Articles | Volume 11, issue 9
Clim. Past, 11, 1249–1270, 2015
https://doi.org/10.5194/cp-11-1249-2015

Special issue: Climatic and biotic events of the Paleogene

Clim. Past, 11, 1249–1270, 2015
https://doi.org/10.5194/cp-11-1249-2015

Research article 30 Sep 2015

Research article | 30 Sep 2015

Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)

M. Bordiga et al.

Related authors

Revised taxonomy and early evolution of fasciculiths at the Danian–Selandian transition
Francesco Miniati, Carlotta Cappelli, and Simonetta Monechi
J. Micropalaeontol., 40, 101–144, https://doi.org/10.5194/jm-40-101-2021,https://doi.org/10.5194/jm-40-101-2021, 2021
Short summary
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020,https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi
Andrea C. Gerecht, Luka Šupraha, Gerald Langer, and Jorijntje Henderiks
Biogeosciences, 15, 833–845, https://doi.org/10.5194/bg-15-833-2018,https://doi.org/10.5194/bg-15-833-2018, 2018
Short summary
Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section)
L. Giusberti, F. Boscolo Galazzo, and E. Thomas
Clim. Past, 12, 213–240, https://doi.org/10.5194/cp-12-213-2016,https://doi.org/10.5194/cp-12-213-2016, 2016
Drilling disturbance and constraints on the onset of the Paleocene–Eocene boundary carbon isotope excursion in New Jersey
P. N. Pearson and E. Thomas
Clim. Past, 11, 95–104, https://doi.org/10.5194/cp-11-95-2015,https://doi.org/10.5194/cp-11-95-2015, 2015
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021,https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021,https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Lessons from a high-CO2 world: an ocean view from  ∼ 3 million years ago
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020,https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020,https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019,https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary

Cited articles

Adams, C. G., Butterlin, J., and Samanta, B. K.: Larger foraminifera and events at the Eocene-Oligocene boundary in the Indo–West Pacific region, in: Terminal Eocene Events, edited by: Pomerol, C. and Premoli Silva, I., Elsevier, Amsterdam, 237–252, 1986.
Adler, M., Hensen, C., Wenzhöfer, F., Pfeifer, K., and Schulz, H. D.: Modelling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments, Mar. Geol., 177, 167–189, 2001.
Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., and Giusberti, L.: Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene Eocene boundary in the Venetian Pre-Alps, Mar. Micropaleontol., 63, 19–38, 2006.
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsletters on Stratigraphy, 47, 131–181, 2014.
Aitchison, J.: The statistical analysis of compositional data. Chapman and Hall, London, 416 pp., 1986.
Download
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.