Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies, The Holocene, 23, 153–166, https://doi.org/10.1177/0959683612460783, 2012.
Floret, C. and Pontanier, R.: L'aridité en Tunisie présaharienne : climat, sol, végétation et aménagement, Travaux et Documents de l'ORSTOM, 150, ORSTOM, Paris, 552 pp., 1982.
Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and chemical properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231–8256, https://doi.org/10.5194/acp-11-8231-2011, 2011.
Foucault, A. and Mélières, F.: Palaeoclimatic cyclicity in central Mediterranean Pliocene sediments: the mineralogical signal, Palaeogeogr. Palaeocl., 158, 311–323, https://doi.org/10.1016/S0031-0182(00)00056-0, 2000.
Frankenberg, P.: Zeitlicher Vegetationswandel und Vegetationsrekonstruktion des “neolithischen Klimaoptimums” in der Jeffara Südosttunesiens, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, 4, Akademie der Wissenschaften und der Literatur, Stuttgart, 83 pp., 1986.
Friendly, M.: Corrgrams, Am. Stat., 56, 316–324, https://doi.org/10.1198/000313002533, 2002.
Gamoun, M.: Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia, J. Arid Land, 6, 324–333, https://doi.org/10.1007/s40333-013-0202-y, 2014.
Gammar A.-M.: Carte de la végétation de la Tunisie, in: Atlas de l'eau en Tunisie, edited by: Henia L., Faculté des sciences humaines et sociales de Tunis, 130–133, 2008.
Gao, X. and Giorgi, F.: Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model, Global Planet. Change, 62, 195–209, https://doi.org/10.1016/j.gloplacha.2008.02.002, 2008.
Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum, Quaternary Sci. Rev., 19, 189–211, https://doi.org/10.1016/S0277-3791(99)00061-X, 2000.
Gasse, F.: Diatom-inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the western Sahara and Sahel (Africa), Quaternary Sci. Rev., 21, 737–767, https://doi.org/10.1016/S0277-3791(01)00125-1, 2002.
Gasse, F. and Roberts, C. N.: Late Quaternary Hydrologic Changes in the Arid and Semiarid Belt of Northern Africa, in: The Hadley Circulation: Present, Past and Future, edited by: Diaz, H. and Bradley, R., Advances in Global Change Research, Springer, the Netherlands, 313–345, 2004.
Genin, D., Guillaume, H., Ouessar, M., Ouled Belgacem, A., Romagny, B., Sghaïer, M., and Taamallah, H.: Entre désertification et développement: la Jeffara tunisienne, IRD-Cérès, Tunis, 351 pp., 2006.
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F.: Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles–comparison with Chinese and South Hemisphere stalagmites, Quaternary Sci. Rev., 25, 2118–2142, https://doi.org/10.1016/j.quascirev.2006.01.030, 2006.
Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., and Goodess, C. M.: Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming, Global Planet. Change, 68, 209–224, https://doi.org/10.1016/j.gloplacha.2009.06.001, 2009.
Gibert, E., Arnold, M., Conrad, G., De Deckker, P., Fontes, J. C., Gasse, F., and Kassir, A.: Retour des conditions humides au Tardiglaciaire au Sahara septentrional (sebkha Mellala, Algerie), B. Soc. Geol. France, VI, 497–504, https://doi.org/10.2113/gssgfbull.VI.3.497, 1990.
Gilbertson, D. D., Hunt, C. O., and Smithson, P. A.: Quaternary geomorphology and palaeoecology, in: Farming the desert: the UNESCO Libyan Valleys Archaeological Survey, Volume one, Synthesis, edited by: Barker, G., UNESCO Publishing, Paris, 49–82, 1996.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global Planet. Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Giraudi, C., Mercuri, A. M., and Esu, D.: Holocene palaeoclimate in the northern Sahara margin (Jefara Plain, northwestern Libya), The Holocene, 23, 339–352, https://doi.org/10.1177/0959683612460787, 2013.
Goudie, A. S. and Middleton, N. J.: Saharan dust storms: nature and consequences, Earth-Sci. Rev., 56, 179–204, https://doi.org/10.1016/S0012-8252(01)00067-8, 2001.
Graham, N. E., Ammann, C. M., Fleitmann, D., Cobb, K. M., and Luterbacher, J.: Support for global climate reorganization during the “Medieval Climate Anomaly”, Clim. Dynam., 37, 1217–1245, https://doi.org/10.1007/s00382-010-0914-z, 2011.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Guendouz, A., Moulla, A. S., Edmunds, W. M., Zouari, K., Shand, P., and Mamou, A.: Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara, Hydrogeol. J., 11, 483–495, https://doi.org/10.1007/s10040-003-0263-7, 2003.
Hamann, Y., Ehrmann, W., Schmiedl, G., and Kuhnt, T.: Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea, Quaternary Res., 71, 453–464, https://doi.org/10.1016/j.yqres.2009.01.001, 2009.
Hoelzmann, P., Gasse, F., Dupont, L., Salzmann, U., Staubwasser, M., Leuschner, D., and Sirocko, F.: Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present, in: Past Climate Variability through Europe and Africa, edited by: Battarbee, R., Gasse, F., and Stickley, C., Developments in Paleoenvironmental Research, Springer, the Netherlands, 219–256, 2004.
Hooghiemstra, H.: Aspects of Neogene-Quaternary environmental and climatic change in equatorial and Saharan Africa, in: Palaeoecology of Africa, 24, 115–132, 1996.
Horowitz, A.: Palynology of Arid Lands, Elsevier, Amsterdam, 546 pp., 1992.
Hunt, C. O., Elrishi, H. A., and Hassan, A. T.: Reconnaissance investigation of the palynology of Holocene wadi deposits in Cyrenaica, Libya, Libyan Studies, 33, 1–7, https://doi.org/10.1017/S0263718900005070, 2002.
Hunt, C. O., Gilbertson, D. D., and El-Rishi, H. A.: An 8000-year history of landscape, climate, and copper exploitation in the Middle East: the Wadi Faynan and the Wadi Dana National Reserve in southern Jordan, J. Archaeol. Sci., 34, 1306–1338, https://doi.org/10.1016/j.jas.2006.10.022, 2007.
Hunt, C. O., Davison, J., Inglis, R., Farr, L., Reynolds, T., Simpson, D., el-Rishi, H., and Barker, G.: Site formation processes in caves: The Holocene sediments of the Haua Fteah, Cyrenaica, Libya, J. Archaeol. Sci., 37, 1600–1611, https://doi.org/10.1016/j.jas.2010.01.021, 2010.
Hunt, C. O., Brooks, I., Meneely, J., Brown, D., Buzaian, A., and Barker, G.: The Cyrenaican Prehistory Project 2011: Late-Holocene environments and human activity from a cave fill in Cyrenaica, Libya, Libyan Studies, 42, 77–87, https://doi.org/10.1017/S0263718900004830, 2011.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Jackes, M. and Lubell, D.: Early and Middle Holocene Environments and Capsian Cultural Change: Evidence from the Télidjène Basin, Eastern Algeria, Afr. Archaeol. Rev., 25, 41–55, https://doi.org/10.1007/s10437-008-9024-2, 2008.
Jaouadi, S., Lebreton, V., Mannai-Tayech, B., Lakhdar, R., and Soussi, M.: Apport de l'analyse pollinique des sédiments de la sebkha Boujmel (Sud-Est tunisien) à la reconstitution des paléopysages et paléoclimats holocènes en milieu aride, Méditerranée, 125, in press, 2016.
Juggins, S.: rioja: Analysis of Quaternary Science Data, R package version (0.9-5), The Comprehensive R Archive Network, 2015.
Kaniewski, D., Van Campo, E., Paulissen, E., Weiss, H., Bakker, J., Rossignol, I., and Van Lerberghe, K.: The medieval climate anomaly and the little Ice Age in coastal Syria inferred from pollen-derived palaeoclimatic patterns, Global Planet. Change, 78, 178–187, https://doi.org/10.1016/j.gloplacha.2011.06.010, 2011.
Keer, F. R.: The Sedimentary Framework of a Desert Coastal Lagoon, Bahiret El Bibane – Tunisia, Master thesis, Duke University, North Carolina, 93 pp., 1976.
Kotthoff, U., Müller, U. C., Pross, J., Schmiedl, G., Lawson, I. T., van de Schootbrugge, B., and Schulz, H.: Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives, The Holocene, 18, 1019–1032, https://doi.org/10.1177/0959683608095573, 2008a.
Kotthoff, U., Pross, J., Müller, U. C., Peyron, O., Schmiedl, G., Schulz, H., and Bordon, A.: Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 deduced from a marine pollen record, Quaternary Sci. Rev., 27, 832–845, https://doi.org/10.1016/j.quascirev.2007.12.001, 2008b.
Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.-P., Fagot, M., Rumes, B., Russell, J. M., Darius, F., Conley, D. J., Schuster, M., von Suchodoletz, H., and Engstrom, D. R.: Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years, Science, 320, 765–768, https://doi.org/10.1126/science.1154913, 2008.
Kutzbach, J. E. and Liu, Z.: Response of the African Monsoon to Orbital Forcing and Ocean Feedbacks in the Middle Holocene, Science, 278, 440–443, https://doi.org/10.1126/science.278.5337.440, 1997.
Kutzbach, J. E., Chen, G., Cheng, H., Edwards, R. L., and Liu, Z.: Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality, Clim. Dynam., 42, 1079–1095, https://doi.org/10.1007/s00382-013-1692-1, 2014.
Lakhdar, R., Soussi, M., Ben Ismail, M. H., and M'Rabet, A.: A Mediterranean Holocene restricted coastal lagoon under arid climate: Case of the sedimentary record of Sabkha Boujmel (SE Tunisia), Palaeogeogr. Palaeocl., 241, 177–191, https://doi.org/10.1016/j.palaeo.2006.02.014, 2006.
Lakhdar, R.: Les sédiments holocènes et les tapis microbiens du littoral du Sud-Est de la Tunisie: sédimentologie et paléoenvironnements, PhD, Université de Sfax, 207 pp., 2009.
Le Floc'h, E., Boulos, L., and Vela, E.: Catalogue synonymique commenté de la Flore de Tunisie, Ministère de l'Environnement et du Développement durable – Banque Nationale de Gènes, Montpellier-Tunis, 500 pp., 2010.
Le Houérou, H. N.: Recherches écologiques et floristiques sur la végétation de la Tunisie méridionale, Institut de Recherches Sahariennes, Université d'Alger, 508 pp., 1959.
Le Houérou, H. N.: La Végétation de la Tunisie steppique (avec références aux végétations analogues d'Algérie, de Libye et du Maroc), Annales de l'Institut National de la Recherche Agronomique de Tunisie, 42, 624 pp., 1969.
Le Houérou, H. N.: Browse in northern Africa, in: Browse in Africa: The Current State of Knowledge, edited by: Le Houérou, H. N., International Livestock Centre for Africa, Addis Ababa, 83–102, 1980.
Le Houérou, H. N.: Bioclimatologie et biogéographie des steppes arides du Nord de l'Afrique, Options méditerranéennes, Série B; Etudes & recherches, Montpellier, CIHEAM, 396 pp., 1995.
Lebreton, V. and Jaouadi, S.: Histoire holocène de la végétation sur le littoral de la Tunisie centrale: analyse pollinique des sédiments de la sebkha-lagune Halk el Manjel, in: Le Capsien de Hergla (Tunisie): Culture, environnement et économie, edited by: Mulazzani, S., Reports in African Archaeology, 4, Africa Magna Verlag, Frankfurt am Main, 48–56, 2013.
Lebreton, V., Jaouadi, S., Mulazzani, S., Boujelben, A., Belhouchet, L., Gammar, A. M., Combourieu-Nebout, N., Saliège, J.-F., Karray, M. R., and Fouache, E.: Early oleiculture or native wild Olea in eastern Maghreb: new pollen data from the sebkha-lagoon Halk el Menjel (Hergla, Central Tunisia), Environmental Archaeology, 20, 265–273, https://doi.org/10.1179/1749631414Y.0000000046, 2015.
Lézine, A.-M., Zheng, W., Braconnot, P., and Krinner, G.: Late Holocene plant and climate evolution at Lake Yoa, northern Chad: pollen data and climate simulations, Clim. Past, 7, 1351–1362, https://doi.org/10.5194/cp-7-1351-2011, 2011.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and Xoplaki, E.: The Mediterranean climate: An overview of the main characteristics and issues, in: Mediterranean Climate Variability, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Developments in Earth and Environmental Sciences, 4, Elsevier, 1–26, 2006.
Lubell, D., Hassan, F. A., Gautier, A., and Ballais, J.-L.: The Capsian Escargotières, Science, 191, 910–920, https://doi.org/10.1126/science.191.4230.910, 1976.
Lucarini, G.: Was a transition to food production homogeneous along the circum-Mediterranean littoral? A perspective on the Neolithisation research from the Libyan littoral, in: Neolithisation of Northeastern Africa, edited by: Shirai, N., Studies in Early Near Eastern Production, Subsistence, and Environment, 16, ex oriente, Berlin, 149–174, 2013.
Magny, M., Vannière, B., Zanchetta, G., Fouache, E., Touchais, G., Petrika, L., Coussot, C., Walter-Simonnet, A.-V., and Arnaud, F.: Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean, The Holocene, 19, 823–833, https://doi.org/10.1177/0959683609337360, 2009.
Magny, M., Vannière, B., Calo, C., Millet, L., Leroux, A., Peyron, O., Zanchetta, G., La Mantia, T., and Tinner, W.: Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy, Quaternary Sci. Rev., 30, 2459–2475, https://doi.org/10.1016/j.quascirev.2011.05.018, 2011.
Magny, M., Peyron, O., Sadori, L., Ortu, E., Zanchetta, G., Vannière, B., and Tinner, W.: Contrasting patterns of precipitation seasonality during the Holocene in the south- and north-central Mediterranean, J. Quaternary Sci., 27, 290–296, https://doi.org/10.1002/jqs.1543, 2012.
Magny, M., Combourieu-Nebout, N., de Beaulieu, J. L., Bout-Roumazeilles, V., Colombaroli, D., Desprat, S., Francke, A., Joannin, S., Ortu, E., Peyron, O., Revel, M., Sadori, L., Siani, G., Sicre, M. A., Samartin, S., Simonneau, A., Tinner, W., Vannière, B., Wagner, B., Zanchetta, G., Anselmetti, F., Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami, L., Galop, D., Gilli, A., Haas, J. N., Kallel, N., Millet, L., Stock, A., Turon, J. L., and Wirth, S.: North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses, Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, 2013.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256–1260, 2009.
Marquer, L., Pomel, S., Abichou, A., Schulz, E., Kaniewski, D., and Van Campo, E.: Late Holocene high resolution palaeoclimatic reconstruction inferred from Sebkha Mhabeul, southeast Tunisia, Quaternary Res., 70, 240–250, https://doi.org/10.1016/j.yqres.2008.06.002, 2008.
Martín-Puertas, C., Valero-Garcés, B. L., Pilar Mata, M., González-Sampériz, P., Bao, R., Moreno, A., and Stefanova, V.: Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba, The Holocene, 18, 907–921, https://doi.org/10.1177/0959683608093533, 2008.
Mattingly, D. J.: Tripolitania, Batsford, London, 465 pp., 1995.
Mattingly, D. J., Reynolds, T., and Dore, J.: Synthesis of human activities in Fazzan, in: The archaeology of Fazzan Volume 1, Synthesis, edited by: Mattingly, D. J., Department of Antiquities, Tripoli and Society for Libyan Studies, London, 327–373, 2003.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W., and Bradtmiller, L. I.: The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr, Earth Planet. Sc. Lett., 371–372, 163–176, https://doi.org/10.1016/j.epsl.2013.03.054, 2013.
Medhioub, K. and Perthuisot, J.-P.: The influence of peripheral sabkhas on the geochemistry and sedimentology of a Tunisian lagoon: Bahiret el Biban, Sedimentology, 28, 679–688, https://doi.org/10.1111/j.1365-3091.1981.tb01928.x, 1981.
Mercuri, A. M.: Human influence, plant landscape evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara), J. Arid Environ., 72, 1950–1967, https://doi.org/10.1016/j.jaridenv.2008.04.008, 2008.
Morton, R. A. and White, W. A.: Characteristics of and Corrections for Core Shortening in Unconsolidated Sediments, J. Coastal Res., 13, 761–769, 1997.
Mrabet, A.: Identité de la Tripolitaine occidentale: de quelques signalements archéologiques, in: Provinces et identités provinciales dans l'Afrique romaine, edited by: Briand-Ponsart, B. and Modéran, Y., Tables rondes du CRAHME, 6, Caen, 221–237, 2011.
Mulazzani, S.: Le Capsien de Hergla (Tunisie): Culture, Environnement Et économie, Reports in African Archaeology, 4, Africa Magna Verlag, Frankfurt am Main, 436 pp., 2013.
Nasr, Z., Almohammed, H., Gafrej Lahache, R., Maag, C., and King, L.: Drought modelling under climate change in Tunisia during the 2020 and 2050 periods, in: Drought management: scientific and technological innovations, edited by: López-Francos, A., Options Méditerranéennes : Série A. Séminaires Méditerranéens, Zaragoza: CIHEAM, 365–370, 2008.
Nasri, S., Albergel, J., Cudennec, C., and Berndtsson, R.: Hydrological processes in macrocatchment water harvesting in the arid region of Tunisia: the traditional system of tabias/Processus hydrologiques au sein d'un aménagement de collecte des eaux dans la région aride tunisienne: le système traditionnel des tabias, Hydrolog. Sci. J., 49, 261–272, https://doi.org/10.1623/hysj.49.2.261.34838, 2004.
Neumann, F. H., Kagan, E. J., Leroy, S. A. G., and Baruch, U.: Vegetation history and climate fluctuations on a transect along the Dead Sea west shore and their impact on past societies over the last 3500 years, J. Arid Environ., 74, 756–764, https://doi.org/10.1016/j.jaridenv.2009.04.015, 2010.
Nieto-Moreno, V., Martinez-Ruiz, F., Giralt, S., Gallego-Torres, D., García-Orellana, J., Masqué, P., and Ortega-Huertas, M.: Climate imprints during the “Medieval Climate Anomaly” and the “Little Ice Age” in marine records from the Alboran Sea basin, The Holocene, 23, 1227–1237, https://doi.org/10.1177/0959683613484613, 2013.
Nowicke, J. W.: Pollen morphology in the order Centrospermae, Grana Palynol., 15, 51–77, 1975.
Nowicke, J. W. and Skvarla, J. J.: Pollen morphology: the potential influence in higher order systematics, Ann. Mo. Bot. Gard., 66, 633–700, 1979.
O'Hara, S. L., Clarke, M. L., and Elatrash, M. S.: Field measurements of desert dust deposition in Libya, Atmos. Environ., 40, 3881–3897, https://doi.org/10.1016/j.atmosenv.2006.02.020, 2006.
Ozenda, P.: Flore et végétation du Sahara, 3 Edn., CNRS éditions, Paris, 2004.
Pelling, R.: Garamantian agriculture and its significance in a wider North African context: The evidence of the plant remains from the Fazzan project, The Journal of North African Studies, 10, 397–412, https://doi.org/10.1080/13629380500336763, 2005.
Perthuisot, J. P.: La Sebkha el Melah de Zarzis: genèse et évolution d'un bassin salin paralique, Travaux du Laboratoire de Géologie, 9, École Normale Supérieure, Paris, 252 pp., 1975.
Petschick, R.: MacDiff v 4.2.5 (Free Geological Software), Geologisch-Palaontologisches Institut, Universitat Frankfurt/Main, available at: http://www.geol-pal.unifrankfurt.de/Staff/Homepages/Petschick/classicsoftware.html (last access: 2 July 2012), 2001.
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., and Magny, M.: Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece), The Holocene, 21, 131–146, https://doi.org/10.1177/0959683610384162, 2011.
Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, J.-L., Brugiapaglia, E., Sadori, L., Garfi, G., Kouli, K., Ioakim, C., and Combourieu-Nebout, N.: Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data, Clim. Past, 9, 1233–1252, https://doi.org/10.5194/cp-9-1233-2013, 2013.
Pons, A. and Quézel, P.: À propos de la mise en place du climat méditerranéen, C. R. Acad. Sci. IIA, 327, 755–760, https://doi.org/10.1016/S1251-8050(99)80047-0, 1998.
Pottier-Alapetite, G.: Flore de la Tunisie: Angiospermes-Dicotyledones-Apetales-Dialypetales, Tunis, 1979.
Pottier-Alapetite, G.: Flore de la Tunisie: Angiospermes-Dicotyledones-Gamopetales, Tunis, 1981.
R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, 2013.
Reille, M.: Pollen et spores d'Europe et d'Afrique du nord, Laboratoire de Botanique Historique et Palynologie, Marseille, 1992.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Ritchie, J. C. and Haynes, C. V.: Holocene vegetation zonation in the eastern Sahara, Nature, 330, 645–647, 1987.
Ritchie, J. C., Eyles, C. H., and Haynes, C. V.: Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara, Nature, 314, 352–355, 1985.
Roberts, N., Brayshaw, D., Kuzucuoğlu, C., Perez, R., and Sadori, L.: The mid-Holocene climatic transition in the Mediterranean: Causes and consequences, The Holocene, 21, 3–13, https://doi.org/10.1177/0959683610388058, 2011.
Roubet, C.: “ Statut de Berger ” des communautés atlasiques, néolithisées du Maghreb oriental, dès 7000 BP, L'Anthropologie, 107, 393–442, https://doi.org/10.1016/S0003-5521(03)00024-4, 2003.
Ruan, J., Kherbouche, F., Genty, D., Blamart, D., Cheng, H., Dewilde, F., Hachi, S., Edwards, R. L., Régnier, E., and Michelot, J.-L.: Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria, Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, 2016.
Sadori, L., Jahns, S., and Peyron, O.: Mid-Holocene vegetation history of the central Mediterranean, The Holocene, 21, 117–129, https://doi.org/10.1177/0959683610377530, 2011.
Sadori, L., Giraudi, C., Masi, A., Magny, M., Ortu, E., Zanchetta, G., and Izdebski, A.: Climate, environment and society in southern Italy during the last 2000 years. A review of the environmental, historical and archaeological evidence, Quaternary Sci. Rev., 136, 173–188, https://doi.org/10.1016/j.quascirev.2015.09.020, 2016.
Salzmann, U. and Schulz, E.: Modern pollen rain and Late Holocene vegetation history of southern Tunisia, Publication occasionnelle du CIFEG, 31, 183–192, 1995.
Schaaf, T.: UNESCO's Experience of Fifty Years of Drylands Research and Outreach, in: The Future of Drylands, edited by: Lee, C. and Schaaf, T., Springer, the Netherlands, 775–786, 2008.
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K.-C., Hamann, Y., Kotthoff, U., Dulski, P., and Pross, J.: Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years, Quaternary Sci. Rev., 29, 3006–3020, https://doi.org/10.1016/j.quascirev.2010.07.002, 2010.
Schulz, E.: The recent pollen rain in the eastern central Sahara. A transect between northern Libya and southern Niger, Palaeoeco. A., 16, 245–253, 1984.
Schulz, E., Abichou, A., Hachicha, T., Pomel, S., Salzmann, U., and Zouari, K.: Sebkhas as ecological archives and the vegetation and landscape history of southeastern Tunisia during the last two millennia, J. Afr. Earth Sci., 34, 223–229, https://doi.org/10.1016/S0899-5362(02)00021-0, 2002.
Schulz, E., Abichou, A., Adamou, A., Ballouche, A., and Ousseïni, I.: The desert in the Sahara. Transitions and boundaries, in: Holocene Palaeoenvironmental History of the Central Sahara, edited by: Baumhauer, R., and Runge, J., Palaeoecology of Africa, 29, CRC Press, 64–89, 2009.
Sghaier, M., Arbi, A.-M., Tonneau, J.-P., Ounalli, N., Jeder, H., and Bonin, M.: Land Degradation in the Arid Jeffara Region, Tunisia in: Land Use Policies for Sustainable Development: Exploring Integrated Assessment Approaches, edited by: McNeill, D., Nesheim, I., and Brouwer, F., Edward Elgar, 89–109, 2012.
Shipley, G.: Pseudo-Skylax's Periplous: The Circumnavigation of the Inhabited World: Text, Translation and Commentary, Bristol Phoenix Press, 2011.
Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddad, G.: Mediterranean Sea Surface Radiocarbon Reservoir Age Changes Since the Last Glacial Maximum, Science, 294, 1917–1920, https://doi.org/10.1126/science.1063649, 2001.
Smykatz-Kloss, W. and Felix-Henningsen, P.: The Importance of Desert Margins as Indicators for Global Climatic Fluctuations (Introduction), in: Paleoecology of Quaternary Drylands, edited by: Smykatz-Kloss, W. and Felix-Henningsen, P., Lecture Notes in Earth Sciences, Springer, Berlin Heidelberg, 1–3, 2004.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen et Spore, 13, 615–621, 1971.
Swezey, C., Lancaster, N., Kocurek, G., Deynoux, M., Blum, M., Price, D., and Pion, J.-C.: Response of aeolian systems to Holocene climatic and hydrologic changes on the northern margin of the Sahara: a high-resolution record from the Chott Rharsa basin, Tunisia, The Holocene, 9, 141–147, https://doi.org/10.1191/095968399670329816, 1999.
Swezey, C.: Eolian sediment responses to late Quaternary climate changes: temporal and spatial patterns in the Sahara, Palaeogeogr. Palaeocl., 167, 119–155, https://doi.org/10.1016/S0031-0182(00)00235-2, 2001.
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., and Servonnat, J.: Natural forcing of climate during the last millennium: fingerprint of solar variability, Clim. Dynam., 36, 1349–1364, https://doi.org/10.1007/s00382-010-0803-5, 2011.
Talbi, M.: Action anthropique et dégradation de l'environnement aride: la désertification en Tunisie du Sud-Est, Méditerranée, 86, 25–31, 1997.
Talbi, M., Ben-Mansour, N., Talbi, K., and Gasmi, N.: Changes in the resources management and their environmental consequences in a Saharan arid environment, in: Desertification and Risk Analysis Using High and Medium Resolution Satellite Data, edited by: Marini, A. and Talbi, M., NATO Science for Peace and Security Series C: Environmental Security, Springer, the Netherlands, 27–46, 2009.
Tarhouni, M., Ben Salem, F., Ouled Belgacem, A., and Neffati, M.: Acceptability of plant species along grazing gradients around watering points in Tunisian arid zone, Flora – Morphology, Distribution, Functional Ecology of Plants, 205, 454–461, https://doi.org/10.1016/j.flora.2009.12.020, 2010.
Tierney, J. E. and deMenocal, P. B.: Abrupt Shifts in Horn of Africa Hydroclimate Since the Last Glacial Maximum, Science, 342, 843–846, https://doi.org/10.1126/science.1240411, 2013.
Traverse, A.: Paleopalynology, Springer Topics in Geobiology, 28, Springer, 814 pp., 2007.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula, Int. J. Climatol., 24, 925–944, https://doi.org/10.1002/joc.1048, 2004.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly, Science, 324, 78–80, 2009.
Trousset, P. and Paskoff, R.: Biban (Les Portes), Encyclopédie berbère, 10, 1488–1492, 1991.
Tzedakis, P. C.: Seven ambiguities in the Mediterranean palaeoenvironmental narrative, Quaternary Sci. Rev., 26, 2042–2066, https://doi.org/10.1016/j.quascirev.2007.03.014, 2007.
van der Veen, M.: Garamantian Agriculture: The Plant Remains from Zinchecra, Fezzan, Libyan Studies, 23, 7–39, https://doi.org/10.1017/S0263718900001722, 1992.
Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher, D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., and Weiss, H.: Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), J. Quaternary Sci., 27, 649–659, https://doi.org/10.1002/jqs.2565, 2012.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Niedermayr, A., Riechelmann, S., Fietzke, J., Scholz, D., Jochum, K. P., Fohlmeister, J., Schröder-Ritzrau, A., Sabaoui, A., Riechelmann, D. F. C., Schneider, L., and Esper, J.: Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period, Earth Planet. Sc. Lett., 375, 291–302, https://doi.org/10.1016/j.epsl.2013.05.048, 2013.
Zielhofer, C., Faust, D., Escudero, R. B., del Olmo, F. D., Kadereit, A., Moldenhauer, K.-M., and Porras, A.: Centennial-scale late-Pleistocene to mid-Holocene synthetic profile of the Medjerda Valley, northern Tunisia, The Holocene, 14, 851–861, https://doi.org/10.1191/0959683604hl765rp, 2004.
Zoughlami, J.: Le néolithique dans la dorsale tunisienne – Kef El Guéria et sa région, Centre de Publication Universitaire, Tunis, 216 pp., 2009.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2306 KB) - Full-text XML
Special issue